Fogászati anyagok fajtái Fémes kötés FÉMEK KERÁMIÁK Fémes és nemfémes elemek vegyületei. Fogorvosi anyagtan fizikai alapjai 4. Általános anyagszerkezeti ismeretek Anyagcsaládok: fémek és kerámiák ankönyv fejezetei: 9-3 HF: 3. fej.: 3-5, 8, 0,, 4, 8 Egy alegység ismétlődésével felépülő láncszerű molekulákból áll. POLIMEREK KOMPOZIOK Az előző 3 család legalább kétféle anyagából áll. Néhány általános orvosi példa: kompozitok pl. polietilén fém, pl. titán fém, pl. titánötvözet pl. kerámia 3 4
Fémek ulajdonságai: gyakori anyag; változatos tulajdonságúak viszonylag nagy sűrűség szobahőmérsékleten szilárd (kivéve Ga és Hg) viszonylag nagy szívósságúak és szilárdságúak viszonylag jól alakíthatók hajlamosak a korrózióra (kivéve a nemesfémek) ötvözéssel tulajdonságaik jól befolyásolhatók jó hő- és elektromos vezetőképesség fémes szín nagyrészt nem biokompatíbilisek *Miért gyakori a hexagonális és köbös rács a fémeknél? Egyforma gömbök illeszkedése! Szerkezete: o fémes kötés o színfémekben azonos méretű atomok o kristályos (leggyakrabban hexagonális, vagy köbös)* o polikristályos** Alkalmazási példák: koronák, hidak implantátumok tömés fogszabályozó készülékek amorf fémüveg! Előállítás: olvasztás, öntés 5 szoros illeszkedésű hexagonális (hcp) szoros illeszkedésű köbös (lapcentrált köbös, fcc) pl. i, Cd, Co, Zn,... pl. Ag, Au, Pt, Al, Cu, Ni,... térkitöltési tényező: 74 % 74 % kevésbé szoros illeszkedés: pl. tércentrált köbös (bcc) pl. Fe, Cr,... 68 % 6 **Polikristályos szerkezet Szövetszerkezet, mikrostruktúra: homogén szövetszerkezet Fémötvözetek Osztályozás: Cél: tulajdonságok javítása, pl. korrózióállóság javítása, pl. Fe, Ni, Co, +Cr nagyobb keménység, merevség elérése, pl. Au+Cu fém-kerámia adhézió növelése, pl. nemesfém+fe, Sn, In fém+fém, pl. Fe+Cr Szövetszerkezet vizsgálata: szemcsék (krisztallitok, szövetelemek) csiszolás durvább/finomabb kémiai maratás mikroszkópi megfigyelés (fémmikroszkóp) heterogén szövetszerkezet 7 fém+nemfém, pl. Fe+C használat szerint (pl. inlay, korona,...) alap elem szerint (arany alapú, palládium alapú,...) komponensek száma (biner, terner, kvaterner,...) szerint 3 fő elem szerint (pl. Au-Pd-Ag, Ni-Cr-Be,...) uralkodó fázisdiagram szerint szilárd oldat eutektikus ötvözet peritektikus ötvözet fémvegyület 8
Ötvözési arányok: tömeg% mól% m c m, m m ( 00%) ( 00%) c, tulajdonságok! (Pl. Ni-Cr-Mo-Be ötvözet: Be,8 súly% mól%) Szilárd oldat (elegykristály) Mind folyadék fázisban, mind szilárd fázisban jó oldódás homogén szövetszerkezet szubsztitúciós pl. Cu-Ni, Pd-Ag, Au-Cu,.... elem Átszámoláshoz:. elem cm, M c, M c, ( 00%) c m, ( 00%) c M c M c M c M m, m,,, intersticiális Átlagsűrűség: c m, c m,. elem pl. Fe-C, CP i (O, C, N, H),.... elem (CP: kereskedelmi tisztaságú) 9 0 Oldhatóság feltételei szubsztitúciós szilárd oldatra: atomok mérete ne nagyon különbözzön (< 5%) azonos kristályrács típus hasonló elektronegativitás vegyérték azonos, vagy az oldószer vegyértéke nagyobb Szilárd oldat tulajdonságai: fém Oldhatóság feltételei interstíciális szilárd oldatra: oldott atom mérete jóval kisebb oldott anyag mennyisége kicsi (< 0%) atom átmérő (nm) rácstípus elektronegativitás Au 0,88 fcc,4 Pt 0,775 fcc, Pd 0,750 fcc, Ag 0,888 fcc,9 Cu 0,556 fcc,9 Ni 0,5 fcc,8 Sn 0,306 tetragonális,8 iszta fémolvadék lehűlési görbéje fagyáspont olvadáspont o likvidusz pont kristályosodás L : folyadék L + S túlhűtés szolidusz pont S : szilárd t üvegesedés L : folyadék üvegesedési hőmérséklet ü üveg t Rugalmassági határ, szilárdság, keménység nő, képlékenység csökken, pl. Au-Cu(5 tömeg%) 3
Szilárd oldat lehűlési görbéje o B összetétel %B Egyensúly! likvidusz görbe o B L szolidusz görbe S o A o A t Például: ezüst (Ag) + palládium (Pd) A összetétel %B B fázisdiagramja L o B o A S Egyensúlyi állapotokon keresztül! = végtelenül lassú hűtés A összetétel %B B 3 4 Fázisok arányának, összetételének meghatározása Például: 80%(m/m) Ag + 0%(m/m) Pd Pl. a C pontban: Folyadék fázis összetétele: 4% Pd + 86% Ag Szilárd fázis összetétele: 3% Pd + 77% Ag Folyadék fázis aránya: s 3 0 3 33,3% l s 3 4 9 Szilárd fázis aránya: 66,6% l 0 4 6 66,6% l s 3 4 9 5 Egyensúlyi állapotokon keresztül = végtelenül lassú hűtés homogén szövetszerkezet Ötvözés hatása a tulajdonságokra Például: Cu-Ni Nem egyensúlyi állapotokon keresztül = ésszerű sebességű hűtés szegregáció! magos szerkezet heterogén szövetszerkezet homogenizáció 6 4
hőmérséklet ( C) Eutektikus ötvözetek Szilárd fázisban teljes oldhatatlanság színfém krisztallitok heterogén szövetszerkezet Pl. Ag-Cu 0 C 800 C Például: 77%H O+3%NaCl : E = C Wood-fém (Bi-Pb-Cd-Sn): E = 68 C >30 C 7 8 Amalgám Egy exotikus fázis martenzit Ag-Sn fázisdiagramja Példa: vas-szén ötvözet tipikus összetétel Lehűlési görbe: olvadék vas vas + szén fém %(m/m) Hg 50 f folyadék ferrit Ag 34 Sn 3 f Cu Zn f ausztenit összetétel (tömeg%sn) g fázis: Ag 3 Sn ferrit 9 0 5
Fázisdiagram: ausztenit gyors hűtés Martenzit: metastabilis fázis szobahőmérsékleten tércentrált tetragonális Fe C Kerámiák Definíció: fémes és nemfémes elemek vegyülete (vannak kivételek!) ulajdonságai: közepes sűrűség szobahőmérsékleten szilárd nagy merevség, keménység, de nem jól alakíthatók, törékenyek nagy hő- és korrózióállóság gyenge hősokk tűrés rossz hő- és elektromos vezetőképesség változatos optikai tulajdonságok biokompatibilitás Szerkezete: o főként ionkötés, kisebb részben kovalens o különböző méretű ionok (általában) o kristályos v. amorf v. vegyes** Alkalmazási példák: Előállítás: olvasztás, öntés szinterelés* koronák, hidak martenzit gyökérstift NaCl P 5+ O - Ca + H + cementek apatit csiszolóanyagok *Szinterelés adhézió **Szerkezet amorf kristályos egykristály polikristály vegyes Egy gyakorlati probléma: porozitás! Üvegkerámia: (Bonyolult kristályrácsszerkezetek, különböző méretű ionokkal.) kristályosodás Folyadékfázisú szinterelés: olvasztás és égetés kombinációja olvadékból vagy égetés után gyors hűtés amorf üveg felmelegítés magas hőmérsékletre, de az olvadáspont alá hűtés nagyon finom szemcsés polikristályos anyag 3 4 6
Kristályrácsbeli hibák: Szilikátok Meghatározó elemek: Si és O Építőegység: SiO 4 4 kation interstícium kation vakancia Schottky hiba Szilícium-dioxid (SiO ) anion vakancia Frenkel hiba kristály (pl.krisztobalit) amorf/üveg Interstíciális szennyezés szubsztitúciós szennyezés Korlátozó feltételek: elektroneutralitás együttes vándorlás 5 6 Porcelán (hagyományos) Fogorvosi szilikátkerámiák réteg réteg Kaolin (Al (Si O 5 )(OH) 4 amorf üveg (nátronföldpát - NaAlSi 3 O 8, káliföldpát - KAlSi 3 O 8, SiO, Al O 3, ) amorf üveg kristályos tartományokkal o amorf földpátüveg + kevés leucitkristály (KAlSi O 6 ) o amorf földpátüveg + 50% leucitkristály (KAlSi O 6 ) o Li-szilikátüveg + 70% Li-diszilikátkristály (Li Si O 5 ) üvegkerámia + kvarc + földpát szárítás, égetés 7 8 7
hőmérséklet (ºC) Oxid kerámiák Cirkónium-dioxid (ZrO, cirkon) ulajdonságok (tömörre szinterelt állapotban): fehér sűrűsége kb. 6 g/cm 3 nagy szilárdságú és nagy szívósságú, merev, kemény (l. később) Előállítás: cirkonhomokból (ZrSiO 4 ) drága tisztítási eljárások, de hafniumoxid marad kb %-ban (radioaktivitás < Bq/g!) hideg v. meleg sajtolás, szinterelés Cirkon stabilizálása ötvözéssel: ZrO MgO ZrO Y O 3 ZrO CaO összetétel (mól% CaO) repedések! 9 összetétel (tömeg% CaO) 30 A cirkon önjavító képessége: Alumínium-oxid (Al O 3 ) ulajdonságok: Kristályos formák: színtelen, fehér olvadáspont 700 C sűrűsége kb. 4 g/cm 3 nagyon kemény (l. később) korund Al O 3 + CrO rubin Al O 3 + CoO zafír Cirkon hozzáadásával más kerámiák is ellenállóbbá tehetők a repedésekkel szemben! l. Fázisátalakulással szívósított kerámiák! 3 Oxidkerámia kristály + üveg Következő előadáshoz: -3. tankönyvi fejezetek 3 8