Radioaktív hulladékok (Fizikus B.Sc.) Radioaktívhulladék gazdálkodás (Gépész - energetikus B. Sc.)

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Radioaktív hulladékok (Fizikus B.Sc.) Radioaktívhulladék gazdálkodás (Gépész - energetikus B. Sc.)"

Átírás

1 Radioaktív hulladékok (Fizikus B.Sc.) Radioaktívhulladék gazdálkodás (Gépész - energetikus B. Sc.) Tartalom: 1. A radioaktív hulladékokkal kapcsolatos sugárvédelmi ismeretek rövid összefoglalása 2. A radioaktív hulladék definíciói, a hulladékokra vonatkozó szabályozás 3. Radioaktív hulladékok típusai, keletkezésük, vizsgálati módszereik 4. Radioaktív hulladékok kezelése ( Waste management ) = feldolgozás és elhelyezés 1

2 Irodalom a felkészüléshez Letölthető prezentáció Zagyvai P. és mások: A nukleáris üzemanyagciklus radioaktív hulladékai (ELTE Eötvös Kiadó, Budapest, 2013.) 2

3 Számonkérések 1. félévközi dolgozat: III félévközi dolgozat: V. 17. A dolgozatírásokig leadott anyagok pdf fájlban hozzáférhetőek lesznek. 3

4 Sugárvédelmi áttekintés: dózisfogalmak Elnyelt dózis [Gray, 1 Gy = 1 J/kg] D Ionizáló sugárzásból elnyelt energia Egyenérték dózis [Sievert, 1 Sv=1 Gy dózis humán biológiai hatása] a dózis sztochasztikus hatását fejezi ki, w R a sugárzás fajtájától függ lásd tovább Effektív dózis E H E w H T de dm D w R az egyes szöveteket ért egyenértékdózis súlyozott összege Lekötött dózis: egy bevitelből származó, több éven keresztül kifejtett effektív vagy egyenértékdózis Kollektív dózis: azonos forrásból egy embercsoport tagjait ért dózisok összege T T H 4

5 Egyenérték dózis az ionizáló sugárzás sztochasztikus biológiai hatása H D. w R [Sievert, Sv] w R sugárzási tényező - a lineáris energiaátadási tényező (LET) = de/dx függvénye w R,α = 20 w R,γ = 1 w R,β = 1 w R,n = 2,5 20 a neutron-energia függvényében 5

6 E Effektív dózis = az egyes szöveteket ért egyenértékdózis súlyozott összege (H E ) TwT[Sv] T H E: Effektív dózis w T szöveti súlyozó tényezők T w T 1 Az IAEA General Safety Requirements Part 3-nek megfelelő 487/2015. kormányrendelet szerinti) szöveti súlyozó tényezők: ivarszervek w T =0,08 (genetikus hatásra) szomatikus hatásokra legérzékenyebbek w T =0,12 tüdő, gyomor, belek, vörös csontvelő, emlő érzékenyek w T =0,04 máj, vese, pajzsmirigy stb. kissé érzékeny w T =0,01 bőr, csontfelszín 6

7 Az ionizáló sugárzás determinisztikus egészségkárosító hatása A károsítás mértékét jellemző dózismennyiség: relatív biológiai egyenértékkel szorzott elnyelt dózis J/kg = Gray = Gy 7

8 Relatív biológiai egyenérték 8

9 Az ionizáló sugárzások sztochasztikus egészségkárosító hatása Kockázat m= /Sv Dózis Lineáris, küszöb nélküli függvénykapcsolat az effektív dózis és a természetest meghaladó többletdózis által okozott kockázat között a szabályozás alapja. Dózis = Lekötött effektív dózis 9

10 Sugárvédelmi áttekintés - alapelvek Sugárvédelem az ionizáló sugárzások károsító hatásainak kizárása, illetve minimalizálása. 3 alapelv: 2 további gyakorlati elv: Indokoltság * ha a kis dózisokat korlátozzuk, ezzel a Optimálás nagy dózist kizárjuk Korlátozás * a természetes dózis nem korlátozható Külső sugárterhelés: kisméretű vagy kiterjedt forrásoktól, de a testen kívülről származik Belső sugárterhelés: radioaktív anyag inkorporációja (belégzése, lenyelése) 10

11 Sugárvédelmi áttekintés hatósági szabályozás Dóziskorlátozás: DL dose limit, immissziós dóziskorlát (minden sugárforrásból 1 emberre) foglalkozási korlát: 20 msv/év (5 év átlagaként, 1 évben sem lehet >50 msv) lakossági korlát: 1 msv/év DC - emissziós korlát = dózismegszorítás (dose constraint - fiktív személy dózisa egy adott forrásból) Magyarországon: kiemelt létesítmény: lakosságra 0,1 0,01 msv/év, egyéb létesítmény: egységesen 0,03 msv/év ΣDC nem értelmezhető, de DC < DL kell, hogy legyen A radioaktív hulladék hatásával kapcsolatos lakossági korlátozás: - működő hulladék-feldolgozó, le nem zárt lerakó: DC - felszabadított hulladék, lezárt lerakó: egyedi határérték vagy az elhanyagolható dózis = 10 µsv/év 11

12 Radioaktív hulladékok definíciója Radioaktív hulladék: további felhasználásra nem szánt, emberi tevékenység (ionizáló sugárzás alkalmazása) eredményeképpen létrejött radioaktív anyag, amelyet sugárbiztonsági szempontból kezelni szükséges, mert az általa kezelés nélkül okozható dózis meghaladná az elhanyagolható szintet. 12

13 Radioaktív hulladékok és kibocsátások típusai Radioaktív anyagok kijutása a környezetbe üzemi területről folyamatos üzemi kibocsátás (légnemű, folyékony) a létesítmény dózismegszorításából származtatott kibocsátási határértéknél (KH) kisebb mennyiségek, kezelés: nincs vagy üzemszerű, folyamatos nem tekintendő radioaktív hulladéknak huzamos ideig helyben maradó üzemi hulladékok a kezelés üzemszerű, szakaszos, elszállítás időszakonként a végleges vagy átmeneti lerakóba. baleseti (rövid ideig tartó) kibocsátás és történelmi hulladék a kezelés eseti, szakaszos, része a környezeti helyreállítás (remediation) folyamatának leszerelési hulladékok a létesítmény lebontása során keletkező, fel nem szabadítható anyagok, kezelésük szakaszos, elhelyezés átmeneti, majd végleges lerakóban. 13

14 Radioaktív hulladékok szabályozása Jelenleg is hatályos nemzetközi ajánlások: IAEA: Classification of Radioactive Waste for protecting people and the environment GSG-1 General Safety Guide (2009) és néhány újabb kiadvány EU: Radiation Protection kiadványsorozat, EURATOM direktívák Általános nemzetközi alapelv: a hulladék általában nem exportálható VI. 27. az EU Tanácsa elfogadta, hogy lehetséges radioaktív hulladék kiszállítása az unió területéről az alábbi esetekben: - visszavételi garanciával eladott zárt forrásoknál; - kutatóreaktorok kiégett fűtőelemeinél, melyet korábban hulladéknak nyilvánítottak; - ha az EU-kívüli befogadó állam hulladékkezelési biztonsága megfelel az EU-s normáknak és a tárolónak van hatósági engedélye. 14

15 Radioaktív hulladékok szabályozása A hatályos magyarországi jogi szabályozás: törvény, rendeletek, szabványok, eseti hatósági rendelkezések * CXVI. tv. ( Atomtörvény általános szabályozás a nukleáris és sugaras létesítményekről, felhatalmazás a sugárvédelem és a hulladékok ügyének szabályozására) (új verzió: LXXXVII. tv.) * 240/1997. kormányrendelet: RHK, KNPA (felelős kezelő, anyagi alap) * 487/2015. kormányrendelet (általános sugárvédelmi szabályozás + mentességi szintek) * 37/2012. kormányrendelet és módosításai: új Nukleáris Biztonsági Szabályzatok (legutóbbi: 28/2018. kormányrendelet) * 47/2003. ESzCsM rendelet (radioaktív hulladékok) megújítása folyamatban * MSZ 62/1... /7 sugárvédelmi szabványok * MSZ 14344/1,2 radioaktív hulladékokra vonatkozó szabványok * eseti hatósági rendelkezések: Országos Atomenergia Hivatal - OAH 15

16 Radioaktív hulladékok osztályozása történeti fejlődés IAEA = International Atomic Energy Agency (NAÜ) Kiadás éve:1994. Mentesség = EXEMPTION Sugárvédelmi intézkedést nem igénylő anyag Osztályozás alapja az aktivitás-koncentráció 16

17 Radioaktív hulladékok osztályozása IAEA Safety Series #115 (1996) International Basic Safety Standards (IBSS) for Protection against Ionizing Radiation and for the Safety of Radiation Sources A hulladék-osztályozás alapja az okozható dózis Felszabadítás = CLEARANCE, de a mentességgel azonos szintek Osztályozás alapja az okozható dózissal arányos mennyiség új IBSS : GSR Part 3 Eltérő mentességi és felszabadítási szintek (kis- illetve nagy mennyiségre) 17

18 A sugárvédelem tudományosan megalapozott alapelveiből levezetett követelmények és a számításokhoz szükséges alapadatok átfogó gyűjteménye 18

19 19

20 20

21 Radioaktív hulladékok osztályozása az okozható dózis alapján Elhanyagolható dózis: H i μsv/év Mentességi szint: (Exemption) egy sugárforrás, illetve egy adott radioaktív koncentrációval jellemzett anyag mentes a sugárvédelmi szabályozás alól, ha a legkedvezőtlenebb forgatókönyv mellett sem okoz H i -nél nagyobb dózist (foglalkozási vagy lakossági helyzetben). [Bq], [Bq/kg]= MEAK Felszabadítási szint: (Clearance) egy korábban sugárvédelmi szabályozás alá tartozó anyag kivonható a szabályzás alól (lakossági helyzetben.) [Bq/kg], [Bq/m 2 ] Hasonlóság: kapcsolat H i -vel. Eltérés: forgatókönyv 21

22 Radioaktív hulladékok szabályozása Magyarországon A mentesség és a felszabadítás fogalmai még nem váltak szét a szabályozásban: nem voltak külön megadott felszabadítási szintek, a mentesség volt az osztályozás alapja 47/2003. sz. ESzCsM-rendelet, 14344/ sz. szabvány. A felszabadításhoz a 16/2000. sz. EüM. rendeletben rendelt effektív dózis 30 µsv/év. S i AKi MEAK i S (=HI hazard index =WI waste index ) veszélyességi mutató MEAK: Mentességi aktivitás-koncentráció [Bq/kg]) AK: aktivitás-koncentráció [Bq/kg] i: a hulladékcsomag radioizotópjai Kis aktivitású hulladék (LLW) 1 < S < 1000 Közepes akt. h. (ILW) 10 3 < S <10 6 Nagy akt. h. (HLW) S > 10 6, hőfejlődés > 2 kw/m 3 22

23 Radioaktív hulladékok szabályozása Magyarországon IAEA GSG-1 és GSR-3 és 2013/59/EURATOM javaslatainak átvétele 487/2015. kormányrendelet: csekély (= moderate ) mennyiség: mentességi szintek [MEAK] használata REAK: referencia aktivitás-koncentráció céljából = specifikus mentességi szint jelentős (= bulk ) mennyiség (>1 t): felszabadítási szintek [FEAK] = általános mentességi szint használata REAK-ként S i ci REAK i MEAK, FEAK, KH közös sajátossága: nem a környezetben, hanem az emisszió helyén mérhető értékekként határozták meg őket, erősen függenek a kritikus forgatókönyv paramétereitől ezek változásával a szintek is megváltoznak. 23

24 A felszabadítási szintek meghatározása a kritikus forgatókönyv kiválasztása Practical use of the concepts of clearance and exemption RADIATION PROTECTION #122 Part I. EU Directorate General Environment (2000) Fejlécben: expozíciós forgatókönyvek (külső terhelés, belégzés, lenyelés, bőrdózis) Táblázatban: egységnyi koncentrációra jutó éves dózis az adott forgatókönyv esetén 24

25 Felszabadítási és mentességi szintek Hiányzik: 41 Ca, 133 Ba stb. ezekre a forgatókönyvek és a sugárfizikai adatok alapján lehet CL-t számítani. A felszabadítási szintek általában nagyságrendekkel kisebbek, mint a mentességi szintek!!! (GSR-3 bulk szintjei = RP#122 értékei kerekítve) 25

26 Kibocsátási határértékek üzemelő létesítményekre Kibocsátási határérték (KH): a létesítmény dózismegszorításának megfelelő aktivitások [Bq/év] üzemelés során kibocsátott radioaktív anyagokra alkalmazzák Kibocsátási határérték-kritérium: KHK A i : az i-edik radionuklidból kibocsátott aktivitás [Bq/év] DCF: dóziskonverziós tényező 1 Bq inkorporációja (lenyelés vagy belégzés) által okozott effektív dózis [Sv/Bq] mf i,krit : mobilitási tényező [-] az i-edik radioizotóp hígulása a kibocsátás helyétől a kritikus csoportig (=reprezentatív személyig) tehát mf i,krit <<1 KH i KHK DC DCF i, KRIT A i 1 KH i i mf 1 i, KRIT 26

27 Radioaktív hulladékok csoportosításai Halmazállapot szerint: gáznemű, folyékony, szilárd, biológiai hulladék Felezési idő szerint: nagyon rövid, rövid, hosszú (határok: 65 nap, 30 év = 137 Cs T 1/2 ) Sugárzásfajta szerint: α-sugárzók gyakran külön kezelendők Felületi γ-dózisteljesítmény szerint (üzemi tárolás, szállítás) Hulladék-átvételi követelmények (RHK Kft. Püspökszilágy, Bátaapáti) a létesítményekre specifikus aktivitásértékek Speciális kategóriák: MW-Mixed Waste - USA; VLLW- very low level waste Franciaország (Magyarországon is tervezik a bevezetését) 27

28 Radioaktív hulladékok csoportosításai Gyakorlati csoportosítás: A tárolt hulladékcsomagok gyors minősítésére a munkahely ellenőrzött területén A zárt hulladékcsomag felületétől 10 cm-re mérhető γ-dózisteljesítmény szerint: -Kis akt.: 300 µsv/h -Közepes akt.: 0,3 H 10 msv/h -Nagy akt.: H H > 10 msv/h 28

29 Radiotoxicitás a hulladék veszélyességének kifejezése RT A (t) DCF i i RT : radiotoxicitás [Sv/év] A : aktivitás [Bq]; i : radioizotóp minősége DCF : lenyelési dóziskonverziós tényező [Sv/Bq] i Ez a definíció a hulladéktárolóhoz (lerakóhoz) köthető maximális inkorporálható kollektív dózist jelenti : a tényleges mértékegység személy.sv, mert egy személy nem inkorporálhatja a teljes aktivitást. Nem tartalmazza a hígulást (terjedési függvényt és elérési forgatókönyvet) 29

30 Radiotoxicitás-index: a hulladék veszélyességének kifejezése Hulladék (-tároló) veszélyessége annak végső formájában: radiotoxicitás - index RTOX A (t) tf Q i i, j j i j. DCF RTOX : radiotoxicitás-index (tényleges mértékegysége [Sv/év]) A : aktivitás [Bq]; i : radioizotóp minősége tf : aktivitás-átviteli tényező a hulladékból egy táplálékfajtába [(Bq/kg)/Bq] igen nagy bizonytalansággal határozható meg hosszú távon. Q j : táplálékfogyasztás a j-edik anyagból [kg/év] DCF : lenyelési dóziskonverziós tényező [Sv/Bq] i 30

31 Radioaktív hulladékok definíciói, szabályozás Az évi CXVI. tv. szerint a hulladékkezelés az RHK Kft. feladata ( Hatósági feladatok a radioaktív anyagokkal kapcsolatban: Személyi sugárvédelem, dózismegszorítás engedélyezése kiemelt létesítmények számára, nukleáris biztonság - OAH (Országos Atomenergia Hivatal) Sugárforrások nyilvántartása - OAH Kibocsátási korlátok OAH, a környezetvédelmi felügyelőségek feladatát átvevő megyei kormányhivatalok A hatósági nyilvántartásban (RADIUM program) szerepelnek: - Mennyiség - Minőség (aktivitás, aktivitás-koncentráció) - Halmazállapot 31

32 Radioaktív hulladékok definíciói, szabályozás Kiemelt nukleáris létesítmények Magyarországon: Paksi Atomerőmű KKÁT (kiégett kazetták tárolása) 2 kutatóreaktor -BKR (MTA EK AEKI) Bátaapáti (NRHT) -OR (BME NTI) Püspökszilágyi Hulladéktároló (RHFT) Izotóp Intézet Kft. A szintű izotóplaboratóriuma (ebben D = dangerous (életveszélyes) minősítésű sugárforrásokkal dolgoznak. A veszélyes szinteket a 190/2011. kormányrendelet közölte = IAEA D-values 32

33 A Paksi Atomerőmű 33

34 A Budapesti Kutatóreaktor 34

35 Izotóp Intézet Kft. A szintű izotóplaboratóriuma 35

36 Radioaktív hulladékok keletkezése * Nukleáris energiatermelés hulladékai: bányászat, ércfeldolgozás, urándúsítás, reaktorok működése, üzemi és leszerelési hulladékok * Kutatóreaktorok, gyorsítók, spallációs rendszerek hulladékai: más anyagból készült szerelvények, más technológia = részben más radioizotópok * Nukleáris robbantások, fegyverkísérletek hulladékai * Gazdasági sugárforrások: szerkezetvizsgálat, szintjelzés, besugárzó állomások * Orvosi sugárforrások: diagnosztika (in vivo, in vitro), terápia * TENORM: természetes radioaktivitás dúsulása nem nukleáris/sugaras tevékenységek következtében (Technologically Enhanced Naturally Occurring Radioactive Material) 36

37 Radioaktív hulladékok keletkezése Nukleáris energiatermelés hulladékai: Uránbányászat 238 U T=4, év, 235 U T=0, év, 232 Th T=10, év és a bomlási soraikba tartozó radionuklidok külszíni fejtés, mélységi = aknás fejtés, ISR: helyszíni kinyerés in situ recovery (ISL: helyszíni kioldás in situ leaching ) Bányászat hulladéka: Meddő, darabolt kőhulladék nagy felület: 222 Rn kibocsátása, leányelemek belélegzése lakossági többletdózist okozhat; a visszamaradó urán, tórium és leányelemeik a felszabadítási szint ( 238 U: 1 Bq/g) alatt normális hulladékként kezelhetőek. (IAEA GSR-3 szerinti bulk = nagy tömegű anyag kategória) 37

38 Uránérc feldolgozás - reaktor üzemanyag előállítása Ércőrlő és szitáló berendezés 38

39 Urán bányászata - kioldás A kibányászott, darabolt, sűrűség szerint szétválogatott ércet feltárják. savas kioldás: kénsavval (in situ is lehetséges) oxidatív kioldás CO 2 + O 2 + H 2 O -val Oxidatív eljárás ISL kivitelben: ez a legkíméletesebb a környezet számára, igen kevés hulladék marad a felszínen. 39

40 Radioaktív hulladékok eredete - ISR uránbányászati technológia Gáz halmazállapotú oxigént és CO2-t adagolnak a besajtolt vízhez - az eljárás ugyanazon az elven működik, mint az urán természetes oldódása. Mivel az oxigénes víz az uránon (UO 2 2+ formában) kívül más elemeket alig vagy egyáltalán nem képes oldani, ezért a képződő hulladék mennyisége igen csekély és nem radioaktív. 40

41 Urán( 235 U)-tartalmú reaktorfűtőelem előállítása Feltárt kőzetből kapott oldat feldolgozása: Lecsapás UO 2 és UO 3 keveréke = U 3 O 8 uránoxid yellow cake (sárga por), a dúsítóba szállítják, ahol gáznemű UF 6 -tá alakítják. 235 U U (dúsított): 238 U(szegényített): fegyvergyártás főként UO 2 -ként kerül a fűtőelemekbe Nehézvizes (D 2 O-val moderált) reaktor (HWR): természetes urán elegendő a fűtőelemekben, nem kell dúsítás Urán: toxikus nehézfém, sejtméreg vesepusztító Határérték vízben: 10 µg/l (ennek aktivitása csak 0,13 Bq, a mentességi szint 7700-ad része) 41

42 Uránérc dúsítás Incident update at Gronau uranium enrichment facility 27 January 2010 As reported, there was an incident on Thursday at the URENCO uranium enrichment facility in Gronau, Germany, during which there was a minor release of uranium hexafluoride that was contained within the container preparation area. Since the air in the container preparation room is filtered, there was no release to the environment or to the local population. URENCO constantly monitors the radioactivity within the building and on site. In addition, control measurements were taken immediately after the accident. The URENCO employee involved was transferred to the nuclear medical department of Dusseldorf University Clinic in Jülich on Monday, after having received first aid in Münster. According to the doctors treating him, his general condition is very good. 42

43 Az urán és a tórium bomlási sora a radonig a meddő kőzet aktivitását okozzák 43

44 Radon Rn leányelemei 222 Rn α (5,5 MeV) T=3,8 d 218 Po α (6,0 MeV) T=3,1 m 214 Pb (185 kev 1,02 MeV) T=26,8 m (295, 352 kev 2 intenzív gamma-vonal) 214 Bi (526 kev 1,26 MeV) T=19,9 m (76 kev.2,45 MeV 14 gamma-vonal) 214 Po α (7,69 MeV) T=164 µs Pb, (kis energiájú) T=22 y 210 Bi (300 kev 1,16 MeV) T=5,01 d 210 Po α(4,5-5,3 MeV) T=138 d 206 Pb - STABIL 44

45 Radon 220 Rn ( toron ) leányelemei 220 Rn α (6,3 MeV) T= 54 s 216 Po α (6,8 MeV) T = 0,15 s 212 Pb (100 kev) T = 10,6 h (87 kev 300 KeV) 212 Bi α (6,3 MeV) 36% (2,25 MeV) 64% (70 kev 1,8 MeV) T = 60,6 m 208 Tl ( keV) T = 3,05 m (84 kev 2,6 MeV) 212 Po α (8,8 MeV) T = 0,3 µs 208 Pb - STABIL 45

46 Az uránbányászat hulladékainak vizsgálata Urán, tórium: gyengén radioaktívak, nem nukleáris módszerekkel érzékenyebben analizálhatók Rövidebb felezési idejű leányelemek: α- és γ-spektrometria, előbbihez a minták feldolgozása (elválasztása) szükséges 46

47 Visszamaradt környezetszennyezés az uránbányászat után - Pécs környéki uránbánya területének helyreállítása Ezt és a következő 4 képet Dr. Várhegyi Andrástól (Mecsek Öko Zrt.) kaptam. 47

48 Uránérc-feldolgozás - zagytározók rekultivációja: Tájrendezés Morfológia kialakítás, felületstabilizálás Beszivárgást minimalizáló fedés Felszíni vízrendezés, vízelvezetés Hosszú távú stabilitás elérése 48

49 Geotechnika és rekultiváció... Az iszapmag konszolidációja a vízleengedés után 49

50 Iszapmag felszínének előkészítése Geotechnika és rekultiváció... 50

51 Radioaktív hulladékok eredete Nukleáris energiatermelés - reaktorok A fűtőelemek anyagának aktivációs és spallációs termékei (termikus illetve gyors neutronokkal ütközve keletkeznek) Hasadási termékek a fűtőanyag indukált hasadásából Szerkezeti anyagok neutronaktivációs termékei ( korróziós termékek) A primervízben lévő anyagokból keletkező radioaktív anyagok 51

52 Radioaktív hulladékok eredete Analízis hulladékok minősítéséhez, tárolás/kezelés meghatározásához Kulcsnuklid (key nuclide) kiválasztásának feltételei nehezen mérhető (difficult-to-measure = DTM) nuklidokhoz: Elég hosszú felezési idő (végig követhető a hulladék pályája ) Elemezhetőség γ-spektrum alapján (nem kell kinyitni a lezárt tárolóedényt) Elegendően nagy mennyiség (kis mérési hiba, jó kimutathatóság) Kémiai viselkedése egyezzék meg a csomag többi komponensével 52

53 Radioaktív hulladékok eredete Reaktorok a fűtőelemek anyagának aktivációs termékei Urán és transzurán (Z>92, TRU) aktivációs és spallációs termékek Termikus neutronok: magreakció aktivációval átmeneti mag -on keresztül (tömegszámnövekedés) Gyors neutronok: magreakció rugalmatlan szórással: spalláció - tömegszám-csökkenés; általában (n,2n) vagy (n,α) reakciók 53

54 Radioaktív hulladékok eredete Reaktorok transzurán aktivációs termékek Aktiválás termikus neutronokkal 238 U (n,γ) 239 U (T=23 perc) β Np (T=2,4 nap) β Pu (T=24110 év) α 239 Pu (n,γ) 240 Pu (T=6563 év) α 240 Pu (n,γ) 241 Pu (T=14,4 év) β Am (T=432 év) α,γ kulcsnuklid a nehezen mérhető (DTM) TRU nuklidokhoz 239 Pu, 241 Pu indukált hasadásra képesek α-sugárzó Pu, Am, Np nuklidok: DCF (belégzés) ~10-5 Sv/Bq DCF (lenyelés) ~10-7 Sv/Bq 54

55 Radioaktív hulladékok eredete Reaktorok transzurán aktivációs termékek Aktiválás gyors neutronokkal (spalláció) 238 U (n,2n) 237 U (T=6,8 nap) β Np (T=2, év) α 237 Np (n,γ) 238 Np (T=2,1 nap) β Pu (T=87,7 év) α 238 Pu/ 239 Pu arány: reaktor-ujjlenyomat 238 Pu DCF: kb. mint 239 Pu 55

56 Radioaktív hulladékok eredete Reaktorok transzurán aktivációs termékek (PWR V-213 = VVER 440 reaktortípus) kg/(gw év) T 1/2 (év) 56

57 Radioaktív hulladékok eredete Reaktorok hasadási termékek Hasadási hozamok különböző hasadóanyagoknál 57

58 Radioaktív hulladékok eredete Reaktorok hasadási termékek 235 U : Hozamtört rendszám összefüggés Az izobár sorozatok tagjai β - -bomlások révén keletkeznek egymásból 58

59 Radioaktív hulladékok hasadási termékek Nemesgázok (Xe, Kr) Radiojódok (I) Egyéb, adott kémiai formában illékony elemek (Cs, Sr, Ru stb.) Egyéb hasadási termékek 59

60 Radioaktív hulladékok hasadási termékek - nemesgázok Nem köthetők meg a reaktor gáztalanító egységéből a környezetbe kerülnek (csekély retenció aktív szénen atomméret-függő) 133 Xe, 135 Xe, 88 Kr: rövid felezési idejűek 85 Kr T=10,76 év csak 0,22 % hozam Paksi Atomerőmű (PAE) kibocsátási korlátja: Kr 46000, Xe TBq/év (kibocsátva: <10 TBq/év) A fűtőelemek inhermetikusságának indikátorai, de nem dúsíthatók szűrőkön Csernobili kibocsátási hányad: leltár ~100 %-a 60

61 Radioaktív hulladékok hasadási termékek - radiojódok Illékonyak (gázneműek, vízben jól oldódnak, reaktívak) Rövid felezési idejűek: 131 I, 132 I, 133 I, 134 I, 135 I 131 I T= 8,04 nap, DCF (lenyelés) Sv/Bq β- és γ-sugárzók hozamuk 3 7 % - inhermetikusság indikátorai, arányuk kor- és sebességfüggő elválasztással, szűrőn dúsítva mérhetők by-pass (nyomáscsökkentés után vett) primervíz mintákból 129 I T=15,7 millió év hozam <1%, lágy β- és γ-sugárzó DCF Sv/Bq Transzmutációs célpont neutronaktiválás 130 I 61

62 Radioaktív hulladékok hasadási termékek - radiojódok Kibocsátási korlát ( 131 I) a három lehetséges kémiai formára eltérő az erősen különböző DCF-ek miatt Csernobili kibocsátási hányad: leltár ~ 60 %-a Folyamatos üzemi kibocsátás (PAE): elemi jód (impregnált aktív szén szűrőn marad) korlát 1 TBq/év, kibocsátás: 2 GBq/év; jodid (aeroszolhoz kötött) korlát 4 TBq/év, kibocsátás: 2 GBq/év, CH 3 I (nagy térfogatú aktív szén szűrőn marad) korlát 95 TBq/év, kibocsátás: 32 GBq/év 62

63 Radioaktív hulladékok hasadási termékek egyéb illékony nuklidok Cézium- és stroncium-izotópok 137 Cs T=30 év, hozam ~6 %, β- és γ-sugárzó kulcsnuklid DCF (lenyelés) ~10-8 Sv/Bq 135 Cs T=2, év tiszta β-sugárzó hozam ~7 % 134 Cs T= 2,06 év nem közvetlen hasadási termék! A 134-es sorozat lezáró nuklidja a 134 Xe. A 133-as sorozat lezáró nuklidja a 133 Cs ez felhalmozódik és felaktiválódik. A 134 Cs/ 137 Cs arány reaktor-ujjlenyomat Paksi vízkibocsátásban átlagosan 31:100 Csernobili kibocsátási hányad: leltár ~ 30 %-a PAE légnemű (aeroszol) korlát: 1 TBq/év kibocsátás: 8 MBq/év 63

64 Radioaktív hulladékok hasadási termékek egyéb illékony nuklidok 90 Sr T=28,9 év, tiszta β - -sugárzó, hozam: 4,5 % DCF (belégzés, lenyelés)~ Sv/Bq csontkereső PAE korlát: levegő 0,4 TBq/év kibocs.: 0,2 MBq/év víz: 2 TBq/év kibocs.: 1 MBq/év Csernobili kibocsátási hányad: leltár ~5%-a 90 Sr/ 137 Cs arány a paksi vízkibocsátásban: 4: Sr, 91 Sr, 92 Sr rövid felezési idejűek 103 Ru, 106 Ru: Ruthenium release increases as oxidised gaseous species RuO 3 and RuO 4 are formed. A significant part of the released ruthenium is then deposited on reactor coolant system piping. However, in the presence of steam and aerosol particles, a substantial amount of ruthenium may be released as gaseous RuO 4 into the containment atmosphere október: 106 Ru-kibocsátás valahol Oroszországban valószínűleg orvosi izotópgyártásból; egész Európában mérhető volt a levegőben c~µbq/m 3 mbq/m 3 64

65 Radioaktív hulladékok hasadási termékek egyéb nuklidok A leghosszabb felezési idejűek: 99 Tc T= év, tiszta β - -sugárzó, hozam: 6 % - anionként (TcO 4- ) oldódik; DCF (belégzés, lenyelés) ~10-9 Sv/Bq Transzmutációs célpont: neutronaktiválás 100 Tc 93 Zr T=1,53 millió év, tiszta β - -sugárzó hozam: 6 % 107 Pd T=6,5 millió év, tiszta β - -sugárzó hozam: 1 % 65

66 Radioaktív hulladékok korróziós termékek reaktorokban A reaktorzóna körüli szerkezeti anyagok = vas (acél) és cirkónium aktivációs termékei előbbi revés szerkezetű oxidokat képez tranziens üzemi szakaszokban leválik, szétterjed a primervízzel és zónatisztítás során a levegőbe is jut. Aktivációs termékek termikus neutronokkal: 55 Fe T=2,73 év EC DCF ~10-10 Sv/Bq 60 Co T=5,27 év β - és γ-sugárzó kulcsnuklid 59 Ni T=76000 év tiszta β - sugárzó 63 Ni T=100 év tiszta β - sugárzó 66

67 Radioaktív hulladékok korróziós termékek reaktorokban Aktivációs termékek gyors neutronokkal 54 Mn ( 54 Fe-ből) EC + γ-sugárzó T=312 nap 58 Co ( 59 Co-ból) - EC + γ-sugárzó T=71 nap 58 Co/ 60 Co-arány: reaktor-ujjlenyomat Az 1. paksi blokknál: 110m Ag T=252 nap β- és γ-sugárzó 108m Ag T= 418 év EC + γ-sugárzó PAE első üzemelési éveiben a környezetben is megjelentek igen kis mennyiségben. 67

68 Szerkezeti anyagok aktivációs termékei reaktorokban Beton = cement + kavics + víz + adalékok Portlandcement = 75-80% mészkő (kalciumkarbonát) és 20-25% agyag (kalcium-alumínium-szilikát) zsugorodásig történt égetésével (kalcinálás >1400 o C-on) előállított klinker + kötéslassító (néhány százalék) gipszkő. További adalékok: lösz, pernye, kohósalak, homok, trasz = őrölt vulkáni tufa, szerpentin = hidratált magnézium-szilikát Beton: reaktor-építőanyag; nehéz adalékokkal (bárium, vas, ólom stb.) a biológiai védelem anyaga. Mind a gamma-, mind a neutronsugárzást árnyékolja, utóbbit a kötött kristályvíz révén. Kémiai alkotórészek: SiO 2, Al 2 O 3, CaO, FeO stb. Szilárdulás = Hidratáció (kristályosodás víz felvételével, exoterm folyamat) Klinker + Víz = Hidrátok (kristályvizes ionkristályok) + mész = Kalcium-alumínium-szilikátok, kalcium-szilikát-hidrátok és kalcium-hidroxid. A szilárdulás (kötés) során a kalcium-oxidból 15-20% mész keletkezik, ami a levegővel érintkezve kalcium-karbonáttá alakul. 68

69 Szerkezeti anyagok aktivációs termékei reaktorokban Biológiai védelem többféle készítésű beton, anyaga a reaktor működése során felaktiválódik 41 Ca T= év (EC, DCF ~10-10 Sv/Bq), 45 Ca T=163 nap (β -, DCF ~10-9 Sv/Bq) Fe, Mn-tartalomból: lásd korróziós termékek ujjlenyomat : ritka földfémek 152 Eu, 154 Eu, 155 Eu - β - - és γ-sugárzók, több éves felezési idejűek hasadási termékek is lehetnek! Gd, Sm: extrém nagy neutronbefogási hatáskeresztmetszet 69

70 Víz és vízkémiai adalékanyagok anyagok aktivációs termékei reaktorokban 3 H hasadási termék (0,01 % hozam), D neutron-aktivációjából, 10 B (n,2α) reakcióból; T 1/2 =12,3 év DCF ~10-11 lágy β - -sugárzó Gyakorlatilag elválaszthatatlan a víztől. 14 C 17 O (n, α) és több más magreakcióból; T=5730 év DCF ~10-10 lágy β - - sugárzó 3 H és 14 C nemcsak a vízben, hanem a fűtőelemekben is jelen vannak. Rövid felezési idejű különleges nuklidok 18 F, 13 N (pozitronbomlók), 16 N (E γ = 6,13 MeV) Adalékanyagokból: 24 Na, 42 K Primervíz összes aktivitása ~10 7 Bq/L 70

71 14 C keletkezése nukleáris reaktorokban Részlet Molnár Péter (RHK) szakdolgozatából 71

72 Víz és adalékanyagok anyagok aktivációs termékei reaktorokban Paksi kibocsátás: 3 H: főként HTO légnemű: ki 3 TBq/év - korlát TBq/év folyékony: ki 21 TBq/év - korlát TBq/év 14 C: CH 4, más szerves szénvegyületek, CO 2 légnemű: korlát TBq/év - ki: 0,6 TBq/év Légtérből, vízben oldott levegőből: 41 Ar légnemű kibocsátás 8 TBq/év korlát TBq/év 72

73 Energiatermelő reaktorok leszerelési hulladéka Greifswald (volt NDK): 5 +3 VVER-440 reaktorblokk leszerelése (1991-ben kezdődött) Nuklidvektor a telephely egészére : 60 Co 17% - korróziós termék 137 Cs 2% - hasadási termék 55 Fe 71% - korróziós termék 63 Ni 10% - korróziós termék 73

74 Radioaktív hulladékok eredete 2/a Kutatóreaktorok Kisebb reaktorok : reaktorszerelvények szerkezeti anyaga Al; nyitott ( swimming pool ) víztér Primervízben: 27 Al(n,γ) 28 Al és 27 Al(n,α) 24 Na T=15 óra oldott levegőből: 40 Ar(n,γ) 41 Ar T=1,8 óra folyamatos kibocsátás BME OR kibocsátási korlát: 0,8 TBq/év tényleges kibocsátás: 0,03 TBq/év 74

75 Radioaktív hulladékok eredete 2/b Spallációs berendezések Ólom-, higany- vagy volfram (ESS) target neutronforrás felgyorsult protonok ütköztetésével. Spallációval keletkező hosszú felezési idejű nuklidok: 53 Mn (T=3,74 millió év, EC Auger-elektronok) 60 Fe (T=1,5 millió év, β -, DCF (L) Sv/Bq) 146 Sm (T=103 millió év, α, DCF (L) Sv/Bq) 154 Dy (T=3 millió év, α, DCF (L) Sv/Bq) 209 Po, 210 Po: LBE (ólom-bizmut-eutektikum) targetben keletkeznek, T=102, ill. 0,38 év, α, DCF (L) Sv/Bq) III. 8. Az 1. dolgozat anyaga 75

Radioaktív hulladékok (Fizikus B.Sc.) Radioaktívhulladék gazdálkodás (Gépész - energetikus B. Sc.)

Radioaktív hulladékok (Fizikus B.Sc.) Radioaktívhulladék gazdálkodás (Gépész - energetikus B. Sc.) Radioaktív hulladékok (Fizikus B.Sc.) Radioaktívhulladék gazdálkodás (Gépész - energetikus B. Sc.) Tartalom: 1. A radioaktív hulladékokkal kapcsolatos sugárvédelmi ismeretek rövid összefoglalása 2. A radioaktív

Részletesebben

Magyar Nukleáris Társaság Környezetvédelmi Szekció

Magyar Nukleáris Társaság Környezetvédelmi Szekció Magyar Nukleáris Társaság Környezetvédelmi Szekció Az atomenergetikai hulladékok elhelyezése 2010. április 21. 2010. április 21. MNT Környezetvédelmi Szekció 1 Nukleáris létesítmények leszerelésének legújabb

Részletesebben

Radioaktív hulladékok osztályozása (javaslat a szabályozás fejlesztésére)

Radioaktív hulladékok osztályozása (javaslat a szabályozás fejlesztésére) Radioaktív hulladékok osztályozása (javaslat a szabályozás fejlesztésére) Sebestyén Zsolt Nukleáris biztonsági felügyelő 1 Tartalom 1. Feladat forrása 2. VLLW kategória indokoltsága 3. Az osztályozás hazai

Részletesebben

Atomerőmű. Radioaktívhulladék-kezelés

Atomerőmű. Radioaktívhulladék-kezelés Atomerőmű. Radioaktívhulladék-kezelés Lajos Máté lajos.mate@osski.hu OSSKI Bővített fokozatú sugárvédelmi tanfolyam 2016. október 13. Országos Közegészségügyi Központ (OKK) Országos Sugárbiológiai és Sugáregészségügyi

Részletesebben

Radioaktív elemek környezetünkben: természetes és mesterséges háttérsugárzás. Kovács Krisztina, Alkímia ma

Radioaktív elemek környezetünkben: természetes és mesterséges háttérsugárzás. Kovács Krisztina, Alkímia ma Radioaktív elemek környezetünkben: természetes és mesterséges háttérsugárzás Tartalom bevezetés, alapfogalmak természetes háttérsugárzás mesterséges háttérsugárzás összefoglalás OSJER Bevezetés - a radiokémiai

Részletesebben

ATOMERÔMÛVI HULLADÉKOK KEZELÉSE 1. RÉSZ Fábián Margit MTA Energiatudományi Kutatóközpont

ATOMERÔMÛVI HULLADÉKOK KEZELÉSE 1. RÉSZ Fábián Margit MTA Energiatudományi Kutatóközpont ATOMERÔMÛVI HULLADÉKOK KEZELÉSE 1. RÉSZ Fábián Margit MTA Energiatudományi Kutatóközpont Az atomenergia-termelés jelenleg két fontos kérdést vet fel, amelyekre pozitív választ kell találni: az egyik a

Részletesebben

Sugárvédelem nukleáris létesítményekben. Átfogó [fenntartó] SVK Osváth Szabolcs (OKK-OSSKI-LKSO)

Sugárvédelem nukleáris létesítményekben. Átfogó [fenntartó] SVK Osváth Szabolcs (OKK-OSSKI-LKSO) Sugárvédelem nukleáris létesítményekben Átfogó [fenntartó] SVK Osváth Szabolcs (OKK-OSSKI-LKSO) Tartalom Ki mit nevez nukleárisnak? Hasadóanyagok Neutronos láncreakció, neutronsugárzás Felaktiválódás,

Részletesebben

Radioaktív hulladékok (Fizikus B.Sc.) Radioaktívhulladék gazdálkodás (Gépész - energetikus B. Sc.)

Radioaktív hulladékok (Fizikus B.Sc.) Radioaktívhulladék gazdálkodás (Gépész - energetikus B. Sc.) Radioaktív hulladékok (Fizikus B.Sc.) Radioaktívhulladék gazdálkodás (Gépész - energetikus B. Sc.) Tartalom: 1. A radioaktív hulladékokkal kapcsolatos sugárvédelmi ismeretek rövid összefoglalása 2. A radioaktív

Részletesebben

IVÓVIZEK RADIOANALITIKAI VIZSGÁLATA

IVÓVIZEK RADIOANALITIKAI VIZSGÁLATA IVÓVIZEK RADIOANALITIKAI VIZSGÁLATA Ádámné Sió Tünde, Kassai Zoltán ÉTbI Radioanalitikai Referencia Laboratórium 2015.04.23 Jogszabályi háttér Alapelv: a lakosság az ivóvizek fogyasztása során nem kaphat

Részletesebben

RADIOAKTÍV HULLADÉK; OSZTÁLYOZÁS, KEZELÉS ÉS ELHELYEZÉS. (Dr. Kanyár Béla, SE Sugárvédelmi Szolgálat)

RADIOAKTÍV HULLADÉK; OSZTÁLYOZÁS, KEZELÉS ÉS ELHELYEZÉS. (Dr. Kanyár Béla, SE Sugárvédelmi Szolgálat) SE Bővített fokozatú sugárvédelmi tanfolyam, 2005 márc. 21-24 RADIOAKTÍV HULLADÉK; OSZTÁLYOZÁS, KEZELÉS ÉS ELHELYEZÉS (Dr. Kanyár Béla, SE Sugárvédelmi Szolgálat) Radioaktív hulladéknak tekinthető az a

Részletesebben

Radioaktív hulladékok biztonsága Fizikus M.Sc. képzés (1+1 kredit) Energetikai mérnöki M.Sc. képzés (1+1 kredit) 2017 ősz

Radioaktív hulladékok biztonsága Fizikus M.Sc. képzés (1+1 kredit) Energetikai mérnöki M.Sc. képzés (1+1 kredit) 2017 ősz Radioaktív hulladékok biztonsága Fizikus M.Sc. képzés (1+1 kredit) Energetikai mérnöki M.Sc. képzés (1+1 kredit) 2017 ősz 1. A radioaktív hulladékokkal közvetlenül kapcsolatos sugárvédelmi ismeretek rövid

Részletesebben

Radioaktív hulladékok biztonsága Fizikus M.Sc. képzés (3+1 kredit) Energetika M.Sc. képzés (1+1 kredit) A közös előadások fő részei

Radioaktív hulladékok biztonsága Fizikus M.Sc. képzés (3+1 kredit) Energetika M.Sc. képzés (1+1 kredit) A közös előadások fő részei Radioaktív hulladékok biztonsága Fizikus M.Sc. képzés (3+1 kredit) Energetika M.Sc. képzés (1+1 kredit) A közös előadások fő részei 1. A radioaktív hulladékokkal kapcsolatos sugárvédelmi ismeretek rövid

Részletesebben

Radioaktív hulladékok biztonsága Fizikus M.Sc. képzés (1+1 kredit) Energetikai mérnöki M.Sc. képzés (1+1 kredit) 2018 ősz

Radioaktív hulladékok biztonsága Fizikus M.Sc. képzés (1+1 kredit) Energetikai mérnöki M.Sc. képzés (1+1 kredit) 2018 ősz Radioaktív hulladékok biztonsága Fizikus M.Sc. képzés (1+1 kredit) Energetikai mérnöki M.Sc. képzés (1+1 kredit) 2018 ősz 1. A radioaktív hulladékokkal közvetlenül kapcsolatos sugárvédelmi ismeretek rövid

Részletesebben

Atomreaktorok üzemtana. Az üzemelő és leállított reaktor, mint sugárforrás

Atomreaktorok üzemtana. Az üzemelő és leállított reaktor, mint sugárforrás Atomreaktorok üzemtana Az üzemelő és leállított reaktor, mint sugárforrás Atomreaktorban és környezetében keletkező sugárzástípusok és azok forrásai Milyen típusú sugárzások keletkeznek? Melyik ellen milyen

Részletesebben

NUKLEÁRIS LÉTESÍTMÉNYEKRE VONATKOZÓ SUGÁRVÉDELMI KÖVETELMÉNYEK KORSZERŰSÍTÉSE

NUKLEÁRIS LÉTESÍTMÉNYEKRE VONATKOZÓ SUGÁRVÉDELMI KÖVETELMÉNYEK KORSZERŰSÍTÉSE NUKLEÁRIS LÉTESÍTMÉNYEKRE VONATKOZÓ SUGÁRVÉDELMI KÖVETELMÉNYEK KORSZERŰSÍTÉSE Sebestyén Zsolt, Laczkó Balázs, Ötvös Nándor, Petőfi Gábor, Tomka Péter Országos Atomenergia Hivatal Hajdúszoboszló, 2017.04.26.

Részletesebben

Sugárvédelmi feladatok az egészségügyben. Speciális munkakörökben dolgozók munkavégzésére vonatkozó általános és különös szabályok.

Sugárvédelmi feladatok az egészségügyben. Speciális munkakörökben dolgozók munkavégzésére vonatkozó általános és különös szabályok. Sugárvédelmi feladatok az egészségügyben. Speciális munkakörökben dolgozók munkavégzésére vonatkozó általános és különös szabályok. Dr. Kóbor József,biofizikus, klinikai fizikus, PTE Sugárvédelmi Szolgálat

Részletesebben

Nukleáris környezetvédelem Környezeti sugárvédelem

Nukleáris környezetvédelem Környezeti sugárvédelem Nukleáris környezetvédelem Környezeti sugárvédelem 1. Dózisfogalmak 2. Az ionizáló sugárzások egészségkárosító hatásai 3. A dózis meghatározásának mérési és számítási módszerei 4. A sugárvédelmi szabályzás

Részletesebben

A természetes és mesterséges sugárterhelés forrásai, szintjei. Salik Ádám

A természetes és mesterséges sugárterhelés forrásai, szintjei. Salik Ádám A természetes és mesterséges sugárterhelés forrásai, szintjei. Salik Ádám A természetes és mesterséges sugárterhelés forrásai Természetes eredetű Kozmikus sugárzás (szoláris, galaktikus) Kozmogén radioaktív

Részletesebben

SUGÁRVÉDELMI EREDMÉNYEK 2014-BEN

SUGÁRVÉDELMI EREDMÉNYEK 2014-BEN SUGÁRVÉDELMI EREDMÉNYEK 2014-BEN 1. BEVEZETÉS Az atomerőműben folyó sugárvédelemi tevékenység fő területei 2014-ben is a munkahelyi sugárvédelem és a nukleáris környezetvédelem voltak. A sugárvédelemmel

Részletesebben

A sugárvédelem alapjai

A sugárvédelem alapjai A sugárvédelem alapjai 1. Dózisfogalmak 2. Az ionizáló sugárzások egészséget károsító hatásai 3. Sugárvédelmi szabályozás - korlátok 4. A dózismérés sajátosságai 5. Természetes radioaktivitás 6. Radioaktív

Részletesebben

Radiojód kibocsátása a KFKI telephelyen

Radiojód kibocsátása a KFKI telephelyen Radiojód kibocsátása a KFKI telephelyen Zagyvai Péter 1, Környei József 2, Kocsonya András 1, Földi Anikó 1, Bodor Károly 1, Zagyvai Márton 1 1 2 Izotóp Intézet Kft. MTA Környezetvédelmi Szolgálat 1 Radiojód

Részletesebben

RADIOLÓGIAI FELMÉRÉS A PAKSI ATOMERŐMŰ LESZERELÉSI TERVÉNEK AKTUALIZÁLÁSÁHOZ

RADIOLÓGIAI FELMÉRÉS A PAKSI ATOMERŐMŰ LESZERELÉSI TERVÉNEK AKTUALIZÁLÁSÁHOZ Nagy Gábor SOMOS Kft., Budapest RADIOLÓGIAI FELMÉRÉS A PAKSI ATOMERŐMŰ LESZERELÉSI TERVÉNEK AKTUALIZÁLÁSÁHOZ (DIPLOMAMUNKA BEMUTATÁSA) XLII. Sugárvédelmi Továbbképző Tanfolyam Hajdúszoboszló, 2017. április

Részletesebben

A RADIOAKTÍV HULLADÉKKEZELÉS PROGRAMJA MAGYARORSZÁGON. Dr. Kereki Ferenc ügyvezető igazgató RHK Kft. 2015. 06. 02.

A RADIOAKTÍV HULLADÉKKEZELÉS PROGRAMJA MAGYARORSZÁGON. Dr. Kereki Ferenc ügyvezető igazgató RHK Kft. 2015. 06. 02. A RADIOAKTÍV HULLADÉKKEZELÉS PROGRAMJA MAGYARORSZÁGON Dr. Kereki Ferenc ügyvezető igazgató RHK Kft. 2015. 06. 02. Programjaink RHFT Püspökszilágy Paks KKÁT NRHT MKKB Kutatási helyszín Boda Kővágószőlős

Részletesebben

SUGÁRVÉDELMI EREDMÉNYEK 2016-BAN. Dr. Bujtás Tibor

SUGÁRVÉDELMI EREDMÉNYEK 2016-BAN. Dr. Bujtás Tibor SUGÁRVÉDELMI EREDMÉNYEK 2016-BAN Dr. Bujtás Tibor 1. BEVEZETÉS Az atomerőműben folyó sugárvédelemi tevékenység fő területei 2016-ban is a munkahelyi sugárvédelem és a nukleáris környezetvédelem voltak.

Részletesebben

Radioaktív hulladékok biztonsága Fizikus M.Sc. képzés (3+1 kredit) Energetika M.Sc. képzés (1+1 kredit) A közös előadások fő részei

Radioaktív hulladékok biztonsága Fizikus M.Sc. képzés (3+1 kredit) Energetika M.Sc. képzés (1+1 kredit) A közös előadások fő részei Radioaktív hulladékok biztonsága Fizikus M.Sc. képzés (3+1 kredit) Energetika M.Sc. képzés (1+1 kredit) A közös előadások fő részei 1. A radioaktív hulladékokkal kapcsolatos sugárvédelmi ismeretek rövid

Részletesebben

DÓZISMEGSZORÍTÁS ALKALMAZÁSA

DÓZISMEGSZORÍTÁS ALKALMAZÁSA DÓZISMEGSZORÍTÁS ALKALMAZÁSA Juhász László 1, Kerekes Andor 2, Ördögh Miklós 2, Sági László 2, Volent Gábor 3, Pellet Sándor 4 1 Országos Frédéric Joliot-Curie Sugárbiológiai és Sugáregészségügyi Kutató

Részletesebben

Nukleáris létesítmények leszerelése során keletkező nagymennyiségű, kisaktivitású hulladék felszabadítási eljárása (Útmutató-tervezet)

Nukleáris létesítmények leszerelése során keletkező nagymennyiségű, kisaktivitású hulladék felszabadítási eljárása (Útmutató-tervezet) Nukleáris létesítmények leszerelése során keletkező nagymennyiségű, kisaktivitású hulladék felszabadítási eljárása (Útmutató-tervezet) Zagyvai Péter [MTA EK], Juhász László [OSSKI], Pázmándi Tamás [MTA

Részletesebben

SUGÁRVÉDELMI ÉRTÉKELÉS 2012. ÉVRE

SUGÁRVÉDELMI ÉRTÉKELÉS 2012. ÉVRE SUGÁRVÉDELMI ÉRTÉKELÉS 2012. ÉVRE 1. BEVEZETÉS Az atomerőműben folyó sugárvédelemi tevékenység fő területei 2012-ben is a munkahelyi sugárvédelem és a nukleáris környezetvédelem voltak. A sugárvédelemmel

Részletesebben

Az atommag összetétele, radioaktivitás

Az atommag összetétele, radioaktivitás Az atommag összetétele, radioaktivitás Az atommag alkotórészei proton: pozitív töltésű részecske, töltése egyenlő az elektron töltésével, csak nem negatív, hanem pozitív: 1,6 10-19 C tömege az elektron

Részletesebben

Juhász László, Pázmándi Tamás, Zagyvai Péter. ELFT SVSZCS Hajdúszoboszló 2013. április 23-25.

Juhász László, Pázmándi Tamás, Zagyvai Péter. ELFT SVSZCS Hajdúszoboszló 2013. április 23-25. Hatósági útmutató: Nukleáris létesítmények leszerelése során keletkező nagy mennyiségű, kisaktivitású hulladék felszabadításához szükséges jogi háttér műszaki megalapozása Juhász László, Pázmándi Tamás,

Részletesebben

A Paksi Atomerőműből származó kiégett üzemanyag hasznosítási lehetőségei

A Paksi Atomerőműből származó kiégett üzemanyag hasznosítási lehetőségei A Paksi Atomerőműből származó kiégett üzemanyag hasznosítási lehetőségei Brolly Áron, Hózer Zoltán, Szabó Péter MTA Energiatudományi Kutatóközpont 1525 Budapest 114, Pf. 49, tel.: 392 2222 A Paksi Atomerőműben

Részletesebben

SUGÁRVÉDELMI HELYZET 2003-BAN

SUGÁRVÉDELMI HELYZET 2003-BAN 1 SUGÁRVÉDELMI HELYZET 2003-BAN 1. BEVEZETÉS Az atomerőműben folyó sugárvédelemi tevékenység fő területei 2003-ban is a munkahelyi sugárvédelem és a nukleáris környezetvédelem voltak. A sugárvédelemmel

Részletesebben

A PAKSI ATOMERŐMŰ NEM SUGÁR- VESZÉLYES MUNKAKÖRBEN FOGLALKOZTATOTT DOLGOZÓI ÉS LÁTOGATÓI SUGÁRTERHELÉSE

A PAKSI ATOMERŐMŰ NEM SUGÁR- VESZÉLYES MUNKAKÖRBEN FOGLALKOZTATOTT DOLGOZÓI ÉS LÁTOGATÓI SUGÁRTERHELÉSE A PAKSI ATOMERŐMŰ NEM SUGÁR- VESZÉLYES MUNKAKÖRBEN FOGLALKOZTATOTT DOLGOZÓI ÉS LÁTOGATÓI SUGÁRTERHELÉSE Kerekes Andor, Ozorai János, Ördögh Miklós, + Szabó Péter SOM System Kft., + PA Zrt. Bevezetés, előzmények

Részletesebben

A radioaktív hulladékokról

A radioaktív hulladékokról A radioaktív hulladékokról Dr. Kereki Ferenc ügyvezető igazgató RHK Kft. Miskolc, 2013. november 29. Radioaktív hulladékok forrásai Radioaktív izotópok széleskörű felhasználása (pl.: nukleáris energetika,

Részletesebben

SUGÁRVÉDELMI EREDMÉNYEK 2007-BEN

SUGÁRVÉDELMI EREDMÉNYEK 2007-BEN SUGÁRVÉDELMI EREDMÉNYEK 2007-BEN 1. BEVEZETÉS Az atomerőműben folyó sugárvédelemi tevékenység fő területei 2007-ben is a munkahelyi sugárvédelem és a nukleáris környezetvédelem voltak. A sugárvédelemmel

Részletesebben

Izotóp geológia: Elemek izotópjainak használata geológiai folyamatok értelmezéséhez.

Izotóp geológia: Elemek izotópjainak használata geológiai folyamatok értelmezéséhez. Radioaktív izotópok Izotópok Egy elem különböző tömegű (tömegszámú - A) formái; Egy elem izotópjainak a magjai azonos számú protont (rendszám - Z) és különböző számú neutront (N) tartalmaznak; Egy elem

Részletesebben

Nagy érzékenyégű módszerek hosszú felezési idejű nehéz radioizotópok analitikájában. Vajda N., Molnár Zs., Bokori E., Groska J., Mácsik Zs., Széles É.

Nagy érzékenyégű módszerek hosszú felezési idejű nehéz radioizotópok analitikájában. Vajda N., Molnár Zs., Bokori E., Groska J., Mácsik Zs., Széles É. RADANAL Kft. www.radanal.kfkipark.hu MTA Izotópkutató Intézet www.iki.kfki.hu Nagy érzékenyégű módszerek hosszú felezési idejű nehéz radioizotópok analitikájában Vajda N., Molnár Zs., Bokori E., Groska

Részletesebben

Sugárvédelem alapjai. Nukleáris alapok. Papp Ildikó

Sugárvédelem alapjai. Nukleáris alapok. Papp Ildikó Sugárvédelem alapjai Nukleáris alapok Papp Ildikó 2 Emlékeztető A sugárzások és az anyagi közeg kölcsönhatása Dózisfogalmak 3 Pici történelem 1896: Henri Becquerel uránsók Azt találta, hogy sugárzás intenzitása

Részletesebben

A sugárvédelem alapelvei. dr Osváth Szabolcs Fülöp Nándor OKK OSSKI

A sugárvédelem alapelvei. dr Osváth Szabolcs Fülöp Nándor OKK OSSKI A sugárvédelem alapelvei dr Osváth Szabolcs Fülöp Nándor OKK OSSKI A sugárvédelem célja A sugárvédelem célkitűzései: biztosítani hogy determinisztikus hatások ne léphessenek fel, és hogy a sztochasztikus

Részletesebben

NUKLEÁRIS LÉTESÍTMÉNYEK LÉGNEMŰ 14C KIBOCSÁTÁSÁNAK MÉRÉSE EGYSZERŰSÍTETT LSC MÓDSZERREL

NUKLEÁRIS LÉTESÍTMÉNYEK LÉGNEMŰ 14C KIBOCSÁTÁSÁNAK MÉRÉSE EGYSZERŰSÍTETT LSC MÓDSZERREL NUKLEÁRIS LÉTESÍTMÉNYEK LÉGNEMŰ 14 C KIBOCSÁTÁSÁNAK MÉRÉSE EGYSZERŰSÍTETT LSC MÓDSZERREL Bihari Árpád Molnár Mihály Janovics Róbert Mogyorósi Magdolna 14 C képződése és jelentősége Neutron indukált magreakció

Részletesebben

ÉRTELMEZŐ INFORMÁCIÓK ÉS MEGHATÁROZÁSOK A SUGÁRVÉDELEMBEN

ÉRTELMEZŐ INFORMÁCIÓK ÉS MEGHATÁROZÁSOK A SUGÁRVÉDELEMBEN ÉRTELMEZŐ INFORMÁCIÓK ÉS MEGHATÁROZÁSOK A SUGÁRVÉDELEMBEN ALARA-elv A sugárveszélyes munkahelyen foglalkoztatott személyek sugárterhelését az ésszerűen elérhető legalacsonyabb szinten kell tartani a gazdasági

Részletesebben

Izotóp geológia: Elemek izotópjainak használata geológiai folyamatok értelmezéséhez.

Izotóp geológia: Elemek izotópjainak használata geológiai folyamatok értelmezéséhez. Radioaktív izotópok Izotópok Egy elem különböző tömegű (tömegszámú - A) formái; Egy elem izotópjainak a magjai azonos számú protont (rendszám - Z) és különböző számú neutront (N) tartalmaznak; Egy elem

Részletesebben

9. A felhagyás környezeti következményei (Az atomerőmű leszerelése)

9. A felhagyás környezeti következményei (Az atomerőmű leszerelése) 9. A felhagyás környezeti következményei (Az atomerőmű leszerelése) 9. fejezet 2006.02.20. TARTALOMJEGYZÉK 9. A FELHAGYÁS KÖRNYEZETI KÖVETKEZMÉNYEI (AZ ATOMERŐMŰ LESZERELÉSE)... 1 9.1. A leszerelés szempontjából

Részletesebben

A kis és közepes aktivitású radioaktív hulladékok elhelyezése és tárolása

A kis és közepes aktivitású radioaktív hulladékok elhelyezése és tárolása A kis és közepes aktivitású radioaktív hulladékok elhelyezése és tárolása Eleso Denis Környezettan alapszakos hallgató Témavezető: Kiss Ádám Egyetemi tanár A radioaktív anyag a természetben előforduló

Részletesebben

Nemzeti Népegészségügyi Központ Sugárbiológiai és Sugáregészségügyi Főosztály

Nemzeti Népegészségügyi Központ Sugárbiológiai és Sugáregészségügyi Főosztály Nemzeti Népegészségügyi Központ Sugárbiológiai és Sugáregészségügyi Főosztály Bővített fokozatú sugárvédelmi tanfolyam 2019. március 18-21. Szóbeli és írásbeli vizsga napja: 2019. március 21. Képzési idő:

Részletesebben

ÁTTEKINTÉS A SUGÁRVÉDELEM SZABÁLYOZÁS AKTUÁLIS HELYZETÉRŐL

ÁTTEKINTÉS A SUGÁRVÉDELEM SZABÁLYOZÁS AKTUÁLIS HELYZETÉRŐL ÁTTEKINTÉS A SUGÁRVÉDELEM SZABÁLYOZÁS AKTUÁLIS HELYZETÉRŐL Vincze Árpád Országos Atomenergia Hivatal 1 Tartalom NAÜ Biztonsági Szabályzatok Sugárforrások alkalmazása 2013/59/EURATOM irányelv (EU BSS) Átültetés

Részletesebben

Országos Onkológiai Intézet, Sugárterápiás Centrum 2. Országos Onkológiai Intézet, Nukleáris Medicina Osztály 4

Országos Onkológiai Intézet, Sugárterápiás Centrum 2. Országos Onkológiai Intézet, Nukleáris Medicina Osztály 4 99m Tc-MDP hatására kialakuló dózistér mérése csontszcintigráfia esetén a beteg közvetlen közelében Király R. 1, Pesznyák Cs. 1,2,Sinkovics I. 3, Kanyár B. 4 1 Országos Onkológiai Intézet, Sugárterápiás

Részletesebben

A Bátaapáti kis és közepes aktivitású radioaktív hulladéktároló üzemeltetés előtti környezeti felmérése

A Bátaapáti kis és közepes aktivitású radioaktív hulladéktároló üzemeltetés előtti környezeti felmérése A Bátaapáti kis és közepes aktivitású radioaktív hulladéktároló üzemeltetés előtti környezeti felmérése Janovics R. 1, Bihari Á. 1, Major Z. 1, Molnár M. 1, Mogyorósi M. 1, Palcsu L. 1, Papp L. 1, Veres

Részletesebben

Nukleáris hulladékkezelés. környezetvédelem

Nukleáris hulladékkezelés.  környezetvédelem Nukleáris hulladékkezelés http://oktatas.ch.bme.hu/oktatas/konyvek/fizkem/kornymern/nukleáris környezetvédelem A felhasználási terület meghatározza - a radioaktív izotópok fajtáját, - mennyiségét és -

Részletesebben

Első magreakciók. Targetmag

Első magreakciók. Targetmag Magreakciók 7 N 14 17 8 7 N(, p) 14 O 17 8 O Első magreakciók p Targetmag 30 Al n P 27 13, 15. Megmaradási elvek: 1. a nukleonszám 2. a töltés megmaradását. 3. a spin, 4. a paritás, 5. az impulzus, 6.

Részletesebben

Vaskor Dóra Környezettan alapszakos hallgató. Témavezető: Kiss Ádám egyetemi tanár

Vaskor Dóra Környezettan alapszakos hallgató. Témavezető: Kiss Ádám egyetemi tanár Vaskor Dóra Környezettan alapszakos hallgató Témavezető: Kiss Ádám egyetemi tanár Háttérsugárzás Természet része Nagyrészt természetes eredetű (radon, kozmikus, Föld, táplálék) Mesterséges (leginkább orvosi

Részletesebben

Radioaktív izotópok előállítása. Általános módszerek

Radioaktív izotópok előállítása. Általános módszerek Radioaktív izotópok előállítása Általános módszerek Természetes radioaktív izotópok kinyerése U-238 Th-234 Pa-234 U-234 Th-230 Ra-226 Rn-222 4,5e9 év 24,1 nap 1,2 min 2,5e5 év 8e4 év 1620 év 3,825 nap

Részletesebben

A magyarországi 106 Ru mérési eredmények értékelése

A magyarországi 106 Ru mérési eredmények értékelése A magyarországi Ru mérési eredmények értékelése Jakab Dorottya 1 (jakab.dora@energia.mta.hu), Endrődi Gáborné 1, Kapitány Sándor 2, Kocsonya András 1, Pántya Annamária 1, Pázmándi Tamás 1, Zagyvai Péter

Részletesebben

Radioaktív izotópok a környezetben

Radioaktív izotópok a környezetben Radioaktív izotópok a környezetben Eredet Természetes bomlási sorok Radioaktív izotópok Anyaelemek: 235 U, 238 U, and 232 Th Hosszabb életű leányelemek és azok leányelemei: 226 Ra, 210 Pb, 210 Bi és 210

Részletesebben

Szabályozás. Alapkezelő: Országos Atomenergia Hivatal Befizetők: a hulladék termelők Felügyelet: Nemzeti Fejlesztési Miniszter

Szabályozás. Alapkezelő: Országos Atomenergia Hivatal Befizetők: a hulladék termelők Felügyelet: Nemzeti Fejlesztési Miniszter PURAM Dr. Kereki Ferenc Ügyvezető igazgató RHK Kft. Szabályozás Az Atomenergiáról szóló 1996. évi CXVI. Tv. határozza meg a feladatokat: 1. Radioaktív hulladékok elhelyezése 2. Kiégett fűtőelemek tárolása

Részletesebben

Radioaktív hulladékok és besorolásuk

Radioaktív hulladékok és besorolásuk Radioaktív hulladékok és besorolásuk Radioaktív hulladéknak azokat a radioaktivitást tartalmazó anyagokat tekintjük, amelyek további felhasználásra már nem alkalmasak, illetve amelyek felhasználójának,

Részletesebben

Ionizáló sugárzások dozimetriája

Ionizáló sugárzások dozimetriája Ionizáló sugárzások dozimetriája A becsült átlagos évi dózis természetes és mesterséges forrásokból 3.6 msv. környezeti foglalkozási katonai nukleáris ipari orvosi A terhelés megoszlása a források között

Részletesebben

Az ionizáló sugárzások előállítása és alkalmazása

Az ionizáló sugárzások előállítása és alkalmazása Az ionizáló sugárzások előállítása és alkalmazása Dr. Voszka István Semmelweis Egyetem Biofizikai és Sugárbiológiai Intézet Wilhelm Conrad Röntgen 1845-1923 Antoine Henri Becquerel 1852-1908 Ionizáló sugárzások

Részletesebben

Dozimetriai alapfogalmak. Az ionizáló sugárzás mérése

Dozimetriai alapfogalmak. Az ionizáló sugárzás mérése Dozimetriai alapfogalmak. Az ionizáló sugárzás mérése A DÓZISFOGALOM FEJLŐDÉSE A sugárzás mértékét számszerűen jellemző mennyiségek ERYTHEMA DÓZIS: meghatározott sugárminőséggel (180 kv, 1 mm Al szűrés),

Részletesebben

A nukleáris üzemanyagciklus

A nukleáris üzemanyagciklus Zagyvai Péter Kókai Zsófia Hózer Zoltán Breitner Dániel Fábián Margit Török Szabina Börcsök Endre A nukleáris üzemanyagciklus radioaktív hulladékai Egyetemi jegyzet Magyar Tudományos Akadémia Energiatudományi

Részletesebben

Radioaktív hulladékok kezelésére vonatkozó szabályozás kiegészítése

Radioaktív hulladékok kezelésére vonatkozó szabályozás kiegészítése Radioaktív hulladékok kezelésére vonatkozó szabályozás kiegészítése TS Enercon Kft. Takáts Ferenc Baksay Attila TSO szeminárium, Budapest 2018. június 5. Feladat Országos Atomenergia Hivatal 2017.08.17-én

Részletesebben

Radioaktivitás biológiai hatása

Radioaktivitás biológiai hatása Radioaktivitás biológiai hatása Dózis definíciók Hatások Biofizika előadások 2013 december Orbán József PTE ÁOK Biofizikai Intézet A radioaktív sugárzás elleni védekezés 3 pontja Minimalizált kitettségi

Részletesebben

Radioaktív lakótársunk, a radon. Horváth Ákos ELTE Atomfizikai Tanszék december 6.

Radioaktív lakótársunk, a radon. Horváth Ákos ELTE Atomfizikai Tanszék december 6. Radioaktív lakótársunk, a radon Horváth Ákos ELTE Atomfizikai Tanszék 2012. december 6. Radioaktív lakótársunk, a radon 2 A radon fontossága Természetes és mesterséges ionizáló sugárzások éves dózisa átlagosan

Részletesebben

A hazai vízművek NORM-os felmérése

A hazai vízművek NORM-os felmérése A hazai vízművek NORM-os felmérése Juhász László, Motoc Anna Mária, Ugron Ágota OSSKI Boguslaw Michalik GIG, Katowice Hajdúszoboszló, 2012. április 24-26 Értelmezés NORM: Naturally Occurring Radioactive

Részletesebben

Aktiválódás-számítások a Paksi Atomerőmű leszerelési tervéhez

Aktiválódás-számítások a Paksi Atomerőmű leszerelési tervéhez Aktiválódás-számítások a Paksi Atomerőmű leszerelési tervéhez Vízszintes metszet (részlet) Mi aktiválódik? Reaktor-berendezések (acél szerkezeti elemek I.) Reaktor-berendezések (acél szerkezeti elemek

Részletesebben

Kibocsátás- és környezetellenırzés a Paksi Atomerımőben. Dr. Bujtás Tibor Debrecen, 2009. Szeptember 04.

Kibocsátás- és környezetellenırzés a Paksi Atomerımőben. Dr. Bujtás Tibor Debrecen, 2009. Szeptember 04. Kibocsátás- és környezetellenırzés a Paksi Atomerımőben Dr. Bujtás Tibor Debrecen, 2009. Szeptember 04. Elıadás fı témái Hatósági szabályozások Kibocsátás ellenırzés és rendszerei Környezetellenırzés és

Részletesebben

Készítette: Magyar Norbert Környezettudomány Msc I. évfolyam

Készítette: Magyar Norbert Környezettudomány Msc I. évfolyam Készítette: Magyar Norbert Környezettudomány Msc I. évfolyam Vázlat Radioaktív hulladék fogalmának, csoportosítási lehetőségeinek, keletkezésének rövid áttekintése Nagy aktivitású radioaktív hulladék kezelése

Részletesebben

1. Környezetvédelmi célú gamma spektrummérések

1. Környezetvédelmi célú gamma spektrummérések 1. Környezetvédelmi célú gamma spektrummérések 1.1. A különböző szférákban előforduló radioaktív izotópok A környezetünkben előforduló radioaktivitás származhat természetes és mesterséges (antropogén)

Részletesebben

A püspökszilágyi RHFT lezárást követő időszakának biztonsági elemzése

A püspökszilágyi RHFT lezárást követő időszakának biztonsági elemzése A püspökszilágyi RHFT lezárást követő időszakának biztonsági elemzése Baksay Attila, Benedek Kálmán XLI. Sugárvédelmi Továbbképző Tanfolyam, Hajdúszoboszló, 2016. április 28. Az RHFT eddigi biztonsági

Részletesebben

Az atommag összetétele, radioaktivitás

Az atommag összetétele, radioaktivitás Az atommag összetétele, radioaktivitás Az atommag alkotórészei proton: pozitív töltésű részecske, töltése egyenlő az elektron töltésével, csak nem negatív, hanem pozitív: 1,6 10-19 C tömege az elektron

Részletesebben

Nemzeti Akkreditáló Testület. MÓDOSÍTOTT RÉSZLETEZŐ OKIRAT (1) a NAT /2015 nyilvántartási számú akkreditált státuszhoz

Nemzeti Akkreditáló Testület. MÓDOSÍTOTT RÉSZLETEZŐ OKIRAT (1) a NAT /2015 nyilvántartási számú akkreditált státuszhoz Nemzeti Akkreditáló Testület MÓDOSÍTOTT RÉSZLETEZŐ OKIRAT (1) a NAT-1-1665/2015 nyilvántartási számú akkreditált státuszhoz A Nemzeti Élelmiszerlánc-biztonsági Hivatal Élelmiszer- és Takarmánybiztonsági

Részletesebben

A nagy aktivitású leszerelési és üzemviteli hulladékok végleges elhelyezése

A nagy aktivitású leszerelési és üzemviteli hulladékok végleges elhelyezése A nagy aktivitású leszerelési és üzemviteli hulladékok végleges elhelyezése Hózer Zoltán 1, Hordósy Gábor 1, Slonszki Emese 1, Vimi András 1, Tóta Ádám 2 1 Magyar Tudományos Akadémia KFKI Atomenergia Kutatóintézet,

Részletesebben

50 év a sugárvédelem szolgálatában

50 év a sugárvédelem szolgálatában Magyar Tudományos Akadémia KFKI Atomenergia Kutatóintézet Fehér István, Andrási Andor, Deme Sándor 50 év a sugárvédelem szolgálatában XXXV. Sugárvédelmi Továbbképző Tanfolyam Hajdúszoboszló, 2010. április

Részletesebben

A radioaktív hulladékok kezelésének kérdései

A radioaktív hulladékok kezelésének kérdései A radioaktív hulladékok kezelésének kérdései Az RHK Kft. programjai DR. KEREKI FERENC ÜGYVEZETŐ IGAZGATÓ RADIOAKTÍV HULLADÉKOKAT KEZELŐ KFT. Feladat Az Atomenergiáról szóló 1996. évi CXVI. Tv. határozza

Részletesebben

Átfogó fokozatú sugárvédelmi továbbképzés

Átfogó fokozatú sugárvédelmi továbbképzés 2018. szeptember 10. Átfogó fokozatú sugárvédelmi továbbképzés 2018. szeptember 10., 17., 24. vizsga napja 25. OKI 1221 Budapest Anna u. 5. 8:50 Megnyító Sugárfizikai és dozimetriai ismeretek 1. Ionizáló

Részletesebben

Radon a felszín alatti vizekben

Radon a felszín alatti vizekben Radon a felszín alatti vizekben A bátaapáti kutatás adatai alapján Horváth I., Tóth Gy. (MÁFI) Horváth Á. (ELTE TTK Atomfizikai T.) 2006 Előhang: nem foglalkozunk a radon egészségügyi hatásával; nem foglalkozunk

Részletesebben

DÓZISTELJESÍTMÉNY DILEMMA SUGÁRTERÁPIÁS BUNKEREK KÖRNYEZETÉBEN

DÓZISTELJESÍTMÉNY DILEMMA SUGÁRTERÁPIÁS BUNKEREK KÖRNYEZETÉBEN DÓZISTELJESÍTMÉNY DILEMMA SUGÁRTERÁPIÁS BUNKEREK KÖRNYEZETÉBEN dr. Ballay László OSSKI-AMOSSO A DÓZISTELJESÍTMÉNY DILEMMA FELVETÉSE SUGÁRVÉDELMI MÉRÉSEK: DÓZISTELJESÍTMÉNY MÉRÉSEK A helyszínen csak a dózisteljesítmény

Részletesebben

FIZIKA. Radioaktív sugárzás

FIZIKA. Radioaktív sugárzás Radioaktív sugárzás Atommag összetétele: Hélium atommag : 2 proton + 2 neutron 4 He 2 A He Z 4 2 A- tömegszám proton neutron együttesszáma Z- rendszám protonok száma 2 Atommag összetétele: Izotópok: azonos

Részletesebben

ÉRTELMEZŐ INFORMÁCIÓK MEGHATÁROZÁSOK

ÉRTELMEZŐ INFORMÁCIÓK MEGHATÁROZÁSOK MSSZ_V15.1_M2 ÉRTELMEZŐ INFORMÁCIÓK MEGHATÁROZÁSOK ALARA-elv A sugárveszélyes munkahelyen foglalkoztatott személyek sugárterhelését az ésszerűen elérhető legalacsonyabb szinten kell tartani a gazdasági

Részletesebben

RÉSZLETEZŐ OKIRAT (3) a NAH /2015 nyilvántartási számú akkreditált státuszhoz

RÉSZLETEZŐ OKIRAT (3) a NAH /2015 nyilvántartási számú akkreditált státuszhoz RÉSZLETEZŐ OKIRAT (3) a NAH-1-1665/2015 nyilvántartási számú akkreditált státuszhoz 1) Az akkreditált szervezet neve és címe: Nemzeti Élelmiszerlánc-biztonsági Hivatal Élelmiszer- és Takarmánybiztonsági

Részletesebben

Bihari Árpád Molnár Mihály Pintér Tamás Mogyorósi Magdolna Szűcs Zoltán Veres Mihály

Bihari Árpád Molnár Mihály Pintér Tamás Mogyorósi Magdolna Szűcs Zoltán Veres Mihály A Paksi Atomerőmű primerkörében oldott 14 C nyomonkövetése a C30- as konténerig I.: szervetlen frakció Bihari Árpád Molnár Mihály Pintér Tamás Mogyorósi Magdolna Szűcs Zoltán Veres Mihály 14 C és a nukleáris

Részletesebben

Fichtinger Gyula, Horváth Kristóf

Fichtinger Gyula, Horváth Kristóf A sugárvédelmi hatósági feladatok átvételével kapcsolatos feladatok és kihívások Fichtinger Gyula, Horváth Kristóf Országos Atomenergia Hivatal 2015.04.21. Sugárvédelmi hatósági feladatok átvétele 1 Tartalom

Részletesebben

KIS ÉS KÖZEPES AKTIVITÁSÚ RADIOKTÍV HULLADÉKOK KEZELÉSE ÉS ELHELYEZÉSE

KIS ÉS KÖZEPES AKTIVITÁSÚ RADIOKTÍV HULLADÉKOK KEZELÉSE ÉS ELHELYEZÉSE KIS ÉS KÖZEPES AKTIVITÁSÚ RADIOKTÍV HULLADÉKOK KEZELÉSE ÉS ELHELYEZÉSE Készítette: KOCSIS ERIKA Témavezető: Prof. Kiss Ádám 2015. 01. 29. Célkitűzés A radioaktív hulladékok kezelésének és kategorizálásának

Részletesebben

CSERNOBIL 20/30 ÉVE A PAKSI ATOMERŐMŰ KÖRNYEZETELLENŐRZÉSÉBEN. Germán Endre PA Zrt. Sugárvédelmi Osztály

CSERNOBIL 20/30 ÉVE A PAKSI ATOMERŐMŰ KÖRNYEZETELLENŐRZÉSÉBEN. Germán Endre PA Zrt. Sugárvédelmi Osztály CSERNOBIL 20/30 ÉVE A PAKSI ATOMERŐMŰ KÖRNYEZETELLENŐRZÉSÉBEN Germán Endre PA Zrt. Sugárvédelmi Osztály XXXI. Sugárvédelmi Továbbképző Tanfolyam Keszthely, 2006. május 9 11. Környezeti ártalmak és a légzőrendszer

Részletesebben

a NAT-1-0969/2010 számú akkreditált státuszhoz

a NAT-1-0969/2010 számú akkreditált státuszhoz Nemzeti Akkreditáló Testület RÉSZLETEZÕ OKIRAT a NAT-1-0969/2010 számú akkreditált státuszhoz Az Országos Frédéric Joliot-Curie Sugárbiológiai és Sugáregészségügyi Kutató Intézet Sugáregészségügyi Fõosztály

Részletesebben

15/2001. (VI. 6.) KöM rendelet. az atomenergia alkalmazása során a levegbe és vízbe történ radioaktív kibocsátásokról és azok ellenrzésérl

15/2001. (VI. 6.) KöM rendelet. az atomenergia alkalmazása során a levegbe és vízbe történ radioaktív kibocsátásokról és azok ellenrzésérl 1. oldal 15/2001. (VI. 6.) KöM rendelet az atomenergia alkalmazása során a levegbe és vízbe történ radioaktív kibocsátásokról és azok ellenrzésérl Az atomenergiáról szóló 1996. évi CXVI. törvény (a továbbiakban:

Részletesebben

Látogatás egy reprocesszáló üzemben. Nagy Péter. Hajdúszoboszló, ELFT Sugárvédelmi Továbbképző Tanfolyam,

Látogatás egy reprocesszáló üzemben. Nagy Péter. Hajdúszoboszló, ELFT Sugárvédelmi Továbbképző Tanfolyam, Látogatás egy reprocesszáló üzemben Nagy Péter Hajdúszoboszló, ELFT Sugárvédelmi Továbbképző Tanfolyam, 2018.04.17-19. Előzmények European Nuclear Young Generation Forum (ENYGF), Paris, 2015.június 22-24.

Részletesebben

Az ionizáló sugárzások fajtái, forrásai

Az ionizáló sugárzások fajtái, forrásai Az ionizáló sugárzások fajtái, forrásai magsugárzás Magsugárzások Röntgensugárzás Függelék. Intenzitás 2. Spektrum 3. Atom Repetitio est mater studiorum. Röntgen Ionizációnak nevezzük azt a folyamatot,

Részletesebben

Lajos Máté. Országos Közegészségügyi Központ Sugárbiológiai és Sugáregészségügyi Kutató Igazgatóság (OSSKI) 2. MTA Energiatudományi Kutatóközpont

Lajos Máté. Országos Közegészségügyi Központ Sugárbiológiai és Sugáregészségügyi Kutató Igazgatóság (OSSKI) 2. MTA Energiatudományi Kutatóközpont 1 Lajos Máté 1 Salk Á., 1 Tóth N., 1 Juhász L., 2 Pázmánd T., 2 Zagyva P. 1 Országos Közegészségügy Központ Sugárbológa és Sugáregészségügy Kutató Igazgatóság (OSSKI) 2 MTA Energatudomány Kutatóközpont

Részletesebben

MÓDSZERFEJLESZTÉSEK A RADIOAKTÍV HULLADÉKOK ÉS TECHNOLÓGIAI KÖZEGEK 14 C TARTALMÁNAK MINŐSÍTÉSÉHEZ

MÓDSZERFEJLESZTÉSEK A RADIOAKTÍV HULLADÉKOK ÉS TECHNOLÓGIAI KÖZEGEK 14 C TARTALMÁNAK MINŐSÍTÉSÉHEZ Magyar Tudományos Akadémia Atommagkutató Intézet MÓDSZERFEJLESZTÉSEK A RADIOAKTÍV HULLADÉKOK ÉS TECHNOLÓGIAI KÖZEGEK 14 C TARTALMÁNAK MINŐSÍTÉSÉHEZ Molnár Mihály, Janovics Róbert, Bihari Árpád, Varga Tamás,

Részletesebben

RADIOAKTÍV HULLADÉKOK MINŐSÍTÉSE A PAKSI ATOMERŐMŰBEN

RADIOAKTÍV HULLADÉKOK MINŐSÍTÉSE A PAKSI ATOMERŐMŰBEN RADIOAKTÍV HULLADÉKOK MINŐSÍTÉSE A PAKSI ATOMERŐMŰBEN Bujtás T., Ranga T., Vass P., Végh G. Hajdúszoboszló, 2012. április 24-26 Tartalom Bevezetés Radioaktív hulladékok csoportosítása, minősítése A minősítő

Részletesebben

Magfizika tesztek. 1. Melyik részecske nem tartozik a nukleonok közé? a) elektron b) proton c) neutron d) egyik sem

Magfizika tesztek. 1. Melyik részecske nem tartozik a nukleonok közé? a) elektron b) proton c) neutron d) egyik sem 1. Melyik részecske nem tartozik a nukleonok közé? a) elektron b) proton c) neutron d) egyik sem 2. Mit nevezünk az atom tömegszámának? a) a protonok számát b) a neutronok számát c) a protonok és neutronok

Részletesebben

Sugárzások kölcsönhatása az anyaggal

Sugárzások kölcsönhatása az anyaggal Radioaktivitás Biofizika előadások 2013 december Sugárzások kölcsönhatása az anyaggal PTE ÁOK Biofizikai Intézet, Orbán József Összefoglaló radioaktivitás alapok Nukleononkénti kötési energia (MeV) Egy

Részletesebben

Dr. Pintér Tamás osztályvezető

Dr. Pintér Tamás osztályvezető Mit kezdjünk az atomreaktorok melléktermékeivel? Folyékony radioaktív hulladékok Dr. Pintér Tamás osztályvezető 2014. október 2. MINT MINDEN TECHNOLÓGIÁNAK, AZ ENERGIA- TERMELÉSNEK IS VAN MELLÉKTERMÉKE

Részletesebben

RADIOAKTÍV HULLADÉKOK 2. Dr. Zagyvai Péter szerkesztette: Dudás Beáta. BME-Egyetemi jegyzet

RADIOAKTÍV HULLADÉKOK 2. Dr. Zagyvai Péter szerkesztette: Dudás Beáta. BME-Egyetemi jegyzet RADIOAKTÍV HULLADÉKOK 2. Dr. Zagyvai Péter szerkesztette: Dudás Beáta BME-Egyetemi jegyzet 1 Radioaktív hulladékok eredete 2/a Kutatóreaktorok Kisreaktorok : reaktorszerelvények szerkezeti anyaga Al; nyitott

Részletesebben

8. AZ ATOMMAG FIZIKÁJA

8. AZ ATOMMAG FIZIKÁJA 8. AZ ATOMMAG FIZIKÁJA Az atommag szerkezete (40-44 oldal) A tömegspektrométer elve Az atommag komponensei Izotópok Tömeghiány, kötési energia, stabilitás Magerők Magmodellek Az atommag stabilitásának

Részletesebben

LAKOSSÁGI SUGÁRTERHELÉS 2010. október 6 (szerda), 15:40-16:50, Árkövy terem

LAKOSSÁGI SUGÁRTERHELÉS 2010. október 6 (szerda), 15:40-16:50, Árkövy terem SE FOK Sugárvédelem, 2010/2011 LAKOSSÁGI SUGÁRTERHELÉS 2010. október 6 (szerda), 15:40-16:50, Árkövy terem Dr. Kanyár Béla, SE Sugárvédelmi Szolgálat 1 Sugárterhelések osztályozásának szempontjai - Sugárforrás

Részletesebben

Jegyzet. Kémia, BMEVEAAAMM1 Műszaki menedzser hallgatók számára Dr Csonka Gábor, egyetemi tanár Dr Madarász János, egyetemi docens.

Jegyzet. Kémia, BMEVEAAAMM1 Műszaki menedzser hallgatók számára Dr Csonka Gábor, egyetemi tanár Dr Madarász János, egyetemi docens. Kémia, BMEVEAAAMM Műszaki menedzser hallgatók számára Dr Csonka Gábor, egyetemi tanár Dr Madarász János, egyetemi docens Jegyzet dr. Horváth Viola, KÉMIA I. http://oktatas.ch.bme.hu/oktatas/konyvek/anal/

Részletesebben

Magyar Tudományos Akadémia 3: MTA Energiatudományi Kutatóközpont

Magyar Tudományos Akadémia 3: MTA Energiatudományi Kutatóközpont Magyar Tudományos Akadémia Energiatudományi Kutatóközpont Kibocsátás-ellenőrző rendszer tervezése és építése a KFKI telephelyen Sarkadi András 1, Gimesi Ottó 2, Gados Ferenc 3, Elter Dénes 3, Matisz Attila

Részletesebben

ÉVINDÍTÓ SA JTÓTÁ JÉKOZTATÓ OAH évindító sajtótájékoztató

ÉVINDÍTÓ SA JTÓTÁ JÉKOZTATÓ OAH évindító sajtótájékoztató ÉVINDÍTÓ SA JTÓTÁ JÉKOZTATÓ 2015.01.27. OAH évindító sajtótájékoztató 1 Biztonság Megelőzés Kiemelten fontos a biztonságos üzemelés, az események, üzemzavarok és balesetek megelőzése a létesítményekben.

Részletesebben