Nukleáris környezetvédelem

Hasonló dokumentumok
Nukleáris környezetvédelem Környezeti sugárvédelem

Nukleáris környezetvédelem

A sugárvédelem alapjai

Mesterséges radioaktivitás = hasznos emberi tevékenységhez köthetı anyagok

Nukleáris környezetvédelem

Sugárvédelem alapjai. Nukleáris alapok. Papp Ildikó

Nukleáris környezetvédelem Környezeti sugárvédelem

Dozimetria és sugárvédelem

Radioaktív elemek környezetünkben: természetes és mesterséges háttérsugárzás. Kovács Krisztina, Alkímia ma

Nukleáris környezetvédelem Környezeti sugárvédelem

Radon-koncentráció relatív meghatározása Készítette: Papp Ildikó

Nukleáris környezetvédelem Környezeti sugárvédelem

Nukleáris környezetvédelem Környezeti sugárvédelem

Radon a környezetünkben. Somlai János Pannon Egyetem Radiokémiai és Radioökológiai Intézet H-8201 Veszprém, Pf. 158.

A természetes és mesterséges sugárterhelés forrásai, szintjei. Salik Ádám

Sugárvédelem és dozimetria reaktorokban. A mőszaki (munkahelyi) sugárvédelem elemei. A BME Oktatóreaktor sugárvédelmi rendszere

Az ionizáló sugárzások előállítása és alkalmazása

Ionizáló sugárzások dozimetriája

Sugárvédelem alapjai. Atomenergetikai alapismeretek. Dr. Czifrus Szabolcs BME NTI

Sugárvédelem kurzus fogorvostanhallgatók számra. Töltött részecskék elnyelődése. Sugárzások és anyag kölcsönhatása. A sugárzások elnyelődése

Atomerőmű. Radioaktívhulladék-kezelés

IVÓVIZEK RADIOANALITIKAI VIZSGÁLATA

A sugárvédelem alapelvei. dr Osváth Szabolcs Fülöp Nándor OKK OSSKI

Sugárvédelem nukleáris létesítményekben. Átfogó [fenntartó] SVK Osváth Szabolcs (OKK-OSSKI-LKSO)

Radioaktivitás biológiai hatása

Az ionizáló sugárzások előállítása és alkalmazása

Bővített fokozatú SUGÁRVÉDELMI TANFOLYAM

Az atommag összetétele, radioaktivitás

ÉRTELMEZŐ INFORMÁCIÓK ÉS MEGHATÁROZÁSOK A SUGÁRVÉDELEMBEN

Sugárzások kölcsönhatása az anyaggal

A PAKSI ATOMERŐMŰ NEM SUGÁR- VESZÉLYES MUNKAKÖRBEN FOGLALKOZTATOTT DOLGOZÓI ÉS LÁTOGATÓI SUGÁRTERHELÉSE

Sugárvédelem. 2. előadás

Az ionizáló sugárzások fajtái, forrásai

RADIOAKTÍV HULLADÉK; OSZTÁLYOZÁS, KEZELÉS ÉS ELHELYEZÉS. (Dr. Kanyár Béla, SE Sugárvédelmi Szolgálat)

Kibocsátás- és környezetellenırzés a Paksi Atomerımőben. Dr. Bujtás Tibor Debrecen, Szeptember 04.

Sugárvédelem alapjai. Atomenergetikai alapismeretek. Dr. Czifrus Szabolcs BME NTI

Az ionizáló sugárzások el állítása és alkalmazása

Sugárvédelem alapjai

Sugárzás kölcsönhatása az anyaggal 1. Fény kölcsönhatása az anyaggal. 2. Ionizáló sugárzás kölcsönhatása az anyaggal KAD

1. A radioaktív sugárzás hatásai az emberi szervezetre

Radioaktív lakótársunk, a radon. Horváth Ákos ELTE Atomfizikai Tanszék december 6.

Sugárvédelmi feladatok az egészségügyben. Speciális munkakörökben dolgozók munkavégzésére vonatkozó általános és különös szabályok.

Sugárvédelem és jogi alapjai

Sugárvédelem és jogi alapjai

A sugárzás biológiai hatásai

LAKOSSÁGI SUGÁRTERHELÉS október 6 (szerda), 15:40-16:50, Árkövy terem

Sugárzások és anyag kölcsönhatása

CSERNOBIL 20/30 ÉVE A PAKSI ATOMERŐMŰ KÖRNYEZETELLENŐRZÉSÉBEN. Germán Endre PA Zrt. Sugárvédelmi Osztály

Sugárvédelmi Ellenőrző és Jelző Rendszerének vizsgálata

Beltéri radon mérés, egy esettanulmány alapján

Izotóp geológia: Elemek izotópjainak használata geológiai folyamatok értelmezéséhez.

Nemzeti Népegészségügyi Központ Sugárbiológiai és Sugáregészségügyi Főosztály

NUKLEÁRIS LÉTESÍTMÉNYEK LÉGNEMŰ 14C KIBOCSÁTÁSÁNAK MÉRÉSE EGYSZERŰSÍTETT LSC MÓDSZERREL

Felhasználható szakirodalom

Deme Sándor MTA EK. 40. Sugárvédelmi Továbbképző Tanfolyam Hajdúszoboszló, április

Sugárvédelmi mérések és berendezések

50 év a sugárvédelem szolgálatában

SUGÁRVÉDELMI EREDMÉNYEK 2014-BEN

Sugárvédelem és jogi szabályozása Fizikus alapképzés Elıadásvázlat

Izotóp geológia: Elemek izotópjainak használata geológiai folyamatok értelmezéséhez.

Radioaktív anyagok terjedése a környezetben

Radon, mint nyomjelzı elem a környezetfizikában

Dozimetriai alapfogalmak. Az ionizáló sugárzás mérése

Radioaktív anyagok terjedése a környezetben

Bomlási módok. p: a bomlásban kibocsátott részecskék. m: nyugalmi tömeg E kin. : kinetikus (mozgási) energia

ÉRTELMEZŐ INFORMÁCIÓK MEGHATÁROZÁSOK

Radioaktív hulladékok (Fizikus B.Sc.) Radioaktívhulladék gazdálkodás (Gépész - energetikus B. Sc.)

FIZIKA. Radioaktív sugárzás

Radioaktivitás biológiai hatása

Radioaktív sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktív sugárzások detektálása.

Országos Onkológiai Intézet, Sugárterápiás Centrum 2. Országos Onkológiai Intézet, Nukleáris Medicina Osztály 4

Az atommag összetétele, radioaktivitás

Atomfizika. Radioaktív sugárzások kölcsönhatásai Biofizika, Nyitrai Miklós

SUGÁRVÉDELMI EREDMÉNYEK 2016-BAN. Dr. Bujtás Tibor

TESTLab KALIBRÁLÓ ÉS VIZSGÁLÓ LABORATÓRIUM AKKREDITÁLÁS

Radioaktív hulladékok és besorolásuk

Neutron- és gamma-dózisteljesítmény mérése az Oktatóreaktor 4. vízszintes csatornájánál

PROMPT- ÉS KÉSŐ-GAMMA NEUTRONAKTIVÁCIÓS ANALÍZIS A GEOKÉMIÁBAN I. rész

Jakab Dorottya, Endrődi Gáborné, Pázmándi Tamás, Zagyvai Péter Magyar Tudományos Akadémia Energiatudományi Kutatóközpont

Orvosi Biofizika I. 12. vizsgatétel. IsmétlésI. -Fény

Környezetgazdálkodás ban gépészmérnöki diplomát szerzett Dr. Horváth Márk ben ő lett az első Fizikai Nobel-díj tulajdonosa.

RADIOLÓGIAI FELMÉRÉS A PAKSI ATOMERŐMŰ LESZERELÉSI TERVÉNEK AKTUALIZÁLÁSÁHOZ

RADIOAKTÍV HULLADÉKOK 2. Dr. Zagyvai Péter szerkesztette: Dudás Beáta. BME-Egyetemi jegyzet

EGÉSZTESTSZÁMLÁLÁS. Mérésleírás Nukleáris környezetvédelem gyakorlat környezetmérnök hallgatók számára

I. DOZIMETRIAI MENNYISÉGEK ÉS MÉRTÉKEGYSÉGEK

Környezeti monitorozás

Röntgensugárzás az orvostudományban. Röntgen kép és Komputer tomográf (CT)

Radonmérés és környezeti monitorozás

Sugárvédelem és jogi szabályozása

1. mérési gyakorlat: Radioaktív izotópok sugárzásának vizsgálata

SUGÁRVÉDELMI ÉRTÉKELÉS ÉVRE

Radioaktív sugárzás elnyelődésének vizsgálata

Nemzeti Akkreditáló Testület. MÓDOSÍTOTT RÉSZLETEZŐ OKIRAT (1) a NAT /2015 nyilvántartási számú akkreditált státuszhoz

Sugárterápia. Ionizáló sugárzások elnyelődésének következményei. Konzultáció: minden hétfőn 15 órakor. 1. Fizikai történések

SUGÁRVÉDELMI EREDMÉNYEK 2007-BEN

A Bátaapáti kis és közepes aktivitású radioaktív hulladéktároló üzemeltetés előtti környezeti felmérése

rvédelem Dr. Fröhlich Georgina Ionizáló sugárzások a gyógyításban ELTE TTK, Budapest Országos Onkológiai Intézet Sugárterápiás Központ Budapest

SUGÁRVÉDELMI HELYZET 2003-BAN

Sugárvédelem és jogi szabályozása

Sugárvédelem és jogi szabályozása Fizikus alapképzés Elıadásvázlat

Átírás:

Nukleáris környezetvédelem 1. Dózisfogalmak 2. Az ionizáló sugárzások egészségkárosító hatásai 3. A dózis meghatározásának mérési és számítási módszerei 4. A sugárvédelmi szabályzás rendszere 5. Természetes radioaktivitás a környezetben, radioaktív hulladékok 6. Szennyezések transzportja a környezetben, környezeti monitorozás 1

Irodalom a felkészüléshez - Fehér I., Deme S. (szerk.): Sugárvédelem (ELTE Eötvös Kiadó, Budapest, 2010.) - Kanyár B.: Radioökológia és környezeti sugárvédelem (Veszprém, 2000.) - Ormai Péter: A radioaktív hulladékok elhelyezésének lehetıségei Magyarországon (RHK kht.) 2002. http://www.reak.bme.hu/munkatarsak/dr_zagyvai _peter/letoeltes.html http://www.zmne.hu/tanszekek/vegyi/personal/d ozimetriasugarvedelem.pdf 2

Ionizáló sugárzások A közeg és a sugárzás közötti kölcsönhatás szerint: - Közvetlenül ionizáló sugárzások: α, β, γ, röntgen az elektronoknak képesek azok ionizációjához elegendı energiát átadni. Forrásuk elsısorban a radioaktivitás: gerjesztett állapotú atommagok energia-leadása (bomlása). Az α- és β-részecskék sok ütközésben ionizálnak, a γ- és röntgenfotonok csak az elsı lökést adják a meglökött elektron által továbbvitt ionizációkhoz. - Közvetve ionizáló sugárzás: neutron: atommagokkal való kölcsönhatás során ionizációra képes részecskék jelennek meg. Az anyagi közegnek a magsugárzásokkal kölcsönhatásra képes alkotórészei: elektronok, az atom elektromágneses erıtere, atommag. Az elektronokkal való ütközés nem minden esetben vezet azok ionizációjára. A sugárzás által több lépésben átadott energia egy jelentıs része (általában 60-70 %-a) nem ionizációt, csak gerjesztést eredményez, azaz a közeg termikus energiáját növeli meg. 3

Alfa- és bétasugárzás elnyelése az anyagban Ütközés elektronokkal energia átadása, ionizáció, gerjesztés 4

Lineáris energiaátadási tényezı (LET) alfa- és bétasugárzásra LET = de/dx α-let: >120 kev/µm β-let: < 10 kev/µm 5

Alfa- és bétasugárzás elnyelése α-sugárzás LET-értéke vízben: > 120 kev/µm Energiaátvitel: ionizáció, a meglökött elektronok számára ionizáció/gerjesztés β-sugárzás LET-értéke vízben: max.10 kev/µm Energiaátvitel: - elektronokkal ionizáció/gerjesztés; - atom elektromágneses erıterével: fékezési sugárzás (folytonos röntgensugárzás, energiája az elektron energiájától és a közeg rendszámától függ) - Cserenkov-sugárzás: az adott közegben érvényes fénysebességnél nagyobb sebességő elektron látható fényt is kibocsát. A sugárzás hatótávolsága lényegesen kisebb, mint az energiaátvitelben részt vevı elektronok összes úthossza. 6

Gamma-sugárzás elnyelése Foton energiaátadása részben hullám, részben anyagi természető rendszernek ütközés Elektronnal (ionizáció többféle kölcsönhatásban) Atommaggal (abszorpció küszöbreakció, >5 MeV energiánál) Atom elektromágneses erıterével (párkeltés - küszöbreakció, >1.2 MeV energiánál)) Általános törvényszerőség: sztochasztikus (véletlenszerő) kölcsönhatás: nem hatótávolság, hanem gyengítési együttható/felezési rétegvastagság jellemzi Az energiát átvett elektronok kinetikus energiája: - További ionizációt okozhat; - Ionizáció nélküli gerjesztést okozhat; - Szekunder fotonsugárzás (folytonos Röntgen-sugárzás) keltését eredményezheti. 7

Fotonsugárzás gyengülése ( * x) I = I0 *exp µ Párhuzamos fotonnyaláb gyengülése anyagi közegben µ = σ σ ρ A A = Z* σ = A N V * ρ A M A e m m 2 3 2 m atom atom mól 3 m mól µ = σ e = elektron h.ü.k. σ A = atomi h.ü.k. ütközés: abszorpció vagy rugalmatlan szórás, a µ ezek valószínőségének összegét képviseli de dx E inc. µ/ρ [m 2 /kg] µ= lineáris energiaátadási tényezı = térfogategységre jutó hatásos ütközési keresztmetszet µ/ρ = tömegabszorpciós tényezı = tömegegységre jutó h.ü.k. LET = de/dx = a meglökött elektronra jellemzı lineáris energiaátadási tényezı 8

de E J D =, Gray, Gy dm m kg Elnyelt dózis dd dt = Φ * E µ ρ Φ E = Φ E : energiaáram-sőrőség (fluxus) [J/(m 2 s)] A = dn/dt : a sugárforrás aktivitása [bomlás/s = Bq] f R : részecske-(foton)gyakoriság [foton/bomlás] E R : fotonenergia [J/foton] H = D * w R [Sievert Sv ] A * 4 * Egyenérték dózis w R sugárzási tényezı - a LET függvénye w R,α = 20, w R,γ = 1, w R,β = 1, w R,n = 2,5 20 Az érték a sejti hatást jellemzi több hatás következhet be!, Fizikai és biológiai dózisfogalmak dd dt = f r k R 2 γ * E R * π * A Négyzetes gyengülési törvény dózisszámítás fotonoktól származó külsı sugárterhelés esetére k γ : dózistényezı r 2 9

Az ionizáló sugárzások egészséget károsító hatásai Determinisztikus hatás: - küszöbdózishoz kötött (0.3 0.4 Gy); - szövetpusztulást okoz a sugárzás; - a hatás súlyossága függ a dózistól; - akut/azonnali hatás. Ha tá s 1 00% 0% Küs z öb Dóz is 10

Sztochasztikus hatás: - nincs küszöbdózis (bár a kis dózisok hatása nem igazolt); - sejtmutációt okoz a sugárzás (javító mechanizmusok); - a hatás valószínősége függ a dózistól; - kockázat/dózis függvény lineáris (?). Koc ká z a t m = 5*10-2 /S v Dóz is 11

A dózist okozó sugárforrás és a dózist elszenvedı személy kölcsönös pozíciója szerint külsı és belsı sugárterhelés jöhet létre. = E ( = H ) H w [ Sv] E T T T Effektív dózis w T szöveti súlyozó tényezı A szövet daganat kialakulására vonatkozó relatív érzékenységét mutatja T w T = 1 kockázat/effektív dózis-egyenes becsült meredeksége: 5 10-2 eset / Sv Szöveti súlyozó tényezık (ICRP #60 [1991] a hatályos magyarországi szabályozásban is): ivarszervek w T =0.20 (genetikus hatás kockázati aránya) szomatikus hatások kockázati aránya legérzékenyebb w T =0.12 tüdı, gyomor, belek, vörös csontvelı érzékenyek w T =0.05 máj, vese, pajzsmirigy stb. 12 kissé érzékeny w T =0.01 bır, csontfelszín

w T Új ajánlások R. Tanner (Health Protection Agency) 2007. Szövet ICRP26 ICRP60 ICRP103 Ivarszervek (gen.) 0.25 0.20 0.08 Vörös csontvelı 0.12 0.12 0.12 Tüdı 0.12 0.12 0.12 Emlık 0.15 0.05 0.12 Pajzsmirigy 0.03 0.05 0.04 Csontfelszín 0.03 0.01 0.01 Maradék 0.30 0.05 0.12 Belek - 0.12 0.12 Gyomor - 0.12 0.12 Hólyag - 0.05 0.04 Máj - 0.05 0.04 Nyelıcsı - 0.05 0.04 Bır - 0.01 0.01 Nyálmirigyek - - 0.01 Agy - - 0.01 13

Két további dózismennyiség Lekötött dózis T = HC E( t) dt 0 Kollektív dózis C = H E, i n i i A szervezetben 1 évnél hosszabb ideig jelenlévı nuklid által T=50 vagy T=70 év alatt okozott effektív dózis Adott forrásból i számú, egyenként n i tagú embercsoportnak okozott dózis, egysége személy Sv. 14

Dózis mérése és számítása Külsı dózis Dózismérıvel, dózisteljesítmény-mérıvel mérhetı Számítási egyenlet (foton-dózisteljesítményre) k γ dózistényezık: pontforrásra, elnyelı anyagokra határozható meg Belsı dózis közvetlenül nem mérhetı Meghatározás módjai: egésztest-számlálás, vér- és exkrétum-analízis, bejutó anyagok (levegı, víz, ételek) analízise DCF [Sv/Bq] dóziskonverziós tényezı egységnyi radioaktivitás inkorporációjához köthetı effektív dózis A dózist fıként a radioaktivitást hordozó anyag tartózkodási ideje határozza meg Akut (pillanatszerő) vagy krónikus (folyamatos) bevitel eltérı effektív dózist eredményeznek 15

Külsı sugárterhelés mérésének feltétele a Bragg-Gray elv teljesülése A detektort és a mérendı személyt azonos távolságba helyezve a sugárforrástól mindkettıt azonos energiafluxus éri a dózismérıt érı dózis csak annak sugárgyengítési sajátossága miatt lehet más D D x m = Φ Φ E, x E, m * µ ( ) ρ µ ( ) ρ x m = f m Elvárás: Az abszorpciós együttható energiafüggése legyen azonos a detektorra és a testszövetre - szövetekvivalens detektor - energiafüggetlenség = azonos energiafüggés a két közegre. Ekkor a mérıeszköz és a viselı személy dózisa minden sugárzási energiánál azonosan arányos lesz. 16

Külsı sugárterhelés mérési eljárásai Dózismérés: utólagos kiértékelés filmdózismérı, nyomdetektor - kémiai változás TLD: szilárdtest-dózismérı (termolumineszcencia) elektronikus dózismérık: elektroszkóp, impulzusüzemő gáztöltéső és félvezetı detektorok Dózisteljesítmény-mérés: azonnali kiértékelés impulzusüzemő gáztöltéső és félvezetı detektorok szerves szcintillátor detektor 17

Belsı sugárterhelés számítása H T = u S S R R R R R ( S T ) * w * E * f * Q * 1 m T Belsı dózis a T cél (target) szövetben, az S forrás (source) szövetekbıl kiinduló R sugárzásoktól. u: a forrás-szövetekben bekövetkezı bomlások száma. Q: az R sugárzásnak az S szövetbıl kiinduló és a T szövetben elnyelıdı hányada. E R, f R,w R : a sugárzásra jellemzı adatok Modellkísérletekbıl, mérésekbıl E meghatározandók: u, Q DCF = A BE DCF: dóziskonverziós tényezı [Sv/Bq] E: effektív dózis A BE : bejutott radioaktivitás (rövid idı alatt) Eltérı lehet -Beviteli útvonal szerint (belégzés vagy lenyelés), -Kémiai forma szerint (a testnedvekben oldható vagy nem oldható) -Életkor szerint 18

Belsı sugárterhelés számítása A dózisszámításhoz a minták analízise szükséges. Az analízis akkor lehetséges, ha Ismertek a minta összetevıi, vagy azok az analízis eredményeibıl meghatározhatók, A mennyiségi összetétel számításához hatásfokkalibráció áll rendelkezésre. η = I m megszámolt Hatásfok: részecske A * f γ összes 19

Sugárvédelmi szabályzás - A sugárvédelem alapelvei Determinisztikus hatáshoz vezetı dózis legyen lehetetlen Csak az alkalmazásokhoz kapcsolható dózis korlátozható, a természetes eredető nem a korlátozás a többletdózisra vonatkozik Indokoltság: a sugárforrás alkalmazásának több elınye legyen, mint kára Optimálás: az alkalmazás a lehetı legnagyobb elınnyel kell, hogy járjon optimális dózisszint tervezési alap ALARA (As Low As Reasonably Achievable) Egyéni korlátozás immissziós és emissziós korlátok át nem léphetık, ha a tervezési alap helyes volt. 20

A dóziskorlátozás rendszere DL immissziós korlát foglalkozási korlát 20 msv/év (5 év átlagaként) lakossági korlát 1 msv/év DC - emissziós korlát = dózismegszorítás [Sv/év] A ki kibocsátási határérték [Bq/év] A A max, i és A max, i * DCF i i max, i << DL DC s DC A ki, i Az emissziós és immissziós korlátok nem keverhetık i és DC < DL DCF i DC Idáig 6. ea. Az 1. félévközi dolgozat anyaga A kibocsátott aktivitás a környezeti terjedés során jelentısen hígul 21

A dóziskorlátozás rendszere Szabályzásból kizárt sugárzási helyzetek (Exclusion) természetes radioaktivitás az emberi testben, kozmikus sugárzás a Föld felszínén Elhanyagolható dózis: H i 10 µsv/év csak akkora kockázatot jelent, ami ellen nem éri meg intézkedéseket hozni Mentességi szint: (Exemption) egy sugárforrás, illetve egy adott radioaktív koncentrációval jellemzett anyag a legkedvezıtlenebb forgatókönyv mellett sem okoz H i -nél nagyobb dózist (foglalkozási vagy lakossági helyzetben). [Bq], [Bq/kg] Felszabadítási szint: (Clearance) egy korábban sugárvédelmi szabályozás alá tartozó anyag kivonható a szabályzás alól jellemzıen hulladékokra alkalmazható (lakossági helyzetben). [Bq/kg], [Bq/m 2 ] Hasonlóság: kapcsolat H i -vel. Eltérés: forgatókönyv 22

Természetes és mesterséges radioaktivitás a környezetben radioaktív hulladékok Természetes radioaktivitás: * kozmikus sugárzás szoláris, galaktikus, befogott részecskék világőrben: protonok, α-részecskék, pozitív ionok légkörben: neutronok, fékezési fotonsugárzás (Föld felszínén: 25-30 nsv/h) * kozmogén radionuklidok ( 3 H, 14 C, 7 Be) *ısi radionuklidok (az ıs-nap életciklusa során többféle ciklus -ban keletkeztek) Legfontosabbısi radionuklidok: - 40 K (T= 1.28 milliárd év, belsı sugárterhelés: 0.3 msv/év) - bomlási sorozatok: 238 U, 232 Th, 235 U 23

238 U bomlási sorozata 238 U: T= 4.47 milliárd év (4-6 ppm a Föld felszínén) bomlási sor leányelemek között 226 Ra, 222 Rn 222 Rn (T= 3.8 nap) rövid felezési idejő, α- és β - -sugárzó leányelemei 218 Po, 214 Pb, 214 Bi, 214 Po belsı sugárterhelés: átlagosan 1.0 2.0 msv/év 222 Rn-koncentráció (EEC): szabad levegın 1 10 Bq/m 3 zárt térben 5 100 Bq/m 3 sok radon: pince, bánya, barlang, építıanyag kevés radon: víz felett aktivációs termékek 238 U ból nukleáris reaktorban: 239 Pu stb. hasadóanyag, nagy DCF 24

További bomlási sorozatok 232 Th: T= 14.1 milliárd év (7-10 ppm a Föld felszínén) bomlási sor - leányelemek: köztük 220 Rn 220 Rn (T= 55 s) kevéssé tud kikerülni a levegıbe dózisjárulék 0.1 msv/év 235 U: T= 0.71 milliárd év (a természetes urán 0.7 %-a) a nukleáris energiatermelés legfontosabb alapanyaga: indukált hasadás neutronok hatására 25

Természetes sugárterhelés : átlagosan 2-3 msv/év belsı sugárterhelés 65 % külsı sugárterhelés 35 % (kozmikus sugárzás, ısi nuklidok a talajból, építıanyagokból) továbbá: orvosi eredető sugárterhelés átlagosan 0.3 msv/év 26

IDÁIG TARTOTT AZ 1. DOLGOZATHOZ TARTOZÓ ANYAGRÉSZ 27

Mesterséges (= hasznos emberi tevékenységhez köthetı) radioaktivitás folyamatos üzemi kibocsátás (kezelésük az üzemi költség része) folyamatosan keletkezı, az üzem területén tárolt hulladék (- -) leszerelési hulladék (költségviselı: önálló állami alap - KNPA) Radioaktív hulladékok forrásai - Nukleáris reaktorok hulladékai hasadási (pl. 131 I, 137 Cs), főtıelem-aktivációs (pl. 239 Pu) és szerkezeti anyag aktivációs ( korróziós, pl. 60 Co) termékek - Nukleáris robbantások, fegyverkísérletek hulladékai - Ipari sugárforrások - Orvosi (diagnosztikai és terápiás) sugárforrások - TENORM : mesterséges okból megnövekedett, de természetes radioaktivitástól származó sugárterhelés * szén-, olaj- és gáztüzeléső erımővek (salak, hamu, pernye) * nukleáris üzemanyag elıállítása * egyéb (mőtrágyagyártás, bányászat stb.) 28

S = i AK i MEAK Hulladékindex i Kategóriák a mentességi szint (MEAK [Bq/kg]) alapján: kis-, közepes- és nagyaktivitású hulladék AK: aktivitás-koncentráció [Bq/kg] Kisaktivitású hulladék (LLW) 1 < S < 1000 Közepes akt. h. (ILW) 10 3 < S <10 6 Nagy akt. h. (HLW) S > 10 6, hıfejlıdés > 2 kw/m 3 Mentesség Felszabadítás??? azonosság: kapcsolat az elhanyagolható dózissal (10 µsv/év) eltérés: forgatókönyvek A hulladékindexben a felszabadítási koncentrációnak kellene szerepelnie! 29

Radioaktív hulladék menedzsment Győjtés Osztályozás, minısítés Tárolás, szállítás Térfogatcsökkentés Kondicionálás Átmeneti és/vagy végleges elhelyezés Alternatív megoldások: kiégett nukleáris üzemanyag reprocesszálása, hosszú felezési idejő hulladék-komponensek transzmutációja 30

Radioaktív hulladék menedzsment Győjtés, osztályozás Fı szempont: hulladékindex (külön győjtendık az egyes kategóriák) Továbbiak: felezési idı, halmazállapot, felületi dózisteljesítmény a hulladékcsomagon. -Kis akt.: 1 dd/dt 300 µsv/h -Közepes akt.: 0,3 dd/dt 10 msv/h -Nagy akt.: dd/dt > 10 msv/h 31

Radioaktív hulladék menedzsment - térfogatcsökkentés V0 V1 hulladékáram c1 m1 mővelet c0<meak tiszta V2 szennyezett c2 m2 32

Radioaktív hulladék menedzsment - Térfogatcsökkentés Préselés: supercompactor 33

V 1 VR = Térfogatcsökkentés V 2 Általános: préselés, égetés/hıbontás, bepárlás Specifikus: felületi (szorpció), térfogati (extrakció) szubsztitúciós (ioncsere) vagy addíciós folyamatok c i,1 DF i = Kondicionálás c i, 0 Cementezés (folyadék: elıbb felitatás kovafölddel) (LLW, ILW) Bitumenezés (szerves LLW) cementezéssel kombinálva Üvegesítés (HLW) Minısítés: kimoshatóság, mechanikai szilárdság, hıés sugárállóság 34

Radioaktív hulladék elhelyezése Feltételek: Többszörös mérnöki gátak és mélységi védelem Átmeneti: telephelyen belül vagy önálló felszíni telephelyen (Paks KKÁT) nedves vagy száraz tárolás max. 50 évig Végleges: LLW ILW: felszínközeli vagy mélységi lerakóhely (Püspökszilágy, Bátaapáti) HLW: tervezett mélységi lerakóhely (Boda BAF) Alternatíva: reprocesszálás TENORM és nukleáris energiatermelés összehasonlítása üzemi adatok Kibocsátott összes radioaktivitás (1988): Paks AE: Ajka, Pécs szénerımő: 0.5 MBq/MW 3-4000 MBq/MW 35

36

37

38

Mélységi elhelyezés Bátaapáti (LLW) Gránitban, két lejtıs aknán elérhetı 300 m mélyen 39

Mélységi elhelyezés Bátaapáti (LLW) Gránitban, két lejtıs aknán elérhetı 300 m mélyen Mária lejtısakna bejárata a járathajtás alatt 40

Radioaktív hulladékok feldolgozása Püspökszilágy felszínközeli tároló LLW, ILW (kapacitás: 5000 m 3 ) + feldolgozó üzem és átmeneti tároló Agyaglencse (18 20 m vastagon) 41

42

Radioaktív hulladékok feldolgozása Felszínközeli végleges LLW tároló Tömörítés után visszatemetett hulladék elhelyezése Püspökszilágyon Mérnöki gátak 43

44

45

46

47

TENORM - Pécs környéki uránbánya területének helyreállítása Forrás: Mecsek-Öko ZRt. 48

TENORM - Pécs zagytározók rekultivációja: Tájrendezés Morfológia kialakítás, felületstabilizálás Beszivárgást minimalizáló fedés Felszíni vízrendezés, vízelvezetés Hosszú távú stabilitás biztosítása 49

TENORM Pécsi rekultiváció Geotechnika és rekultiváció... Az iszapmag konszolidációja a vízleengedés után 50

Radioaktív hulladékok feldolgozása - Reprocesszálás Storage pond for spent fuel at Sellafield UK reprocessing plant 51

6. Szennyezések terjedése a környezetben Általános terjedési egyenlet: dc dt = A + D + R + P λc A : advekció (hajtóerı: gravitáció, hidrosztatikai nyomás) D : diffúzió (hajtóerı: kémiai potenciál) R : reakció (fizikai és kémiai szorpció, ioncsere stb.) (hajtóerı: kémiai potenciál) P : ülepedés (hajtóerı: gravitáció) (forrástag idıben állandó) Homogén rendszerek: levegı, felszíni víz, karsztvíz Heterogén rendszerek: talajvíz, geológiai rétegek, biológiai anyagok Terjedési egyenletek inverze szükséges az emissziós korlátozás (a dózismegszorítás, illetve ebbıl az elhanyagolható dózishoz tartozó kibocsátható anyagmennyiség) megállapításához Nukleáris/radiológiai balesetek, kibocsátások Windscale, Three Mile Island, Csernobil, Goiania, Algeciras, Tokai-mura. Csernobil becsült magyarországi hatása 1 3 msv 52

53 Terjedési egyenletek c t S P R D A t c * ) ( λ + + + + = c t S c grad D div c grad u t c * ) ( )) ( * ( ) ( * λ + + = c t S i c D i x c u t c z y x i i x * ) ( ) * ( *,, λ + + = = Általános egyenlet idıfüggı forrástaggal Advekció és diffúzió kifejtése Egyirányú advekció, homogén diffúzió Megoldásuk célja: c idı- és térbeli függésének meghatározása, a környezeti közegek között érvényes állandó koncentrációarányok számítása érdekében

Nukleáris környezeti monitorozás DL és DC betartásának ellenırzése: Mérés Kiértékelés Beavatkozás A feladatok hasonlóak normális és baleseti helyzetben is. Irányadó szintek szükségesek minden radionuklidra a környezeti közegekben (levegı, víz, talaj stb.) Biztonság: a szint mérhetı kell, hogy legyen, mielıtt az irányadó szintet túllépnénk. Monitorozás: mintavétel, mérés és kiértékelés szervezett, standard rendszere. 54

Nukleáris környezeti monitorozás Helyi rendszerek: emissziót produkáló létesítmény körül [= kibocsátás-ellenırzés??] Regionális rendszerek: immisszió ellenırzése nagyobb területen egyenletesen elosztott mérıállomásokkal Gamma-dózisteljesítmény folyamatos mérése KORAI RIASZTÁS Légköri szennyezıdés folyamatos mérése dúsításos mintavétellel KORAI RIASZTÁS aeroszol- és jódszőrés (elemi, szerves) Szakaszos mintavételezéses módszerek: - száraz és nedves légköri kihullás, - felszíni-, ivó- és talajvíz, - talaj- és biológiai minták. Országos Sugárfigyelı, Jelzı és Ellenırzı Rendszer Radiológiai Távmérı Hálózat (OSJER TMH) 55

Nukleáris környezeti monitorozás korai riasztást adó rendszerek Gamma-dózisteljesítmény mérése folyamatos/automatizált mérési adatgyőjtés környezeti dózisteljesítmény (talajszint) OSJER figyelmeztetési szint OSJER riasztási szint : 70 180 nsv/h : 200 nsv/h : 500 nsv/h Természetes radioaktivitás: szintje eltérı a környezetben, általában nem tárgya a szabályozásnak. (kozmikus sugárzás, földi radioaktivitás) TENORM: technologically enhanced naturally occurring radioactive material alkalmazásnak tekintendı, szabályozandó. Mesterséges radioaktivitás: alkalmazások kibocsátása, radioaktív hulladékok stb. Berendezések ionizáló sugárzása (pl. Röntgen) kikapcsolható. 56

Nukleáris környezeti monitorozás korai riasztást adó rendszerek környezeti dózisteljesítmény monitorozása hosszú idın át dózisteljesítmény [nsvh] A felvételen három különbözı hatás látható: helyi hatások (emisszió), gyors környezeti hatások (változó szintő szennyezés), lassú környezeti hatások. A jelszint nem éri el a riasztási küszöböt. A felvétel részletes értékelésre e formában nem alkalmas. 57

dózisteljesítmény [nsvh] Nukleáris környezeti monitorozás korai riasztást adó rendszerek helyi hatások a környezeti dózisteljesítményre Oktatóreaktorban frissen elıállított 24 Na sugárforrások ideiglenes tárolását érzékelte a monitor. A felfutó él a mővelet pillanatszerőségére, a lefutás a fıkomponens felezési idejére jellemzı. 58

dózisteljesítmény [nsvh] Nukleáris környezeti monitorozás korai riasztást adó rendszerek környezeti csapadékcsúcsok A csapadék kimossa a levegıbıl a talaj felszínére az aeroszolhoz kötött radon-leányelemeket. Ezek ( 222 Rn és 220 Rn-származékok) feldúsulása a ülepedési sebességtıl és hatásfoktól, bomlása az effektív felezési idıtıl függ. Hasonló alakú profilok származhatnak mesterséges eredető radioaktív szennyezést tartalmazó pöfföktıl is. 59

Következtetések: Nukleáris környezeti monitorozás korai riasztást adó rendszerek környezeti dózisteljesítmény mérése A dózisteljesítmény változása képet ad a környezet állapotáról. Helyi rendszerek: jelzik a helyi változásokat is. Regionális rendszerek: nehéz (néha lehetetlen) megkülönböztetni a természetes növekedést a mesterséges szennyezéstıl. A biztonságos riasztási küszöb jóval nagyobb kell, hogy legyen a természetes ingadozás maximumánál. További mérési módszer szükséges a jobb érzékenység eléréséért és 60 a téves riasztások kizárásához.

Nukleáris környezeti monitorozás korai riasztást adó rendszerek aeroszol mintavételezés és mérés Légköri radioaktív szennyezés dúsítása és mérése mintázás: speciális szőrık az alábbi anyagokra: - aeroszol, - atomos vagy molekuláris jód, - szerves jódvegyületek mérés: alfa/béta, gamma-spektrometria eljárás: folyamatos/automatikus mőködés, mozgószőrıs vagy állószőrıs kivitel 61

Nukleáris környezeti monitorozás aeroszol mintavételezés és mérés a kibocsátási forrás közelében Lokális rendszer egy emissziós forrás köré telepítve Várható szennyezési profil: egységugrás-függvény Activity on filter Elınyös módszer: mozgó szőrıszalag (differenciálás) time 62

Nukleáris környezeti monitorozás aeroszol mintavételezés és mérés a kibocsátási forrástól távol Regionális rendszer egyenletesen elosztott állomások - immisszió felügyelete Várható szennyezési profil: elnyújtott, lassan növekvı Activity on filter Elınyös módszer: álló szőrılap (integrálás) time 63

Nukleáris környezeti monitorozás környezet-ellenırzés aeroszol mintavétellel Az állomás vezérlı programja az alábbi feladatokat látja el: Adatgyőjtés a detektor(ok)tól; Nukleáris spektrumok kiértékelése mesterséges radioaktivitás azonosítása változó természetes alapvonalon mért érték [Bq/m 3 ]; Természetes radioaktivitás értékének számítása: Rn EEC [Bq/m 3 ] KIMUTATÁSI HATÁR (LD) megadása, ha mesterséges radioaktivitást nem detektált; A detektor(ok) rendszeres kalibrálása; Elektromechanikus elemek vezérlése (szivattyú, szőrıkezelés stb.); Adatgyőjtés más mérıberendezésekbıl (meteorológiai szenzorok, dózisteljesítmény-mérı stb.); Kommunikáció a központi számítógéppel. 64

Nukleáris környezeti monitorozás - Detektorok válasza Basic equation for activity build-up on filter surface (I m = measured intensity [cps]) I Közvetlenül mért érték: adott radioizotóp sugárzásának intenzitása. Keresett érték: ezen izotóp radioaktív koncentrációja a levegıben. m * ttrue γ fγ C. η = * t LIVE 0 * V*(1 e λ λt t ) dt * t LIVE TRUE η γ : efficiency for the gamma line of the given isotope, f γ : gamma abundance of the given gamma line, t LIVE : live time, t TRUE : true time, λ: decay constant, V. : volume rate of pump. After integration and solving for C, mean activity concentration during sampling cycle [Bq/m 3 ] C = I η * γ m f γ 1 * V λ * t * 1 e 1 λ * t TRUE λ* t TRUE TRUE Ezeket a számításokat a kiértékelı programnak kell elvégeznie. 65

222 Rn alfa-béta spektrum 66

220 Rn + 222 Rn alfa-béta spektrum 67

222 Rn Rn EEC változása környezeti mérıállomásokon 68

Radon LDs - Time Mesterséges radioaktivitás LD-jének változása környezeti mérıállomásokon 69

Nukleáris környezeti monitorozás korai riasztást adó rendszerek aeroszol-mintavétellel Összefoglalás: Részecskeszőrı és azt követıen jódszőrıt is alkalmazhatunk. Regionális rendszereknél az álló szőrı elınyösebb. Nuklidspecifikus meghatározás szükséges, hogy megkülönböztessük a természetes és a mesterséges radioaktivitást. Jelentendı értékek: természetes radioaktivitás ( 222 Rn-EEC stb.) minıség-ellenırzés mesterséges radioaktivitás (radionuklid, aktivitás-koncentráció, KIMUTATÁSI HATÁR (LD)) 70