associate professor BME Híradástechnikai Tanszék Lab of Cryptography and System Security (CrySyS) buttyan@hit.bme.hu, buttyan@crysys.



Hasonló dokumentumok
On The Number Of Slim Semimodular Lattices

Lopocsi Istvánné MINTA DOLGOZATOK FELTÉTELES MONDATOK. (1 st, 2 nd, 3 rd CONDITIONAL) + ANSWER KEY PRESENT PERFECT + ANSWER KEY

Using the CW-Net in a user defined IP network

Create & validate a signature

Angol Középfokú Nyelvvizsgázók Bibliája: Nyelvtani összefoglalás, 30 kidolgozott szóbeli tétel, esszé és minta levelek + rendhagyó igék jelentéssel

Genome 373: Hidden Markov Models I. Doug Fowler

Can/be able to. Using Can in Present, Past, and Future. A Can jelen, múlt és jövő idejű használata

STUDENT LOGBOOK. 1 week general practice course for the 6 th year medical students SEMMELWEIS EGYETEM. Name of the student:

Utasítások. Üzembe helyezés

EN United in diversity EN A8-0206/419. Amendment

A modern e-learning lehetőségei a tűzoltók oktatásának fejlesztésében. Dicse Jenő üzletfejlesztési igazgató

Mapping Sequencing Reads to a Reference Genome

Efficient symmetric key private authentication

Dependency preservation

Ellenőrző lista. 2. Hálózati útvonal beállítások, kapcsolatok, névfeloldások ellenőrzése: WebEC és BKPR URL-k kliensről történő ellenőrzése.

Lexington Public Schools 146 Maple Street Lexington, Massachusetts 02420

Performance Modeling of Intelligent Car Parking Systems

Tudományos Ismeretterjesztő Társulat

Intézményi IKI Gazdasági Nyelvi Vizsga

(Asking for permission) (-hatok/-hetek?; Szabad ni? Lehet ni?) Az engedélykérés kifejezésére a következő segédigéket használhatjuk: vagy vagy vagy

FOSS4G-CEE Prágra, 2012 május. Márta Gergely Sándor Csaba

Tudományos Ismeretterjesztő Társulat

Cashback 2015 Deposit Promotion teljes szabályzat

Választási modellek 3

Construction of a cube given with its centre and a sideline

Proxer 7 Manager szoftver felhasználói leírás

Bevezetés a kvantum-informatikába és kommunikációba 2015/2016 tavasz

ANGOL NYELVI SZINTFELMÉRŐ 2013 A CSOPORT. on of for from in by with up to at

USER MANUAL Guest user

Az angol nyelv tantárgy 9. évfolyamos osztályozó vizsga témakörei (heti 2 óra)

Phenotype. Genotype. It is like any other experiment! What is a bioinformatics experiment? Remember the Goal. Infectious Disease Paradigm

ELEKTRONIKAI ALAPISMERETEK ANGOL NYELVEN

INTELLIGENT ENERGY EUROPE PROGRAMME BUILD UP SKILLS TRAINBUD. Quality label system

SQL/PSM kurzorok rész

Correlation & Linear Regression in SPSS

Kvantum-informatika és kommunikáció 2015/2016 ősz. A kvantuminformatika jelölésrendszere szeptember 11.

There is/are/were/was/will be

EXKLUZÍV AJÁNDÉKANYAGOD A Phrasal Verb hadsereg! 2. rész

Néhány folyóiratkereső rendszer felsorolása és példa segítségével vázlatos bemutatása Sasvári Péter

MTAT Cryptology II. Oblivious Transfer. Sven Laur University of Tartu

Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet Factor Analysis

Széchenyi István Egyetem

Eladni könnyedén? Oracle Sales Cloud. Horváth Tünde Principal Sales Consultant március 23.

JEROMOS A BARATOM PDF

Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet. Hypothesis Testing. Petra Petrovics.

Cloud computing. Cloud computing. Dr. Bakonyi Péter.

3. MINTAFELADATSOR KÖZÉPSZINT. Az írásbeli vizsga időtartama: 30 perc. III. Hallott szöveg értése

TestLine - Angol teszt Minta feladatsor

KN-CP50. MANUAL (p. 2) Digital compass. ANLEITUNG (s. 4) Digitaler Kompass. GEBRUIKSAANWIJZING (p. 10) Digitaal kompas

PAST ÉS PAST PERFECT SUBJUNCTIVE (múlt idejű kötőmód)

Tavaszi Sporttábor / Spring Sports Camp május (péntek vasárnap) May 2016 (Friday Sunday)

Block cipher modes. - five standardized modes (operation, properties)

SAJTÓKÖZLEMÉNY Budapest július 13.

Contact us Toll free (800) fax (800)

Cluster Analysis. Potyó László

MATEMATIKA ANGOL NYELVEN

Angol érettségi témakörök 12.KL, 13.KM, 12.F

Tag Questions Ugye kérdések

Emelt szint SZÓBELI VIZSGA VIZSGÁZTATÓI PÉLDÁNY VIZSGÁZTATÓI. (A részfeladat tanulmányozására a vizsgázónak fél perc áll a rendelkezésére.

Az Open Data jogi háttere. Dr. Telek Eszter

bab.la Cümle Kalıpları: İş Sipariş İngilizce-Macarca

bab.la Cümle Kalıpları: İş Sipariş Macarca-İngilizce

Sebastián Sáez Senior Trade Economist INTERNATIONAL TRADE DEPARTMENT WORLD BANK

(NGB_TA024_1) MÉRÉSI JEGYZŐKÖNYV


Block cipher modes. Cryptographic Protocols (EIT ICT MSc) Dr. Levente Buttyán

Tudok köszönni tegezve és önözve, és el tudok búcsúzni. I can greet people in formal and informal ways. I can also say goodbye to them.

Cloud computing Dr. Bakonyi Péter.

Üzleti élet Nyitás. Nagyon hivatalos, a címzettnek meghatározott rangja van, aminek szerepelnie kell

Üzleti élet Nyitás. Nagyon hivatalos, a címzettnek meghatározott rangja van, aminek szerepelnie kell

E L İ T E R J E S Z T É S

DR. SZABÓ LÁSZLÓ 1 DOBOS GÁBOR 2

ANGOL NYELVI SZINTFELMÉRŐ 2012 A CSOPORT. to into after of about on for in at from

Az egészségügyi munkaerő toborzása és megtartása Európában

Számlakezelés az ELO DocXtraktor modullal

Smaller Pleasures. Apróbb örömök. Keleti lakk tárgyak Répás János Sándor mûhelyébõl Lacquerware from the workshop of Répás János Sándor

Gibicsár Katalin tantárgyprogramjai

Teszt topológia E1/1 E1/0 SW1 E1/0 E1/0 SW3 SW2. Kuris Ferenc - [HUN] Cisco Blog -

A rosszindulatú daganatos halálozás változása 1975 és 2001 között Magyarországon

Adatbázisok 1. Rekurzió a Datalogban és SQL-99


KELER KSZF Zrt. bankgarancia-befogadási kondíciói. Hatályos: július 8.

MINO V2 ÁLLVÁNY CSERÉJE V4-RE

1. Gyakorlat: Telepítés: Windows Server 2008 R2 Enterprise, Core, Windows 7

16F628A megszakítás kezelése

Budapest By Vince Kiado, Klösz György

ELEKTRONIKAI ALAPISMERETEK ANGOL NYELVEN

TRENDnetVIEW Pro szoftvert. ŸGyors telepítési útmutató (1)

Szakmai továbbképzési nap akadémiai oktatóknak december 14. HISZK, Hódmezővásárhely / Webex

Mr. Adam Smith Smith's Plastics 8 Crossfield Road Selly Oak Birmingham West Midlands B29 1WQ

ANGOL NYELVI SZINTFELMÉRŐ 2014 A CSOPORT

Pletykaalapú gépi tanulás teljesen elosztott környezetben

Magyar ügyek az Európai Unió Bírósága előtt Hungarian cases before the European Court of Justice

ELEKTRONIKAI ALAPISMERETEK ANGOL NYELVEN

EN United in diversity EN A8-0206/473. Amendment

Security in WiFi networks

Csima Judit április 9.

Please stay here. Peter asked me to stay there. He asked me if I could do it then. Can you do it now?

Computer Architecture

Utazás Szállás. Szállás - Keresés. Szállás - Foglalás. Útbaigazítás kérése. ... kiadó szoba?... a room to rent? szállásfajta.

Átírás:

Formal verification with the SVO logic Security Protocols (bmevihim132) Dr. Levente Buttyán associate professor BME Híradástechnikai Tanszék Lab of Cryptography and System Security (CrySyS) buttyan@hit.bme.hu, buttyan@crysys.hu Outline - Motivation for formal methods; - Language, axioms and inference rules of the SVO logic; - Methodology of protocol analysis with SVO; - Example; 2

Motivation for formal methods many protocols have been proposed, but most of them are flawed how can these flaws be explained? flaws are subtle and hard to find how can flaws be uncovered? in order to avoid flaws, we need more understanding what does the protocol really achieve? does the protocol need more assumptions than another one? does the protocol do anything unnecessary that could be left out without weakening it? e.g., does the protocol encrypt something that could be sent in clear? formal methods may help answering these questions 3 Many different approaches logics general purpose: HOL/Isabelle special: BAN (Burrows-Abadi-Needham), GNY (Gong- Needham-Yahalom), SvO (Syverson-van Oorschot), process algebrae general purpose: CSP/FDR special: spi-calculus strand spaces (Athena) model checking (Murphi, ) specialized expert systems (NRL protocol analyzer, Interrogator) 4

Basic idea of belief logics modal logic based tools allow us to describe the beliefs of parties in the protocol and to study the evolution of these beliefs as a consequence of communication examples: if you have sent Bob a number that you have never used for this purpose before, and if you subsequently receive from Bob something that depends on knowing that number, then you should believe that Bob s message originated recently (at least after yours) if you believe that only you and Bob know K, then you should believe that anything you receive protected with K comes originally from Bob if you believe that K is Bob s public key, then you should believe that any signed message that you can successfully verify with K comes originally from Bob 5 SVO language set of primitive terms T: constant symbols representing principals (P, Q, ), keys (K_), numbers (N_), $ 1, $ 2, unrecognized received messages (or fragments) language of messages M T : any primitive term is a message any logical formula is a message (see definition of the language of formulae F T ) if X 1, X 2,, X n are messages and F is a function, then F(X 1, X 2,, X n ) is a message examples: tuple: (X 1, X 2,, X n ) encryption: {X} K 6

SVO language language of formulae F T : if ϕ and ψ are formulae then!ϕ and (ϕ & ψ) are formulae if P and Q are principals and K and K + are a keys, then P K Q and K + P are formulae P K Q means that K is a symmetric key shared by P and Q, and therefore, only P and Q (and parties they trust) know K, and only P and Q will ever use K for encryption (or MAC computation) K + P means that K + is the public key of P, and therefore, only P knows the corresponding private key K -, and only P can produce signed messages that verify correctly with K + K + ε P, K + σ P, K + γ P denote encryption, signature verification, and key agreement keys, respectively SV(S, K +, M) is a formula if S and M are messages and K + is a public key SV(S, K +, M) means that S is a correct signature on M produced with K - a similar predicate could be defined for MAC verification 7 SVO language P sees X, P received X, P says X, P said X, X is fresh are formulae if P is a principal and X is a message P sees X means that P has (access to) X P received X means that P received a message that contains X (of course, P received X implies P sees X, but the reverse is not true in general) P said X means that P once sent a message that contained X X is fresh means that X has never been sent before the current protocol run P says X means that P said X in the current protocol run (i.e., P said X and X is fresh) P believes ϕ and P controls ϕ are formulae if P is a principal and ϕ is a formula P believes ϕ means that P acts as if ϕ was true P controls ϕ means that P is a trusted authority on ϕ (i.e., if P says ϕ is true, then ϕ is indeed true) 8

SVO axioms all tautologies of classical propositional logic believing: A1 (P believes ϕ) & (P believes (ϕ ψ)) P believes ψ A2 P believes ϕ P believes (P believes ϕ) source association: A3 (P K Q) & (R received {X Q } K ) (Q said X) & (Q sees K) A4 (K σ Q) & (R received S) & SV(S, K, X) (Q said X) key agreement: A5 (K p γ P) & (K q γ Q) (P KA(K p,k q ) Q) A6 ϕ ϕ[ka(k, K )/KA(K, K)] where KA is the key agreement function 9 SVO axioms receiving: A7 (P received (X 1,, X n )) (P received X i ) A8 (P received {X} K )&(P sees K) (P received X) A9 (P received {X} K+ )&(P sees K - ) (P received X) seeing: A10 (P received X) (P sees X) A11 (P sees (X 1,, X n )) (P sees X i ) A12 (P sees X 1 ) & & (P sees X n ) (P sees F(X 1,, X n )) comprehending: A13 (P believes (P sees F(X))) (P believes (P sees X)) where F is a one-to-one function such that either F or F -1 is computable in practice by P 10

SVO axioms saying: A14 (P said (X 1,, X n )) (P said X i ) A15 (P says (X 1,, X n )) (P says X i ) A14 (P said X) (P sees X) A15 (P says X) (P said X) jurisdiction: A16 (P controls ϕ) & (P says ϕ) ϕ freshness: A17 (X i is fresh) ((X 1,, X n ) is fresh) A18 ((X 1,, X n ) is fresh) (F(X 1,, X n ) is fresh) nonce verification: A19 (X is fresh) & (P said X) (P says X) 11 SVO inference rules Modus Ponens (MP): ϕ ϕ ψ ψ Necessitation (N): ~ ϕ ~ P believes ϕ where S ~ ϕ means that ϕ can be derived from the set of formulae S and the axioms, and ~ ϕ means that ϕ can be derived only from the axioms (i.e., ϕ is a theorem) 12

Summary of assumptions cryptography and communication cryptographic primitives are secure and perfect (unbreakable) time time is divided into past and present; the present epoch begins at the start of the particular run of the protocol under consideration belief all beliefs held in the present are stable for the entirety of the protocol run beliefs held in the past are not necessarily carried forward into the present honesty protocol participants are honest principals honest principals can indicate in encrypted messages the origin of the message ({X Q } K ) SVO may not detect attacks mounted by legitimate but malicious (dishonest) principals 13 Analysis methodology identify and formalize premises initial assumptions on beliefs in freshness of nonces, goodness of long term keys, trust in servers, reception of protocol messages (e.g., A received {T s, B, K ab } Kas ) premises reflecting what is comprehended from received messages (e.g., A believes (A received {T s, B, $} Kas )) premises reflecting the interpretation of received messages (e.g., A believes ( A received {T s, B, $} Kas A received {T s, B, A K ab B, K ab is fresh} Kas ) identify and formalize the goals try to derive the goals from the premises and the axioms using the inference rules in case of success, the protocol is secure in the SVO model in case of failure, you may be able to determine a specific flaw and a specific attack based on that flaw 14

Example Alice A, N A Bob Server A, N A, B, N B generate K E Kas (B K N A ) E Kas (B K N A ), E Kbs (A K N B ) 15 Initial assumptions nonces: (I1) A believes ( N a is fresh ) (I2) B believes ( N b is fresh ) pre-established channels: (I3) A believes ( A K as S) (I4) S believes ( A K as S) (I5) B believes ( B K bs S) (I6) S believes ( B K bs S) trust: (I7) A believes ( S controls ( A K B ) ) (I8) B believes ( S controls ( A K B ) ) (I9) A believes ( S controls (K is fresh) ) (I10) B believes ( S controls (K is fresh) ) 16

Message reception, comprehension, interpretation reception: (R1) (R2) B received { A, K, N b } Kbs A received { B, K, N a } Kas comprehension: (C1) B believes (B received { A, $ 1, N b } Kbs ) (C2) A believes (A received { B, $ 2, N a } Kas ) interpretation: (P1) B believes ( B received { A, $ 1, N b } Kbs B received { A, A K B, K is fresh, N b } Kbs ) (P2) A believes ( A received { B, $ 2, N a } Kas A received { B, A K B, K is fresh, N a } Kas ) 17 Derivations C1, P1, A1 (MP): (D1) B believes (B received { A, A K B, K is fresh, N b } Kbs ) A3 (N): (D2) B believes ((B K bs S) & (B received {X S } Kbs ) (S said X)) I5, D1, D2, A1 (MP): (D3) B believes ( S said (A, A K B, K is fresh, N b ) ) A17 (N): (D4) B believes ((N b is fresh) ((A, A K B, K is fresh, N b ) is fresh)) I2, D4, A1 (MP): (D5) B believes ((A, A K B, K is fresh, N b ) is fresh) 18

Derivations A19 (N): (D6) B believes (((A, A K B, K is fresh, N b ) is fresh) & (S said (A, A K B, K is fresh, N b )) (S says (A, A K B, K is fresh, N b ))) D3, D5, D6, A1 (MP): (D7) B believes (S says (A, A K B, K is fresh, N b )) A15 (N): (D8) (D8 ) B believes ((S says (A, A K B, K is fresh, N b )) (S says (A K B))) B believes ((S says (A, A K B, K is fresh, N b )) (S says (K is fresh))) D7, D8/D8, A1 (MP): (D9) B believes (S says (A K B)) (D9 ) B believes (S says (K is fresh)) 19 Derivations A16 (N): (D10) (D10 ) B believes ((S controls (A K B)) & (S says (A K B)) (A K B)) B believes ((S controls (K is fresh)) & (S says (K is fresh)) (K is fresh)) I8, D9, D10, A1 (MP): (D11) B believes (A K B) I10, D9, D10, A1 (MP): (D12) B believes (K is fresh) similar derivations work for A believes (A K B) A believes (K is fresh) 20

Semantics of the SVO logic SVO defines a model of computation where protocol participants and the adversary are represented by state machines principals can send and receive messages, generate terms, and perform computation local states consists of the local history of actions (sent and received events) and available transformations the local state of the adversary consists of a global history, a set of transformations available to the adversary, and a message buffer of sent but not yet delivered messages the truth condition of each logical construct (e.g., P said X, X is fresh, ) is precisely defined w.r.t. this model of computation e.g., P believes ϕ holds in a global state s, if ϕ is true in all states s such that s is indistinguishable from s by P (possible worlds semantics) the SVO logic is proven to be sound: everything one can derive from a set of formula S (using the axioms and the inference rules) is indeed true in any state that satisfies S 21 Recommended reading P. Syverson, P. van Oorschot, A Unified Cryptographic Protocol Logic, NRL Technical Report, November 1996. syntax semantics more examples 22