Petrotektonika Felzikus magmák genezise



Hasonló dokumentumok
Petrotektonika bazaltok petrogenezise a forrástól a felszínig

11. előadás MAGMÁS KŐZETEK

A vulkáni kitöréseket megelőző mélybeli magmás folyamatok

A magma eredete, differenciálódása

Magmás kőzetek kémiai összetétele különböző tektonikai környezetekben

Metamorf kőzettan. Magmás (olvadék, kristályosodás, T, p) szerpentinit. zeolit Üledékes (törmelék oldatok kicsapódása; szerves eredetű, T, p)

A Föld kéreg: elemek, ásványok és kőzetek

ezetés a kőzettanba Földtudományi BSc szak Dr. Harangi Szabolcs tanszékvezető egyetemi tanár ELTE FFI Kőzettan-Geokémiai Tanszék

A köpeny és olvadékai

12. elıadás MAGMÁS KİZETEK

P és/vagy T változás (emelkedés vagy csökkenés) mellett a:

A FÖLD BELSŐ SZERKEZETE

Földrajz- és Földtudományi Intézet. Kőzettan-Geokémiai Tanszék. Szakmai beszámoló

Litoszféra fő-, mikro- és nyomelemgeokémiája

Kőzettan. Magmás (magmatic) Metamorf (metamorphic) Üledékes (sedimantary) -polimineralikus -monomineralikus

Ásványi nyersanyagtelepek képződése térben és időben: Metallogénia

kitörési mechanizmus, kristályosodási készség, környezeti tényezők

Kőzetlemezek és a vulkáni tevékenység

ezetés a kőzettanba 4

Geokémiai összefoglaló

eutektikum % anortit

Geokémia

Extraterresztikus testek Meteorit Primitív meteoritok Differenciált meteoritok Kondritok CAI CI kondritok Kondrumok Akondritok Kő-vasmeteorit

Litoszféra fő-, mikro- és nyomelemgeokémiája

ezetés a kőzettanba Földtudományi BSc szak Dr. Harangi Szabolcs tanszékvezető egyetemi tanár ELTE FFI Kőzettan-Geokémiai Tanszék

Metaszomatózis folyamatának nyomon követése felsőköpeny zárványokban, Persány-hegység

2003. Potrus Eötvös Collegiumért Vándordíj Pro Scientia Aranyérem 2004 I. hely a Magyarhoni Földtani Társulat Ifjúsági Ankétján (poszter)

A szilikátolvadékok jelentősége a Pannon-medencéből származó felsőköpeny zárványokban

a.) filloszilikátok b.) inoszilikátok c.) nezoszilikátok a.) tektoszilikátok b.) filloszilikátok c.) inoszilikátok

No kérdés A B C D 1 A földkéreg két leggyakoribb eleme: vas és alumínium szilícium és oxigén szén és oxigén bazalt és gránit. legkülső héjakon lévő

ÁLTALÁNOS FÖLDTANI ALAPISMERETEK 9

A Kárpát-Pannon Térség vulkáni kőzeteinek kutatása geokémiai megközelítés

KLÓR. A Cl geokémiailag: erősen illó, oldható mobilis.

Oxigén és hidrogén stabil izotópjai

Tanítási tervezet. 1. Tantervi követelmények. Az óra időpontja: november :10. Iskola, osztály: gimnázium, 9. B

Szubdukció geofizikai jellemzői. Németh Alexandra 2014 szeptember

Kőzettan.

A Mecsekalja Zóna kristályos komplexum posztmetamorf paleofluidum evolúciója

NAA és PGAA módszerek összehasonlítása, jelentőségük a geológiai minták vizsgálatában, Standard referencia anyagok vizsgálata

A PGAA geológiai alkalmazásai: ANDEZIT INTRÚZIÓK VIZSGÁLATA A KÁRPÁTI MÉSZALKÁLI VULKÁNI ÍV MENTÉN. Gméling Katalin MTA IKI NKO

Szakmai beszámoló. Ösztöndíj típusa: Collegium Hungaricum CH/2. Ösztöndíjas: Kiss Balázs okleveles geológus, doktorjelölt

Tertiary Quaternary subduction related magmatism in the Carpathian-Pannonian Region

A Föld belső szerkezete és összetétele

A HOLD MOZGÁSA. a = km e = 0, 055 i = 5. P = 18, 6 év. Sziderikus hónap: 27,32 nap. Szinodikus hónap: 29,53 nap

Csódi-hegy, szombati terepgyakorlat, 2012 ősze

lemeztektonika 1. ábra Alfred Wegener 2. ábra Harry Hess A Föld belső övei 3. ábra A Föld belső övei

(tk oldal) GEOGRÁFIA

Magmatizmuss Magmatizmus

A Bakony Balaton felvidék és a Kemenesalja monogenetikus vulkáni területeit tápláló bazaltos magmák petrogenezise

Segédanyag Az I. éves geográfusok és földrajz tanárszakosok magmás kőzettan gyakorlat anyagához ALAPFOGALMAK

Tanítási tervezet Fehér András Tamás Vulkáni kőzetek Tantervi követelmények A tanítási óra oktatási célja: A tanítási óra nevelési célja:

FÖLDRAJZ ANGOL NYELVEN GEOGRAPHY

A Föld belső szerkezete

Kőzettan.

AZ ÉLETTELEN ÉS AZ ÉLŐ TERMÉSZET

A kőzetlemezek és a vulkáni tevékenység, földrengések

Elemek geokémiai rendszere és csoportosításuk

Concursul de geografie Teleki Sámuel Teleki Sámuel földrajzverseny Természetföldrajz május 10 Javítókulcs

Az 5. Kőzettani és Geokémiai Vándorgyűlés programja

Tanítási tervezet. II. Az óra típusa: ismereteket elmélyítő és új ismereteket feldolgozó óra

Metamorf kızetek osztályozása

Alkáli bazaltos magma fejlődéstörténete szilikátolvadékzárványok vizsgálata alapján, a balaton-felvidéki Hegyestű és Haláp példáján.

Bevezetés a földtörténetbe

Meteorit becsapódás földtani konzekvenciái a Sudbury komplexum példáján

MAGMÁS KŐZETTAN. Dr. Pál-Molnár Elemér

A Föld belső szerkezete és összetétele

Az endogén erők felszínformáló hatásai-tektonikus mozgás

Elemek. A geokémia osztályozás:

A MARSI ÉS HOLDI METEORITOK ÖSSZEHASONLÍTÓ KŐZETTANI FELDOLGOZÁSA

Alkalmazott kőzettan

DE TEK TTK Ásvány- és Földtani Tanszék

MAGMÁS KŐZETTAN. Dr. Pál-Molnár Elemér

Kőzettan (ga1c1053)

Ércteleptan IV. 4/20/2012. Intermedier és savanyú intrúziók ásványi nyersanyagai. Babeş-Bolyai Tudományegyetem, Geológia Szak, 3.

Geokémia Kedd 10:20 Ortvay-terem

Horváth Mária: Bevezetés a földtörténetbe Prekambrium. Oktatási segédanyag

Földrengések a Rétsági-kismedencében 2013 nyarán

A Föld kémiája.

DOKTORI ÉRTEKEZÉS. Lukács Réka (Haranginé Lukács Réka Zsuzsanna)

Melléklet BAZALT ANYAGÚ CSISZOLT KŐESZKÖZÖK KŐZETTANI ÉS GEOKÉMIAI VIZSGÁLATA (BALATONŐSZÖD - TEMETŐI DŰLŐ LELŐHELY)

Vékony és vastag csiszolatok készítése a megbízó által átadott mintákból, valamint ezek és további, kiegészítő csiszolatok petrográfiai leírása

Li, Be, B stabil izotópjai

A KELET-BORSODI HELVÉTI BARNAKŐSZÉNTELEPEK TANI VIZSGÁLATA

ezetés a kőzettanba Földtudományi BSc szak Dr. Harangi Szabolcs tanszékvezető egyetemi tanár ELTE FFI Kőzettan-Geokémiai geology.elte.

Mélységi magmás kızetek

A Pannon-medence alatti alsókéreg jellemzői és eredete a granulitxenolitok alapján - áttekintés

Magmás kőzetek szerkezete és szövete

ÁSVÁNYOK, KŐZETEK KELETKEZÉSE, OSZTÁLYOZÁSA

A JÁNOSHALMA ORTOGNEISZ BLOKK KŐZETTANI FELÉPÍTÉSE,

A POLGÁRDI SZÁR-HEGY WOLLASTONITOS SZKARNJA: A SZKARN ÁLTALÁNOS JELLEMZÉSE ÉS A BENNE LÉVŐ APOFILLIT ÁSVÁNYTANI VIZSGÁLATA

Prompt gamma aktivációs analitikai vizsgálatok vulkáni. kőzeteken a Balaton-felvidéktől Eszak-Patagóniáig

FÖLDRAJZ ANGOL NYELVEN

SZEGEDI TUDOMÁNYEGYETEM TERMÉSZETTUDOMÁNYI ÉS INFORMATIKAI KAR FÖLDTUDOMÁNYOK DOKTORI ISKOLA ÁSVÁNYTANI, GEOKÉMIAI ÉS KŐZETTANI TANSZÉK

Poikilites szövetű felsőköpeny peridotit xenolitok eredete

SPINELLBE ZÁRT SZILIKÁTOLVADÉK-ZÁRVÁNY

Első Kőzettani és Geokémiai Vándorgyűlés június 11-13, Gárdony

A K sz. Fluidumok a Bakony-Balaton-felvidék litoszférájában c. OTKA pályázat zárójelentése. Témavezető: Dr. Török Kálmán.

A BÜKKI KARSZTVÍZSZINT ÉSZLELŐ RENDSZER KERETÉBEN GYŰJTÖTT HIDROMETEOROLÓGIAI ADATOK ELEMZÉSE

A Mórágyi Gránit magmás fejlődéstörténete

ÁLTALÁNOS TERMÉSZETFÖLDRAJZ III. GEOSZFÉRÁK 1. LITOSZFÉRA

Átírás:

Petrotektonika Felzikus magmák genezise H. Lukács Réka reka.harangi@gmail.com Magyary Z. Posztdoktori ösztöndíjhoz kapcsolódó előadás anyaga 2013. 10. 24. Szeged Hasznos irodalmak: Harangi Szabolcs: Vulkánok A Kárpát-Pannon térség tűzhányói, 2011 Robin Gill: Igneous Rocks and Processes http://elte.prompt.hu/elkeszult-tananyagok 1

Robert Wilhelm Bunsen (1811-1899) Izlandon két fő vulkáni kőzettípus: bazalt és riolit intermedier kőzettípusok: két magmatípus keveredésével jönnek létre Hekla: van, amikor bazaltos, máskor Si-gazdag magmák táplálják működését The origin of silicic magma remains a fundamental problem (Eric H. Christiansen és Micheal McCurry, 2008) 2

Magma képződése: : részleges olvadás Elsődleges ok: Nyomáscsökkenés (földköpeny kőzetanyag feláramlása) Bazaltos magma Hőmérsékletnövekedés (földkéreg kőzetanyag felfűtése) Granitoid (Si-gazdag) magma Magma képződése: : részleges olvadás Megfigyelések: Si-gazdag magmás kőzetek fő ásványfázisok: plagioklász, alkáli földpát és kvarc plagioklász, alkáli földpát és kvarc: nagy nyomáson közel likvidusz fázisok Felzikus olvadék nem jöhet létre peridotit kőzet megolvadásával, ahol olivin és piroxének a közel likvidusz fázisok Nagy tömegű gránitos magmás testek és riolitos vulkáni törmelékes kőzetek kontinentális területeken Nagy tömegű felzikus olvadék nem jöhet létre bazaltos magma differenciációjával sem, mivel ahhoz óriási mennyiségű kiindulási bazaltos olvadék szükséges 3

Magma képződése: : részleges olvadás Gránitok és riolitok megjelenése: Általában ott, ahol a kontinentális földkéreg vastag Aktív kontinentális peremeken (pl. Andok) Kollíziós zónákban (pl. Alpok, Himalája) Következtetések, első modellek: Magmaképződés a kontinentális kéreg anatexise révén Földköpeny szerepe: hőfluxus (forró földköpeny feláramlás vagy magma felnyomulás) Gránitok, Si-gazdag kőzetek lemeztektonikai kapcsolata Table 18-4. A Classification of Granitoid Rocks Based on Tectonic Setting. After Pitcher (1983) in K. J. Hsü (ed.), Mountain Building Processes, Academic Press, London; Pitcher (1993), The Nature and Origin of Granite, Blackie, London; and Barbarin (1990) Geol. Journal, 25, 227-238. Winter (2001) An Introduction to Igneous and Metamorphic Petrology. Prentice Hall. 4

Anorogén területeken 1. Óceáni hátság területeken Óceáni litoszféra: Ofiolit sorozatokban: Plagiogránit magmás differenciátumok Si-gazdag magma keletkezésének modellje: Bazaltból frakcionációs kristályosodással Lithology and thickness of a typical ophiolite sequence, based on the Samial Ophiolite in Oman. After Boudier and Nicolas (1985) Earth Planet. Sci. Lett., 76, 84-92. 1. Szilíciumgazdag magmás kőzetek óceáni hátság területeken Izland: Riolitok viszonylag gyakoriak Snaefellsjökull Askja Hekla 5

1. Szilíciumgazdag magmás kőzetek óceáni hátság területeken Izland: Riolitok viszonylag gyakoriak Si-gazdag magma keletkezésének modellje: Bazaltból frakcionációs kristályosodással > M típus vagy Bazaltos kéreganyag újraolvadásával > I típus Az izlandi Thingmuli kőzeteinek tholeiites frakcionációs kristályosodási trendje (Fenner trend, vízmentes kristályosodás: ol, cpx, plg) 6

Anorogén területeken 2. Óceáni szigeteken (Hot spot) Si-gazdag magma keletkezésének modellje: OIB bazaltból frakcionációs kristályosodással > M, A típus Anorogén és átmeneti területeken 3. Kontinentális anorogén területeken (rift( rift, Hot spot) Si-gazdag magma keletkezésének modellje: Köpenyeredetű bazaltból frakcionációs kristályosodással (esetleg kéreg kontamináció) > A típus és/vagy Alsókéreganyag olvadással 7

Orogén területeken Table 18-4. A Classification of Granitoid Rocks Based on Tectonic Setting. After Pitcher (1983) in K. J. Hsü (ed.), Mountain Building Processes, Academic Press, London; Pitcher (1993), The Nature and Origin of Granite, Blackie, London; and Barbarin (1990) Geol. Journal, 25, 227-238. Winter (2001) An Introduction to Igneous and Metamorphic Petrology. Prentice Hall. 8

Aktív kontinentális lemezszegélyek Principal subduction zones associated with orogenic volcanism and plutonism. Triangles are on the overriding plate. PBS = Papuan- Bismarck-Solomon-New Hebrides arc. After Wilson (1989) Igneous Petrogenesis, Allen Unwin/Kluwer. Aktív kontinentális lemezszegélyek Észak-Amerikai Kordillerák Map of the Juan de Fuca plate-cascade Arc system, after McBirney and White, (1982) The Cascade Province. In R. S. Thorpe (ed.), Andesites. Orogenic Andesites and Related Rocks. John Wiley & Sons. New York. pp. 115-136. Also shown is the Columbia Embayment (the western margin of pre-tertiary continental rocks) and approximate locations of the subduction zone as it migrated westward to its present location (after Hughes, 1990, J. Geophys. Res., 95, 19623-19638). Due to sparse age constraints and extensive later volcanic cover, the location of the Columbia Embayment is only approximate (particularly along the southern half). Winter (2001) An Introduction to Igneous and Metamorphic Petrology. Prentice Hall. 9

Aktív kontinentális lemezszegélyek Andok Map of western South America showing the plate tectonic framework, and the distribution of volcanics and crustal types. NVZ, CVZ, and SVZ are the northern, central, and southern volcanic zones. After Thorpe and Francis (1979) Tectonophys., 57, 53-70; Thorpe et al. (1982) In R. S. Thorpe (ed.), (1982). Andesites. Orogenic Andesites and Related Rocks. John Wiley & Sons. New York, pp. 188-205; and Harmon et al. (1984) J. Geol. Soc. London, 141, 803-822. Winter (2001) An Introduction to Igneous and Metamorphic Petrology. Prentice Hall. Aktív kontinentális lemezszegélyek: Intrúzív magmás kőzetek (Észak-Amerikai Kordillerák) Major plutons of the North American Cordillera, a principal segment of a continuous Mesozoic-Tertiary belt from the Aleutians to Antarctica. After Anderson (1990, preface to The Nature and Origin of Cordilleran Magmatism. Geol. Soc. Amer. Memoir, 174. The Sr 0.706 line in N. America is after Kistler (1990), Miller and Barton (1990) and Armstrong (1988). Winter (2001) An Introduction to Igneous and Metamorphic Petrology. Prentice Hall. 10

Aktív kontinentális lemezszegélyek: Intrúzív magmás kőzetek (Andok) Major plutons of the South American Cordillera, a principal segment of a continuous Mesozoic-Tertiary belt from the Aleutians to Antarctica. After USGS. Aktív kontinentális lemezszegélyek Szigetív Aktív kontinentális szegély Bazalt és bazaltos andezit gyakori Andezit, dácit és riolit gyakori Intrúzív magmás kőzetek gyakoriak Vastag kontinentális kéreg miatt! 11

Aktív kontinentális lemezszegélyek Kőzettípusok Relative frequency of rock types in the Andes vs. SW Pacific Island arcs. Data from 397 Andean and 1484 SW Pacific analyses in Ewart (1982) In R. S. Thorpe (ed.), Andesites. Wiley. New York, pp. 25-95. Winter (2001) An Introduction to Igneous and Metamorphic Petrology. Prentice Hall. Aktív kontinentális lemezszegélyek Potenciális különbségek a szigetívektől: Vastag Si-gazdag kéreg nagyobb esély a kéreg-kontaminációra A vastag kontinentális kéreg nagyobb eséllyel akadályozza meg a köpeny-eredetű magma felnyomulását erőteljesebb magmás differenciáció nagyobb mennyiségű intrúzív kőzettestek Kontinentális kéreg: alacsonyabb olvadáspontú kőzetanyagok kéreganatexis lehetősége nagyobb 12

Orogén területeken 4. Szigetív területeken Si-gazdag magma keletkezésének modellje: Bazaltból frakcionációs kristályosodással > M típus esetleg Szubdukálódó lemez (bazaltos-eklogitos anyagának) megolvadásával > adakitok Aktív kontinentális lemezszegélyek: petrogenezis Schematic cross section of an active continental margin subduction zone, showing the dehydration of the subducting slab, hydration and melting of a heterogeneous mantle wedge (including enriched sub-continental lithospheric mantle), crustal underplating of mantle-derived melts where MASH processes may occur, as well as crystallization of the underplates. Remelting of the underplate to produce tonalitic magmas and a possible zone of crustal anatexis is also shown. As magmas pass through the continental crust they may differentiate further and/or assimilate continental crust. Winter (2001) An Introduction to Igneous and Metamorphic Petrology. Prentice Hall. 13

Orogén területeken 5. Aktív kontinentális szegély területeken Si-gazdag magma keletkezésének modellje: Köpenyeredetű bazaltból frakcionációs kristályosodással > M típus vagy AFC folyamattal (Assimilation and Fractional Crystallization): bazaltos magma frakcionációs kristályosodásával és kéregasszimilációjával vagy Kéreg alá rétegződött bazaltok (magmás alsókéreg) újraolvadásával > I típus vagy MASH (Melting, Assimilation, Storage and Hybridization) folyamattal: köpenyeredetű bazalt magma megolvasztja a felette lévő kérget és keveredik, hibridizálódik a megolvasztott kéregeredetű olvadékkal Anatexis: a kéreg alá rétegződött bazaltok fűtő hatására a kéreg anyaga megolvad (metamagmás vagy metaüledékes kéreg olvadása) > S, I típus Orogén területeken 6. Kollíziós területek 14

Kollíziós térségek Magas gyűrt hegységek kialakulása Pl. Himalája, Alpok Jellemző magmás kőzetek: Granitoidok Orogén területeken 6. Kollíziós területek Si-gazdag magma keletkezésének modellje: Anatexissel: magmás vagy szediment eredetű kéreg olvadással > S, I típus vagy Köpenyeredetű bazaltos magma kéreganyaggal való kontaminációjával 15

Magma képződése: : részleges olvadás > anatexis Kontinentális kéreg: heterogén kőzettani összetétel metamorf kőzetek Fő ásványfázisok: plagioklász, alkáli földpát, kvarc, amfibol, biotit, muszkovit + járulékos elegyrészek (pl. cirkon, gránát, rutil stb) Víz-tartalmú ásványfázisok! amfibol, biotit, muszkovit Magma képződése: anatexis Kontinentális kéreg megolvadása: Muszkovit-tartalmú pala: Metaüledékes pala olvadása 800-825 o C: muszkovit megolvadása Muszkovit + plagioklász + kvarc víz-gazdag olvadék + alkáli földpát + + szillimanit + gránát 850 o C: összes muszkovit megolvad kb. 20% víz-gazdag olvadék keletkezik 16

Magma képződése: anatexis Kontinentális kéreg megolvadása: Metaüledékes pala olvadása Biotit-hornblende tartalmú pala: 875-900 o C: hornblende és biotit megolvadása Hornblende + kvarc víz-gazdag olvadék + klinopiroxén + ortopiroxén Biotit + kvarc víz-gazdag olvadék + gránát Biotit + plagioklász + kvarc víz-gazdag olvadék + ortopiroxén 950 o C: összes biotit és hornblende megolvad Bizonyítékok a kéreg részleges olvadására Mi marad vissza a kéreg anatexis után? Refraktórikus ásványfázisok 1. Száraz granulit Plagioklász +/- kvarc +/- gránát +/- szillimanit +/- kordierit 2. Migmatit részlegesen olvadt kőzet neoszom (földpát és kvarc) és paleoszom (plagioklász, amfibol, biotit, piroxén) szabálytalan lefutású rétegek és lencsék 3. Resztit gránitban előforduló zárvány formájában jelenik meg, refraktórikus ásványfázisokból áll. 17

Kollíziós térségek: Példa Alpok Periadriai magmatitok 1. Granitoid plutonok 2. Mafikus telérek Kollíziós térségek Alpok Periadriai magmatitok 1. Granitoid plutonok 2. Mafikus telérek Von Blanckenburg és Davies modellje 18

7. Posztorogén területek Si-gazdag magma keletkezésének modellje: Köpenyeredetű bazaltos magma kéreganyaggal való kontaminációjával vagy Bazaltos vagy szediment alsókéreg olvadással > I, S típus 7. Posztorogén területek Schematic models for the uplift and extensional collapse of orogenically thickened continental crust. Subduction leads to thickened crust by either continental collision (a1) or compression of the continental arc (a2), each with its characteristic orogenic magmatism. Both mechanisms lead to a thickened crust, and probably thickened mechanical and thermal boundary layers ( MBL and TBL ) as in (b) Following the stable situation in (b), either compression ceases (c1) or the thick dense thermal boundary layer is removed by delamination or convective erosion (c2). The result is extension and collapse of the crust, thinning of the lithosphere, and rise of hot asthenosphere (d). The increased heat flux in (d), plus the decompression melting of the rising asthenosphere, results in bimodal post-orogenic magmatism with both mafic mantle and silicic crustal melts. Winter (2001) An Introduction to Igneous and Metamorphic Petrology. Prentice Hall. 19

NEVEZÉKTAN 20

Granitoidok Granitoidok 21

Gránittípusok: Metaüledékes kőzetanyag megolvadása S-típus (Al-gazdag; peralumíniumos) Metamagmás kőzetanyag megolvadása I-típus (metalumíniumos) (Chappel és White, 1977) Gránittípusok: 22

Gránittípusok megkülönböztetése tektonikai helyzet alapján: Tapasztalati elkülönítő diagramok Inkompatibilis nyomelemek alapján (Pearce et al., 1984) Riolitok, aplitok összetételének elkülönülése két szélső esetet vizsgálva a nyomelem összetételek visszavezethetőek a forrásrégió jellegére: Hideg-nedves-oxidatív magmák szubdukciós területekről amfibolt és titanitot kristályosítanak Forró-száraz-reduktív magmák köpenyfeláramlási területekről jelentős mennyiségű plagioklászt kristályosítanak Bachmann és Bergantz, JP2008 23

A riolitok még erősebben frakcionáltak, differenciáltak mint a gránitok, granitoidok. Bachmann és Bergantz, JP2004 24

Si-gazdag vulkáni kőzetek petrogenetikája: Befolyásoló tényezők: Forrásrégió Kristályosodás Illótartalom 25

Kristályosodás Kristálytartalom 1. Víztartalmú ásványok kristályosodása alacsonyabb hőmérsékleten lehetséges, mivel magas hőmérsékleten nem stabilak adott víznyomás mellett 2. Alacsony nyomáson (felszíni körülmények között) a víztartalmú ásványok nem tudnak kristályosodni > biotit, amfibol nem jelenik meg alapanyagkristályként Dácitos olvadék szolidusza különböző víztartalom mellett. Nagy víztartalom mellett (pl. 5% felett, Z pont), ugyanazon hőmérsékleten (pl. 700 C fok) való felemelkedéssel (adiabatikusan), azaz a nyomáscsökkenés következtében megszilárdul a felszín elérése előtt az olvadék, mert eléri a víztelített szoliduszt (pl. S pont). 26

A eset: Alacsony víznyomás mellett az olvadékból ol, cpx, plg kristályosodik B eset: Magas víznyomás mellett ol, cpx kristályosodása után amf, majd csak utána kristályosodik a plg > nagyobb az intervallum a plagioklász kristályosodása előtt mint az alacsony víztartalmú, A esetben Granitoid testek kialakulása a földkéregben: a helyprobléma megoldására vonatkozó modellek In situ: gránitosodás, migmatitosodás Stoping folyamata: a magma feletti tető folyamatos letöredezése (m-100m-es dbok) és annak besüllyedése a magmába Üstszerű beszakadás, besüllyedés: gyűrű alakú vetők mentén beszakadás és a magma felfelé hatolása Diapír feláramlás Ballonosodás Batolitok, táblás plutonok keletkezése: horizontálisan szétterjedő szillek, amelyeket dájkok többszöri benyomulása táplál Színkinematikus plutonok 27

Granitoid magmás testek (si-gazdag magmakamrák) fejlődése Hagyományos nézet: egy nagy üreg, kőzetolvadékkal kitöltve Új nézet: egy kiterjedt magmatározó, amit elsősorban kristálypép tölt ki és többszörös magmafelnyomulás során alakul ki Glazner et al., 2003, GSA Today & Lipman, 2007, Geosphere bazaltos magmatározók Si-gazdag magmatározók Új szemlélet: Kristálypép-modell Bachmann és Bergantz (2008) JP 28

Riolitos olvadékok kialakulása, Si-gazdag magmatározók Marsh (1996) Riolitos olvadékok kialakulása, Si-gazdag magmatározók Bachmann és Bergantz (2004) 29

A Seisa magmás rendszer Min. 13km átmérőjű kaldera Alsó Perm, 288-278 Ma (kb. 10 Ma) 5-10 Ma intervallumon belül a többikora Perm vulkáni egységekkel az Alpokban Riolit zárványból szeparált cirkonok: tömzsi és nyúlt, 289+/-3Ma (<0.55 Th/U), 282+/-3 Ma (>0.55 Th/U) Vulkáni kőzetekből: Egyetlen cirkonban 10 Ma-ig szórás, akár 290 Ma cirkon antekristálymagok Gránit korok: 274, 278, 287, 289, 284 Ma (kb. andezites bazalt korok). Mafic C.: 289-286 Ma (spot: 310-250 Ma) Post 284 Ma korok kéreg olvadás még folytatódott millió évekig a MC kristályosodása után 30

Szintetikus, számolt szeizmikus profil 1. Szubszolidusz: Gyenge P hullám csökkenés a gránit régióban, 1-2% 2. Hiperszolidusz: 3. 7 % reziduális köztes olvadék, 1-2% P, S sebesség csökkenés/olvadék % Bishop tufa, Long valley kaldera 760 ka 31

Bishop tufa, Long valley kaldera 760 ka Hildreth (2004) JP 32

Bishop tufa, Long valley kaldera 760 ka Hildreth és Wilson (2007) JP Lukács (2009) PhD 33

Jelentőség? Magmás kristály: Közvetlenül a magmás kőzetet létrehozó olvadékból kristályosodott 1. Fenokristály (vagy autokristály) 2. Alapanyag kristály DE! Komplex, hosszú életű magmatározók esetében több pulzusban jönnek a kőzetolvadékok! Antekristály: egy korábbi magmabenyomulás kőzetolvadékából kristályosodott vagy egy korábbi kristálypépből került be a friss magmába Xenokristály: A magma környezetéből került be a friss kőzetolvadékba Átöröklött kristály: anatexis után visszamaradt ásványfázis, ami bekerült a keletkezett olvadékba Miller et al. 2007 JVGR 167, 282-299 34

Cirkon szerepe Magmás ránövekedés (a gránitos magmából kristályosodott cirkon zónák) átörökölt kristálymag (a gránit forráskőzetéből származó, olvadáson át nem esett ásványszemcse darab) Backscattered electron image of a zircon from the Strontian Granite, Scotland. The grain has a rounded, un-zoned core (dark) that is an inherited high-temperature non-melted crystal from the pre-granite source. The core is surrounded by a zoned epitaxial igneous overgrowth rim, crystallized from the cooling granite. From Paterson et al. (1992), Trans. Royal. Soc. Edinburgh. 83, 459-471. Also Geol. Soc. Amer. Spec. Paper, 272, 459-471. Cirkon szerepe Spirit batolit: : 2,1 millió éven keresztül élt! Spirit Mt. Batolit képződése Walker et al. 2007 JVGR 167, 239-262. 35

Cirkon szerepe Akár több mint 1 milliárd év különbség egy cirkon kristályban! átöröklött cirkonmagok 36