Halmazállapot-változások (Vázlat)



Hasonló dokumentumok
Halmazállapot-változások

A légkör víztartalmának 99%- a troposzféra földközeli részében található.

Az anyagok lehetséges állapotai, a fizikai körülményektől (nyomás, hőmérséklet) függően. Az anyagokat általában a normál körülmények között jellemző

FOLYADÉK rövidtávú rend. fagyás lecsapódás

TestLine - Fizika hőjelenségek Minta feladatsor

A szilárd testek alakja és térfogata észrevehetően csak nagy erő hatására változik meg. A testekben a részecskék egymáshoz közel vannak, kristályos

óra C

A halmazállapot-változások

ÖSSZEFOGLALÁS HŐTANI FOLYAMATOK

FIZIKA. Ma igazán belemelegszünk! (hőtan) Dr. Seres István

A hőtan fő törvényei, fő tételei I. főtétel A tárgyak, testek belső energiáját két módon lehet változtatni: Termikus kölcsönhatással (hőátadás, vagy

Légköri termodinamika

TestLine - Fizika 7. osztály Hőtan Témazáró Minta feladatsor

TestLine - Fizika 7. osztály Hőtan Témazáró Minta feladatsor

TestLine - Fizika 7. osztály Hőtan Témazáró Minta feladatsor

TestLine - Fizika 7. osztály Hőtan Témazáró Minta feladatsor

Gázrészecskék energiája: Minél gyorsabban mozognak a részecskék, annál nagyobb a mozgási energiájuk. A gáz hőmérséklete egyenesen arányos a

Halmazállapot-változások tesztek. 1. A forrásban lévő vízben buborékok keletkeznek. Mi van a buborékban? a) levegő b) vízgőz c) vákuum d) széndioxid

Belső energia, hőmennyiség, munka Hőtan főtételei

Egy részecske mozgási energiája: v 2 3 = k T, ahol T a gáz hőmérséklete Kelvinben 2 2 (k = 1, J/K Boltzmann-állandó) Tehát a gáz hőmérséklete

FIZIKA I. Ez egy gázos előadás lesz! (Ideális gázok hőtana) Dr. Seres István

A JÉGESŐELHÁRÍTÁS MÓDSZEREI. OMSZ Időjárás-előrejelző Osztály

Halmazállapotok. Gáz, folyadék, szilárd

A nyomás. IV. fejezet Összefoglalás

(2006. október) Megoldás:

Hőtan 2. feladatok és megoldások

Feladatlap X. osztály

100 o C víz forrása 212 o F 0 o C víz olvadása 32 o F T F = 9/5 T C Példák: 37 o C (láz) = 98,6 o F 40 o C = 40 o F 20 o C = 68 o F

Fázisátalakulások. A víz fázisai. A nem közönséges (II-VIII) jég kristálymódosulatok csak több ezer bar nyomáson jelentkeznek.

Energia. Energia: munkavégző, vagy hőközlő képesség. Kinetikus energia: a mozgási energia

A hő terjedése (hőáramlás, hővezetés, hősugárzás)

Hőtágulás - szilárd és folyékony anyagoknál

TestLine - Fizika 7. évfolyam folyadékok, gázok nyomása Minta feladatsor

TestLine - Fizika 7. évfolyam folyadékok, gázok nyomása Minta feladatsor

Hőtan I. főtétele tesztek

Nyomás. Az az erő, amelyikkel az egyik test, tárgy nyomja a másikat, nyomóerőnek nevezzük. Jele: F ny


FIZIKA II. 2. ZÁRTHELYI DOLGOZAT A MŰSZAKI INFORMATIKA SZAK

1. előadás. Gáztörvények. Fizika Biofizika I. 2015/2016. Kapcsolódó irodalom:

MEZŐGAZDASÁGI ALAPISMERETEK

Hőtan ( első rész ) Hőmérséklet, szilárd tárgyak és folyadékok hőtágulása, gázok állapotjelzői

Méréstechnika. Hőmérséklet mérése

A FÖLD VÍZKÉSZLETE. A felszíni vízkészlet jól ismert. Összesen km 3 víztömeget jelent.

KOVÁCS ENDRe, PARIpÁS BÉLA, FIZIkA I.

METEOROLÓGIAI MÉRÉSEK és MEGFIGYELÉSEK

Kémia I. 6. rész. Halmazállapotok, halmazállapot változások


A hőmérséklet változtatásával a szilárd testek hosszméretei megváltoznak, mégpedig melegítéskor általában növekednek. Ez azzal magyarázható, hogy a

3. Halmazállapotok és halmazállapot-változások

1. Feladatok a termodinamika tárgyköréből

Hatvani István fizikaverseny Döntő. 1. kategória

Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (limitációk) Fókusz Légzsák (Air-Bag Systems) kémiája

Függőleges mozgások a légkörben. Dr. Lakotár Katalin

FELHŐ-, KÖD- ÉS CSAPADÉKKÉPZŐDÉS

A gázok. 1 mol. 1 mol H 2 gáz. 1 mol. 1 mol. O 2 gáz. NH 3 gáz. CH 4 gáz 24,5 dm ábra. Gázok moláris térfogata 25 o C-on és 0,1 MPa nyomáson.

Fizika feladatok. 1. Feladatok a termodinamika tárgyköréből november 28. Hővezetés, hőterjedés sugárzással. Ideális gázok állapotegyenlete

Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (korlátok) Fókusz: a légzsák (Air-Bag Systems) kémiája

Fizika minta feladatsor

Szakmai fizika Gázos feladatok

Természetes vizek, keverékek mindig tartalmaznak oldott anyagokat! Írd le milyen természetes vizeket ismersz!

Breuer Hajni. Stabilitás Kondenzáció (a felhők kialakulása) Csapadékképződés

Folyadékok és gázok mechanikája

Oldatok - elegyek. Elegyek: komponensek mennyisége azonos nagyságrendű

A gáz halmazállapot. A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011

Hatvani István fizikaverseny forduló megoldások. 1. kategória. J 0,063 kg kg + m 3

tema08_

Nyomás. Az az erő, amelyikkel az egyik test, tárgy nyomja a másikat, nyomóerőnek nevezzük. Jele: F ny

Altalános Kémia BMEVESAA101 tavasz 2008

Termodinamika. Belső energia

ÖVEGES JÓZSEF FIZIKAVERSENY Iskolai forduló

Folyadékok és gázok áramlása

Termodinamika (Hőtan)

AZ ANYAGI HALMAZOK ÉS A MÁSODLAGOS KÖTÉSEK. Rausch Péter kémia-környezettan

Tiszta anyagok fázisátmenetei

2011/2012 tavaszi félév 2. óra. Tananyag:

Iskola neve:. Csapat neve: Környezetismeret-környezetvédelem csapatverseny. 3. évfolyam III. forduló február 13.

Miskolc - Szirmai Református Általános Iskola, AMI és Óvoda

Folyadékok és gázok áramlása

1. feladat Alkalmazzuk a mólhő meghatározását egy gázra. Izoterm és adiabatikus átalakulásokra a következőt kapjuk:

Az atom- olvasni. 1. ábra Az atom felépítése 1. Az atomot felépítő elemi részecskék. Proton, Jele: (p+) Neutron, Jele: (n o )

Folyadékok és gázok mechanikája

Folyadékok. Molekulák: Gázok Folyadékok Szilárd anyagok. másodrendű kölcsönhatás növekszik. cseppfolyósíthatók hűtéssel és/vagy nyomással

Halmazállapot-változások vizsgálata ( )

Termodinamika. 1. rész

Hütökészülékek. Oktatás - II. rész. BUDAPEST - Attila Kovács. ESSE - Wilhelm Nießen

Művelettan 3 fejezete

1. Gázok oldhatósága vízben: Pa nyomáson g/100 g vízben

Szabadentalpia nyomásfüggése

. T É M A K Ö R Ö K É S K Í S É R L E T E K

3. Gyakorlat Áramlástani feladatok és megoldásuk

KÍSÉRLETEK HŐVEL ÉS HŐMÉRSÉKLETTEL KAPCSOLATBAN

FIZIKA ZÁRÓVIZSGA 2015

Dr. Lakotár Katalin. Felhő- és csapadékképződés

ÁLTALÁNOS METEOROLÓGIA 2.

Munka, energia, teljesítmény

2. A hőátadás formái és törvényei 2. A hőátadás formái Tapasztalat: tűz, füst, meleg edény füle, napozás Hőáramlás (konvekció) olyan folyamat,

1 Műszaki hőtan Termodinamika. Ellenőrző kérdések-02 1

Termokémia. Hess, Germain Henri ( ) A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011

HŐTAN. Az anyagok melegségének mérésére hőmérsékleti skálákat találtak ki:

Szegedi Tudományegyetem Természettudományi Kar Éghajlattani és Tájföldrajzi Tanszék FOGALOMTÁR 1. RÉSZ

Átírás:

Halmazállapot-változások (Vázlat) 1. Szilárd-folyékony átalakulás 2. Folyékony-szilárd átalakulás 3. Folyadék-gőz átalakulás 4. A gőz és a gáz kapcsolata 5. Néhány érdekes halmazállapot-változással kapcsolatos jelenség 6. Csapadékok a Föld légkörében 1

Halmazállapot-változások Az anyagok halmazállapotuk szerint háromfélék lehetnek: szilárd halmazállapotúak, folyékony halmazállapotúak és légnemű halmazállapotúak. Miközben az anyag egyik halmazállapotból a másikba átalakul, a létrejövő változást nevezzük halmazállapot-változásnak. 1. Szilárd-folyékony átalakulás A szilárd anyagok melegítés és nagy nyomás hatására olvadnak meg. Olvadáskor bekövetkező anyagszerkezeti változás Az olvadás azon a hőmérsékleten játszódik le, amikor a részecskék rezgőmozgásának akkora lesz az amplitúdója, hogy a részecskék egymáshoz ütköznek, és kilökik egymást a rácsszerkezetből. Ilyenkor a kristályrács összeomlik. Szilárd anyag melegítés vagy nagy nyomás hatására olvad meg. Ábrázoljuk grafikonon a szilárd-folyékony átalakulás során a felvett hőenergia függvényében az anyag hőmérsékletét! Pl.: -10 0 C-os jégből + 10 0 C-os víz lesz. t ( C) +10 0 Q 1 Q 2 Q 3 Q (J) -10 I. II. III. 2

I. szakasz A szilárd anyaggal közölt hőenergia a részecskék belső energiáját növeli. Ez abban mutatkozik meg, hogy nő a rendszer hőmérséklete. Q1 cszilárd m Δt II. szakasz A befektetett hőenergia a kémiai kötések felszakítására fordítódik. Amíg ez a folyamat tart addig a hőmérséklet nem változik. Azt a hőmérsékletet, amelyen a szilárd anyag az olvadékával egyensúlyban van olvadáspontnak nevezzük. A szilárd anyag megolvasztásához szükséges energia egyenesen arányos a szilárd anyag tömegével. Az olvadáshő megmutatja, hogy az olvadásponton lévő 1 kg tömegű szilárd anyag megolvasztásához mekkora hőenergia szükséges. Az olvadáshő jele: L 0 Q m L 2 L 0 O Az olvadáshő L jelölése a latens elnevezésből ered. A XVIII. században az olvadáshoz szükséges hőt latens hőnek, rejtett hőnek nevezték, mivel nem hozott létre hőmérsékletváltozást. J kg III. szakasz A befektetett hőenergia tovább növeli a részecskék belső energiáját. Ilyenkor nő a folyadék hőmérséklete. Q3 cfolyadék m Δt 3

2. Folyékony-szilárd átalakulás Ha a folyadék hőmérsékletét csökkentjük, akkor csökken a folyadékban lévő részecskék mozgási energiája is. A kis energiájú részecskék összetapadásából kristálygócok alakulnak ki. Mivel a kristálygócoknak nagy a tömegük még kisebb lesz a sebességük. Ezekhez a kisebb sebességű és nagyobb tömegű kristálygóchoz tapad hozzá a többi részecske. Így nő a kristálygócok mérete, végül egymáshoz érnek. Ekkor szilárdul meg az anyag. Ha a folyadékban nem alakulnak ki kristálygócok, akkor elő lehet állítani a túlhűtött folyadékot. Ez olyan anyag, amely fagyáspont alatti hőmérsékleten is folyékony halmazállapotú. A fagyás ugyanazon a hőmérsékleten játszódik le, mint az olvadás. Ezért minden anyag olvadáspontja megegyezik a fagyáspontjával. Tolv T fagy Másrészt az 1 kg szilárd anyag megolvasztásához ugyanannyi energiára van szükség, mint amennyi felszabadul, amikor 1 kg folyadék megfagy. Vagyis a fagyáshő az olvadáshő mínusz egyszerese. L fagy L olv 3. Folyadék-gőz átalakulás A folyadékok minden hőmérsékleten párolognak. Magasabb hőmérsékleten intenzívebb a párolgás. Párolgáskor csak a folyadék felszínéről távoznak el molekulák, míg forráskor a folyadék egészében keletkeznek gőzbuborékok. A forráspont az a hőmérséklet, amikor a folyadék belsejében keletkező gőzbuborékok nyomása eléri a külső légnyomást. A forráspont hőmérsékletén a folyadék és a gőz egymással egyensúlyban vannak. 4

Tehát a folyadékok forráspontja függ a külső nyomástól. Nagyobb nyomáson adott folyadék magasabb hőmérsékleten kezd el forrni. Ha a folyadékot melegítjük, akkor nő a hőmérséklete a forráspont eléréséig. Q1 cfolyadék m Δt Amikor a folyadék eléri a forráspontot tovább nő a belső energiája, de ez az energia a részecskék közötti másodrendű kötőerők felszakítására fordítódik. (Latens hő) A forráshő számértéke kifejezi, hogy 1 kg tömegű forrásponton lévő anyag elforralásához mekkora energia szükséges. L forr Amikor az összes másodrendű kötés felszakadt, további energia hatására a gőz tovább melegszik. Q 2 m Q3 c gőő m Δt t ( C) Q 1 Q 2 Q 3 Folyadék Gőz Folyadék-gőz 0 I. II. III. Q (J) A forrás ellentétes folyamata a lecsapódás, idegen szóval kondenzáció. 1 kg forrásponton lévő anyag lecsapódásakor ugyanannyi energia szabadul fel, mint amennyi 1 kg forrásponton lévő folyadék elpárologtatásához szükséges. 5

4. A gőz és a gáz kapcsolata Ha T 1 hőmérsékleten a folyadékkal érintkező gőznek csökkentjük a térfogatát akkor a gőz Boyle-Mariott törvénye szerint viselkedik. Ez addig tart, amíg a gőz telítetté nem válik. Ha ilyenkor csökkentjük a térfogatát akkor a nyomás nem változik. Ez azért van, mert közben a telített gőz lecsapódik. Ha az összes gőz lecsapódott akkor további térfogat csökkenés, óriási nyomásnövekedést okoz. Ha magasabb hőmérsékleten is elvégezzük ezt a folyamatot, akkor a telített gőz térfogat tartománya csökken. Lesz egy olyan hőmérséklet, amin illetve, ami felett a gőz már nem cseppfolyósítható. Ezt kritikus hőmérsékletnek nevezzük. E fölött a légnemű halmazállapotú anyagot gáznak ez alatt gőznek nevezzük. gőz folyadék p (Pa) T 4 -T k T 3 T 2 T 1 V (gőz) 6

5. Néhány érdekes halmazállapot-változással kapcsolatos jelenség a) Forráspont függése a külső nyomástól Forraljunk vizet azbeszthálóra helyezett, hosszú nyakú, álló gömblombikban! A forralást folytassuk néhány percig, hogy az edényben lévő levegőt a képződő vízgőz teljesen kiszorítsa! Vegyük el ezután a lombik alól a gázlángot, és egy gumidugóval zárjuk le légmentesen a lombikot! Öntsünk a lombikra hideg vizet! A hideg víztől lehűlt üvegfalon a vízgőz lecsapódik, és a nyomás lecsökken. A kisebb nyomáson a még mindig meleg víz újból intenzív forrásba jön. A kriofor az ábrán látható olyan berendezés, amelyben két üveggömböt felül lévő nyílásuknál vízszintes üvegcső köt össze egymással. Az egyik üveggömbben a kísérlet indulásakor víz van, míg a cső és a másik üveggömb üres. Célszerű a vizet a buborékoktól mentesíteni, és az összekötő csőben lévő levegő nyomását csökkenteni. Ha az üres üvegballont folyékony nitrogénbe helyezzük, akkor pár perc múlva jól látható, hogy a vizet tartalmazó, az előbbitől 20-25 cm távolságban lévő üveggömbben a víz előbb forrásba jön, majd a felszínén 4-5 mm vastag jégréteg képződik. Az edény üresnek látszó részén a víz telített gőze van. A hűtés hatására lecsapódott a gőz, a nyomás csökkent. Ekkor indul forrásnak a víz. A gyors párolgás következtében a nagy energiájú molekulák eltávoznak. A visszamaradó folyadék hőmérséklete egyre csökken, végül megfagy. A kuktában az étel, pl. hús rövidebb idő alatt megfő. Ennek az az oka, hogy a zárt edényben a gőz nyomása nagyobb, mint a külső légnyomás. Így a víz nem 100 0 C-on forr, hanem magasabb hőmérsékleten. A magasabb hőmérsékletű folyadékban a hús hamarébb megfő. 7

b) Nyomás hatása az olvadáspontra Egy nagyobb méretű jéghasábot támasszunk fel a két végén, vízszintes helyzetben! Vékony acéldrót két végére rögzítsünk egy-egy 10 kg-os súlyt, majd az így megterhelt drótot helyezzük az ábrán látható módon a jéghasábra! A drót lassan átvágja magát a jégtömbön. A jég a vékony huzal alatt megolvad, a drót lejjebb süllyed, majd a víz a drót fölött ismét jéggé fagy. Ezt a jelenséget nevezik regelációnak, avagy újrafagyásnak. Hasonló jelenséget tapasztalunk korcsolyázáskor is. A nagy nyomás hatására a korcsolya éle alatt a jég megolvad, és a vízen csúszik szinte súrlódásmentesen a korcsolya. c) A jég olvadáspontjának csökkentése Egy nagyobb főzőpoharat töltsünk meg félig olvadó jéggel! Ellenőrizzük hőmérővel, hogy a jég-víz elegy egyensúlyi hőmérséklete 0 C! Keverjünk az elegyhez több kisebb, egyenlő adagban konyhasót (NaCl)! Minden egyes adag után keverjük jól össze az anyagot, és határozzuk meg a hőmérsékletét! A só hozzáadására a jég-víz elegy hőmérséklete 0 C alá süllyed. Az olvadáspont-csökkenés az adagolt só mennyiségével arányos. Magyarázat Kezdetben a víz és a jég egyensúlyban volt. Ezt az egyensúlyt megzavartuk azzal, hogy sót szórtunk a rendszerbe. A rendszer arra törekszik, hogy visszaálljon az egyensúly. Ezért egyre több jégnek kell felolvadni, hogy híguljon az oldat. Az olvadáshoz energiára van szükség, amit a rendszer csak a saját készletéből fedezhet. Ezért csökken a só hozzáadására a keverék hőmérséklete. 8

6. Csapadékok a Föld légkörében A Földet borító tengerek és óceánok víztömege a Föld tömegének alig több, mint 1 %-a. Egy másik tény az, hogy a Föld felszínének 2/3 részét víz borítja. A víz párolgása miatt mindig van vízgőz a levegőben. Csapadék csak a levegő lehűlésével képződhet, hiszen csak így válhat ki a nedvességtartalom. A víz körforgása a földfelszín feletti kb. 10 km magasságban, a troposzférában játszódik le. A levegő felemelkedését általában a felmelegedés indítja meg. A meleg levegő kitágul, térfogata megnő, sűrűsége csökken, ezért emelkedik a magasba. Az emelkedő levegő hőmérséklete 100 méterenként 1 0 C-kal csökken, addig, amíg el nem éri a harmatpontot. Harmatpont az a hőmérséklet, amelyen a gőz kicsapódása megkezdődik. Így a harmatpont hőmérséklete függ a levegő páratartalmától. A harmatponton megkezdődik a felhőképződés, a nedvesség kicsapódása. Ilyenkor 100 méterenként már csak 0,5 0 C-kal csökken a hőmérséklet. Ennek az az oka, hogy a páratartalom kicsapódásakor hő szabadul fel, ami mérsékli a lehűlést. Csapadék azokból a felhőkből hullhat, amelyben vízcseppek és jégkristályok is megtalálhatók. A vízcseppek fokozatosan hozzátapadnak a jégkristályokhoz, és amikor a jégkristály akkorára nő, hogy már nem tud a felszálló légáramlásban lebegni, kihull a felhőből. Így valamennyi csapadékfajta jégkristályként indul az útjára. Amennyiben a felszín felett lévő levegő hőmérséklete 0 0 C felett van, a jégkristályok megolvadnak, és eső formájában érkeznek a felszínre. Ilyenkor a vízcseppek mérete 07-4 mm átmérőjű. Amennyiben a felszín közelében fagyáspont alatt van a hőmérséklet, a jégkristályok nem olvadnak el, és hó formájában érkeznek a felszínre. Hódara: a hókristályokat a felhők vízcseppjei vonják be. Jégeső általában a legforróbb nyári napokon esik. Ekkor a felforrósodott felszín miatt a levegő nagyon gyorsan emelkedik, és hűl le. Így a páratartalma jég formájában csapódik ki. Ebben az esetben hiába van meleg a felszín közelében, ha a jéggömbök méretük miatt nem tudnak elolvadni a felszínre érkezésig. A jégeső okozta pusztítást úgy akadályozhatják meg, hogy ólom-jodid vagy ezüst-jodid kristályokat juttatnak a zivatarfelhőbe, amelyek kondenzációs magként működve megakadályozzák a nagyobb méretű jéggömbök képződését. A földfelszín felett keletkező csapadékok Ködről akkor beszélünk, ha a vízgőz kicsapódása miatt talaj közelben a látótávolság 1 km alá csökken. A köd tehát egy talaj közeli felhő. 9

Harmat: az erős éjszakai kisugárzás miatt a lehűlt talajra vízcseppek csapódnak ki. Dér: Ha a hőmérséklet csökkenése tovább tart, akkor a kicsapódott vízcseppek megfagynak. Zúzmara: Hideg időben a ködöt alkotó vízcseppek túlhűlnek a levegőben, mivel nincs kondenzációs mag. Ha ezek a vízcseppek fagyáspont alatti tárgyakhoz érnek, akkor megkristályosodnak. 10