MATEMATIKA ÉRETTSÉGI 2013. május 7. KÖZÉPSZINT



Hasonló dokumentumok
KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

2. Adott a valós számok halmazán értelmezett f ( x) 3. Oldja meg a [ π; π] zárt intervallumon a. A \ B = { } 2 pont. függvény.

ÍRÁSBELI VIZSGA május 7. 8:00 II. Idtartam: 135 perc. ÉRETTSÉGI VIZSGA május 7. pontszám. pontszám. II. rész 70. I.

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA ÉRETTSÉGI május 8. KÖZÉPSZINT

MATEMATIKA ÉRETTSÉGI május 10. KÖZÉP SZINT I.

MATEMATIKA ÉRETTSÉGI október 16. KÖZÉPSZINT I.

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Gráfok

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények

} számtani sorozat első tagja és differenciája is 4. Adja meg a sorozat 26. tagját! A = { } 1 pont. B = { } 1 pont. x =

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT. Koordináta-geometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Síkgeometria

Függvények Megoldások

b) Ábrázolja ugyanabban a koordinátarendszerben a g függvényt! (2 pont) c) Oldja meg az ( x ) 2

IV. Felkészítő feladatsor

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények

törtet, ha a 1. Az egyszerűsített alak: 2 pont

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények

Az egyenes egyenlete: 2 pont. Az összevont alak: 1 pont. Melyik ábrán látható e függvény grafikonjának egy részlete?

Koordináta-geometria feladatok (középszint)

1. Tekintsük a következő két halmazt: G = {1; 2; 3; 4; 6; 12} és H = {1; 2; 4; 8; 16}. Elemeik felsorolásával adja meg a G H és a H \ G halmazokat!

MATEMATIKA ÉRETTSÉGI október 19. KÖZÉPSZINT

2009. májusi matematika érettségi közép szint

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények

Matematika kisérettségi I. rész 45 perc NÉV:...

1. Tekintsük a következő két halmazt: G = {1; 2; 3; 4; 6; 12} és H = {1; 2; 4; 8; 16}. Elemeik felsorolásával adja meg a G H és a H \ G halmazokat!

MATEMATIKA ÉRETTSÉGI október 15. KÖZÉPSZINT I.

Érettségi feladatok: Koordináta-geometria 1/5

2. Egy mértani sorozat második tagja 6, harmadik tagja 18. Adja meg a sorozat ötödik tagját!

Harmadikos vizsga Név: osztály:

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Trigonometria

1. tétel. 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója 7 cm. Mekkora a háromszög átfogója? (4 pont)

MATEMATIKA ÉRETTSÉGI május 28. KÖZÉPSZINT I.

Érettségi feladatok Koordinátageometria_rendszerezve / 5

Trigonometria Megoldások. 1) Oldja meg a következő egyenletet a valós számok halmazán! (12 pont) Megoldás:

MATEMATIKA ÉRETTSÉGI február 21. KÖZÉPSZINT I.

MATEMATIKA ÉRETTSÉGI május 06. KÖZÉPSZINT I.

Érettségi feladatok: Trigonometria 1 /6

MATEMATIKA ÉRETTSÉGI október 25. EMELT SZINT

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

MATEMATIKA PRÓBAÉRETTSÉGI 2013 I. rész

MATEMATIKA ÉRETTSÉGI május 8. EMELT SZINT

Próbaérettségi feladatsor_a NÉV: osztály Elért pont:

Érettségi feladatok: Síkgeometria 1/6

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Koordináta-geometria

VI. Felkészítő feladatsor

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

Koordinátageometria. M veletek vektorokkal grakusan. Szent István Egyetem Gépészmérnöki Kar Matematika Tanszék 1

MATEMATIKA ÉRETTSÉGI május 29. KÖZÉPSZINT

(1 pont) (1 pont) Az összevont alak: x függvény. Melyik ábrán látható e függvény grafikonjának egy részlete? (2 pont)

MATEMATIKA ÉRETTSÉGI október 13. I.

Koordinátageometria Megoldások

4. A kézfogások száma pont Összesen: 2 pont

Matematika érettségi emelt 2008 október. x 2 0. nem megoldás. 9 x

Számelmélet Megoldások

Koordináta-geometria feladatgyűjtemény (A feladatok megoldásai a dokumentum végén találhatók)

Minta 2. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI FELADATSOR. I. rész

Kisérettségi feladatgyűjtemény

MATEMATIKA ÉRETTSÉGI október 20. KÖZÉPSZINT I.

MATEMATIKA ÉRETTSÉGI május 9. KÖZÉPSZINT I.

Megoldás: Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet

Azonosító jel: ÉRETTSÉGI VIZSGA május 10. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA. Időtartam: 45 perc OKTATÁSI MINISZTÉRIUM

Koordináta-geometria feladatgyűjtemény

= 3 és az y = 1 egyenletű egyenesek metszéspontjának (M)

MATEMATIKA ÉRETTSÉGI május 5. KÖZÉPSZINT I. a a. törtet, ha a 1. (2 pont)

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Számelmélet

Trigonometria. Szögfüggvények alkalmazása derékszög háromszögekben. Szent István Egyetem Gépészmérnöki Kar Matematika Tanszék 1

PRÓBAÉRETTSÉGI 2004.május MATEMATIKA. KÖZÉPSZINT I. 45 perc

Próba érettségi feladatsor április 09. I. RÉSZ. 1. Hány fokos az a konkáv szög, amelyiknek koszinusza: 2

MATEMATIKA ÉRETTSÉGI május 5. KÖZÉPSZINT I.

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Koordinátageometria

MATEMATIKA ÉRETTSÉGI október 21. EMELT SZINT

MATEMATIKA ÉRETTSÉGI május 3. EMELT SZINT I.

2) Írja fel az alábbi lineáris függvény grafikonjának egyenletét! (3pont)

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

Koordinátageometria. , azaz ( ) a B halmazt pontosan azok a pontok alkotják, amelynek koordinátáira:

Szöveges feladatok és Egyenletek

1. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI FELADATSOR

8. feladatsor. Kisérettségi feladatsorok matematikából. 8. feladatsor. I. rész

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

Feladatok MATEMATIKÁBÓL

MATEMATIKA ÉRETTSÉGI május 3. EMELT SZINT

Matematika szóbeli érettségi témakörök 2016/2017-es tanév őszi vizsgaidőszak

MATEMATIKA ÉRETTSÉGI október 25. KÖZÉPSZINT I.

MATEMATIKA ÍRÁSBELI VIZSGA május 5.

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Logika-Gráfok

Érettségi feladatok: Egyenletek, egyenlőtlenségek 1 / május a) Melyik (x; y) valós számpár megoldása az alábbi egyenletrendszernek?

1. Ábrázolja az f(x)= x-4 függvényt a [ 2;10 ] intervallumon! (2 pont) 2. Írja fel az alábbi lineáris függvény grafikonjának egyenletét!

Próba érettségi feladatsor április I. RÉSZ

3. MINTAFELADATSOR KÖZÉPSZINT

MATEMATIKA ÉRETTSÉGI október 21. KÖZÉPSZINT I.

NULLADIK MATEMATIKA ZÁRTHELYI

I. rész. Feladatsor. 2. Andi keresett két olyan számot, amelyre teljesül, hogy a < b. Igaz-e, hogy a < b?

MATEMATIKA KÖZÉPSZINTŰ PRÓBAÉRETTSÉGI VIZSGA

Matematika PRÉ megoldókulcs január 19. MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS KÖZÉPSZINT

Átírás:

MATEMATIKA ÉRETTSÉGI 01. május 7. KÖZÉPSZINT 1) Az A és B halmazokról tudjuk, hogy B\ A 1; ; 4; 7. Elemeinek felsorolásával adja meg az A halmazt! A ; 5; 6; 8; 9 I. AB 1; ; ; 4; 5; 6; 7; 8; 9 és ) Egy kis cégnél nyolcan dolgoznak: hat beosztott és két főnök. A főnökök átlagos havi jövedelme 190 000 Ft, a beosztottaké 150 000 Ft. Hány forint a cég nyolc dolgozójának átlagos havi jövedelme? Az átlagos jövedelem 160 000 Ft. ) Az ábra egy sütemény alapanyagköltségeinek megoszlását mutatja. Számítsa ki a vaj feliratú körcikk középponti szögének nagyságát fokban! Válaszát indokolja! ( pont) A sütemény összköltsége 640 Ft. A vaj költsége ennek 8 része. A kérdéses körcikk középponti szöge 15. Összesen: pont

4) Az alábbi hozzárendelési utasítással megadott, a valós számok halmazán értelmezett függvények közül kettőnek egy-egy részletét ábrázoltuk. Adja meg a grafikonokhoz tartozó hozzárendelési utasítások betűjelét! A) x x B) x x C) x x D) x x 1) párja C) ) párja A) Összesen: pont 5) A vízszintessel 6,5 -ot bezáró egyenes út végpontja 14 méterrel magasabban van, mint a kiindulópontja. Hány méter hosszú az út? Válaszát indokolja! ( pont) Az adatokat feltüntető helyes ábra, az út hossza x. 14 x sin 6,5 1095 1095 méter hosszú az út. Összesen: pont 6) Adja meg a egyenletű egyenes és az x tengely M metszéspontjának a koordinátáit, valamint az egyenes meredekségét! ( pont) x y 4 A metszéspont M 0 ;. Az egyenes meredeksége. Összesen: pont

7) Adja meg az x x x 10 1 x másodfokú függvény minimumhelyét és minimumának értékét! Válaszát indokolja! x 10x 1 x 5 4 (4 pont) A minimumhely 5. A minimum értéke 4. 8) Adja meg a következő állítások logikai értékét (igaz vagy hamis)! Összesen: 4 pont A) A adathalmaz szórása 4. B) Ha egy sokszög minden oldala egyenlő hosszú, akkor a sokszög szabályos. C) A 4 és a 9 mértani közepe 6. A) hamis B) hamis C) igaz 0; 1; ; ; 4 9) Két gömb sugarának aránya kisebb gömb térfogatának. Adja meg k értékét! k 8 Összesen: pont : 1. A nagyobb gömb térfogata k-szorosa a 10) Egy futóverseny döntőjébe hat versenyző jutott, jelöljük őket A, B, C, D, E és F betűvel. A cél előtt pár méterrel már látható, hogy C biztosan utolsó lesz, továbbá az is biztos, hogy B és D osztozik majd az első két helyen. Hányféleképpen alakulhat a hat versenyző sorrendje a célban, ha nincs holtverseny? Válaszát indokolja! B és D az első két helyen -féleképpen végezhet. Mögöttük A, E és F sorrendje! 6 -féle lehet. ( pont) Így összesen 6 1-féleképpen érhetnek célba a versenyzők. Összesen: pont

11) Réka év végi bizonyítványában a következő osztályzatok szerepelnek:. Adja meg Réka osztályzatainak móduszát és mediánját! 4; ; ; 5; 5; 4; 5; 5; 4 A módusz 5, a medián 4. Összesen: pont 1) Adja meg annak valószínűségét, hogy a közül egyet véletlenszerűen kiválasztva a kiválasztott szám prím! A kérdezett valószínűség 0,75 8 7; 8; 9; 10; 11; 1; 1; 14 számok.

II/A. 1) a) Egy számtani sorozat első tagja, első hét tagjának összege 45,5. Adja meg a sorozat hatodik tagját! (5 pont) b) Egy mértani sorozat első tagja 5, második és harmadik tagjának összege 10. Adja meg a sorozat első hét tagjának az összegét! (7 pont) a) A sorozat differenciáját d-vel jelölve: 1 4 6d 7 1 d 45,5 7 d 1,5 a 6 5 1,5 A sorozat 6. tagja 9,5. b) A sorozat hányadosát q-val jelölve: q1 ; q 1 5q 5q 10 Ha a hányados, akkor a sorozat első hét tagjának összege: S 7 7 1 5 1 15 Ha a hányados 1, akkor a sorozat tagjai megegyeznek, így ebben az esetben az első hét tag összege 75 5. Összesen: 1 pont 14) A PQR háromszög csúcsai:, és. a) Írja fel a háromszög P csúcsához tartozó súlyvonal egyenesének egyenletét! (5 pont) b) Számítsa ki a háromszög P csúcsnál lévő belső szögének nagyságát! (7 pont) P 6; 1 Q 6; 6 R 5 ; a) A kérdéses súlyvonalra a P csúcs és a vele szemközti oldal felezőpontja illeszkedik. A QR szakasz felezőpontja. A súlyvonal egy irányvektora: A súlyvonal egyenlete: x y F 4; 0,5 PF 10;0,5. 0 14. b) (A kérdéses szöget a háromszög oldalvektorai skalárszorzatának segítségével 1; 5 PR 8;6. lehet meghatározni.) Az oldalvektorok PQ és A két vektor skalárszorzata a koordinátákból: PQ PR 1 8 5 6 66

Az oldalvektorok hossza PQ 1 és PR 10 A két vektor skalárszorzata a definíció szerint: 66 1 10 cos PQ PR ahol a két vektor által bezárt szöget jelöli. Innen: cos 0,5077 (mivel 0 180 Összesen: 1 pont 59, 5 ) 15) A munkavállaló nettó munkabérét a bruttó béréből számítják ki levonások és jóváírások alkalmazásával. Kovács úr bruttó bére 010 áprilisában 00 000 forint volt. A 010-ben érvényes szabályok alapján különböző járulékokra ennek a bruttó bérnek összesen 17%-át vonták le. Ezen felül a bruttó bérből személyi jövedelemadót is levontak, ez a bruttó bér 17%-ának a 17%-a volt. A levonások után megmaradó összeghez hozzáadtak 15 100 forintot adójóváírásként. Az így kapott érték volt Kovács úr nettó bére az adott hónapban. a) Számítsa ki, hogy Kovács úr bruttó bérének hány százaléka volt a nettó bére az adott hónapban! Szabó úr nettó bére 010 áprilisában 17 015 forint volt. Szabó úr fizetésénél a levonásokat ugyanazzal az eljárással számították ki, mint Kovács úr esetében, de ebben a hónapban Szabó úr csak 5980 forint adójóváírást kapott. (5 pont) b) Hány forint volt Szabó úr bruttó bére az adott hónapban? (7 pont) a) A járulékokra levont összeg 00000 0,17 4000 (Ft). A személyi jövedelemadóra levont összeg (Ft). Kovács úr nettó bére: 00000 4000 4180 15100 Ez a bruttó bérének megközelítőleg a 69% -a. b) Ha Szabó úr bruttó bére az adott hónapban x Ft volt, akkor járulékokra 0,17x Ft-ot, személyi jövedelemadóra pedig 0,17 1,7x Ft-ot vontak le. Ebből. Szabó úr bruttó bére 7000 Ft volt. Összesen: 1 pont 00000 1,7 0,17 4180 x 0,17 x 0,17 1,7 x 5980 17015 0,6141 x 16705 x 7000 17 90,

II/B. 16) Egy iskola asztalitenisz bajnokságán hat tanuló vesz részt. Mindenki mindenkivel egy mérkőzést játszik. Eddig Andi egy mérkőzést játszott, Barnabás és Csaba kettőt-kettőt, Dani hármat, Enikő és Feri négyetnégyet. a) Rajzolja le az eddig lejátszott mérkőzések egy lehetséges gráfját! (4 pont) b) Lehetséges-e, hogy Andi az eddig lejátszott egyetlen mérkőzését Barnabással játszotta? (Igen válasz esetén rajzoljon egy megfelelő gráfot; nem válasz esetén válaszát részletesen indokolja!) (6 pont) c) Számítsa ki annak a valószínűségét, hogy a hat játékos közül kettőt véletlenszerűen kiválasztva, ők eddig még nem játszották le az egymás elleni mérkőzésüket! (7 pont) a) Az egyik lehetséges megoldás (a résztvevőket nevük kezdőbetűjével jelölve): (4 pont) b) Ha Andi egyetlen mérkőzését Barnabással játszotta volna, akkor például Feri eddigi mérkőzéseit Barnabással, Csabával, Danival és Enikővel játszotta volna. ( pont) Ekkor azonban Enikőnek már nem lehet meg a négy mérkőzése, hiszen legfeljebb Csabával, Danival és Ferivel játszhatott volna. Tehát igazoltuk, hogy Andi az eddig lejátszott egyetlen mérkőzését nem játszhatta Barnabással. c) A játékosok kiválasztása helyett a lejátszott illetve nem lejátszott mérkőzéseiket vizsgáljuk. 6 5 Összesen 15 mérkőzés szükséges (összes eset száma). Eddig 8 mérkőzés zajlott le, tehát 7 mérkőzést kell még lejátszani (kedvező esetek száma). A keresett valószínűség 7 15 0, 47 Összesen: 17 pont

17) a) Oldja meg a valós számok halmazán az x 0 x egyenlőtlenséget! (7 pont) b) Adja meg az x négy tizedesjegyre kerekített értékét, ha x x 4 0. (4 pont) c) Oldja meg a a) Ha alaphalmazon. x, akkor ( 0, ezért) x cos x cos x 0 x 0 A -nál kisebb számok halmazán tehát a egyenletet a ; (6 pont), vagyis intervallum minden eleme ; x. megoldása az egyenlőtlenségnek. Ha x, akkor ( 0, ezért), vagyis A -nál nagyobb számok halmazában nincs ilyen elem, tehát a -nál nagyobb számok között nincs megoldása az egyenlőtlenségnek.. x A megoldáshalmaz: x b) 5 0 x 4 ; x 0 x. x log 4 x 1, 619 c) (A megadott egyenlet cos x-ben másodfokú,) így a megoldóképlet felhasználásával vagy cos x. cos x 0,5 Ez utóbbi nem lehetséges (mert a koszinuszfüggvény értékkészlete a intervallum). A megadott halmazban a megoldások: 1;1, illetve. Összesen: 17 pont

18) Tekintsünk két egybevágó, szabályos négyoldalú (négyzet alapú) gúlát, melyek alapélei cm hosszúak, oldalélei pedig cmesek. A két gúlát alaplapjuknál fogva összeragasztjuk (az alaplapok teljesen fedik egymást), így az ábrán látható testet kapjuk. a) Számítsa ki ennek a testnek a felszínét (cm -ben) és a térfogatát (cm -ben)! Válaszait egy tizedesjegyre kerekítve adja meg! A test lapjait 1-től 8-ig megszámozzuk, így egy dobó-oktaédert kapunk, amely minden oldallapjára egyforma valószínűséggel esik. Egy ilyen test esetében is van egy felső lap, az ezen lévő számot tekintjük a dobás kimenetelének. (Az ábrán látható dobó-oktaéderrel 8-ast dobtunk.) (9 pont) b) Határozza meg annak a valószínűségét, hogy ezzel a dobó-oktaéderrel egymás után négyszer dobva, legalább három esetben 5-nél nagyobb számot dobunk! (8 pont) a) Az oldallap-háromszögekben a cm-es oldalhoz tartozó magasság hossza (a Pitagorasz-tételt alkalmazva) Egy oldallap területe 8 1 8,8,8 (cm ). (cm). A test felszíne: A testet alkotó gúlák magassága megegyezik annak az egyenlő szárú háromszögnek a magasságával, amelynek szára a gúlák oldalélével, alapja a gúla alapjának átlójával egyezik meg. A,6 cm. A gúla m magasságára (a Pitagorasz-tételt alkalmazva): m 7,65 (cm). m 1 A gúla térfogata: V 7,5 (cm ). A test térfogata ennek kétszerese, azaz megközelítőleg. b) P(egy adott dobás 5-nél nagyobb) P(mind a négy dobás nagyobb 5-nél) 0,0198 8 8 4 5 1 8 8 A kérdéses valószínűség ezek összege, azaz 0, 15. 4 7, 1cm P(három dobás nagyobb 5-nél, egy nem) 0,118 ( pont) Összesen: 17 pont