A TRIP ACÉL PONTHEGESZTÉSÉNEK HATÁSA RESISTANCE SPOT WELDING EFFECT IN CASE OF TRIP STEEL



Hasonló dokumentumok
TDK Dolgozat. DP acélok ellenállás ponthegesztése

JÁRMŰIPARI VÉKONYLEMEZEK ÍV- ÉS ELLENÁLLÁS-PONTHEGESZTÉSE

Hegesztés 1. Bevezetés. Hegesztés elméleti alapjai

NAPJAINK JÁRMŰKAROSSZÉRIA ANYAGAI THE PRESENT BODY IN WHITE MATERIALS

BUDAPESTI MŰSZAKI EGYETEM Anyagtudomány és Technológia Tanszék. Hőkezelés 2. (PhD) féléves házi feladat. Acélok cementálása. Thiele Ádám WTOSJ2

Anyagfelvitel nélküli felületkezelések

beolvadási hibájának ultrahang-frekvenciás kimutatása

Verő Balázs, Bereczki Péter, Csepeli Zsolt, Sebő Sándor. Workshop Dunaújváros,

FAGYI-TUDOMÁNY FAKULTATÍV INTEGRÁLT PROJEKT KÖZÉPISKOLÁSOKNAK ICE-CREAM SCIENCE FACULTATIVE SCIENCE PROJECT FOR HIGH SCHOOL STUDENTS

Az alakítási textúra hatása a saválló acélokban végbemenő fázisátalakulásokra

Átlapolt horganyzott lemezek MIG/MAG hegesztése

A fafeldolgozás energiaszerkezetének vizsgálata és energiafelhasználási összefüggései

Írta: Kovács Csaba december 11. csütörtök, 20:51 - Módosítás: február 14. vasárnap, 15:44

Mérnöki anyagok NGB_AJ001_1

KLINCS KÖTÉS TECHNOLÓGIAI PARAMÉTEREINEK VIZSGÁLATA, VÉGESELEMES MODELLEZÉSE

MŰANYAGOK ALKALMAZÁSA, UTÓMŰVELETEK

(C) Dr. Bagyinszki Gyula: ANYAGTECHNOLÓGIA II.

SZAKDOLGOZAT. Gömbcsap működtető orsó gyártástervezése

MECHANIKAI TECHNOLÓGIA

Anyagmérnöki Tudományok, 37. kötet, 1. szám (2012), pp

Anyagszerkezettan vizsgajegyzet

Második számú Időszakos beszámoló

5. Mérés Transzformátorok

MŰSZAKI ISMERETEK. Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP /1/A

A szerkezeti anyagok tulajdonságainak megváltoztatási lehetőségei. Szilárdság növelésének lehetőségei

GÉNIUSZ DÍJ EcoDryer. Eljárás és berendezés szemestermények tárolásközbeni áramló levegős szárítására és minőségmegóvó szellőztetésére

7. GÉPÉSZMÉRNÖK MSC SZAK ZÁRÓVIZSGA SZABÁLYAI - Anyag- és gyártástechnológiák specializáció -

XIII. FIATAL MŰSZAKIAK TUDOMÁNYOS ÜLÉSSZAKA

EWM Taurus 301 típusú hegesztőgép alkalmazástechnikai vizsgálata

KEZELÉSI KARBANTARTÁSI UTASÍTÁS ALFATHERM

Lakóházak energiatudatos szellőzési rendszerei Energy conscious ventilation system of dwellings

XIII. FIATAL MŰSZAKIAK TUDOMÁNYOS ÜLÉSSZAKA

Tárgyszavak: öntöttvas; vasötvözet; örvényáram; roncsolásmentes anyagvizsgálat, roncsolásmentes vizsgálat.

DT7001. Gyújtószikramentes nyomáskülönbség távadó. Kezelési útmutató

Tárgyszavak: öntött poliamid; prototípus; kis sorozatok gyártása; NylonMold eljárás; Forma1 modell; K2004; vízmelegítő fűtőblokkja; új PA-típusok.

TENGELYCSONK MEGMUNKÁLÓ CELLA

WESTPOINT MOBIL KLÍMA

ADIABATIKUS EVAPORÁCIÓS HŰTŐBERENDEZÉSEK

Tevékenység: Tanulmányozza a 4. táblázatot! Gyűjtse ki és tanulja meg a nagyszilárdságú mélyhúzott finom acélok típusait és jelölésüket!

TDA-TAR ÉS O-TDA FOLYADÉKÁRAMOK ELEGYÍTHETŐSÉGÉNEK VIZSGÁLATA STUDY OF THE MIXABILITY OF TDA-TAR AND O-TDA LIQUID STREAMS

HIDEGEN HENGERELT ALUMÍNIUM SZALAG LENCSÉSSÉGÉNEK VIZSGÁLATA INVESTIGATION OF CROWN OF COLD ROLLED ALUMINIUM STRIP

Szóbeli vizsgatantárgyak. 1. Kohászati technológia 2. Kohászati géptan 3. Gazdasági, munkajogi, munka- és környezetvédelmi ismeretek /V

2201_08_DU_01_E_2015_M-01. Munkaárok kialakításának elvi vázlata 1/1

ÜVEGSZÁL ERŐSÍTÉSŰ KOMPOZIT FÚRÁSÁNAK VIZSGÁLATA GYORSACÉL ÉS KEMÉNYFÉM SZERSZÁMMAL DRILLING OF GLASS-FIBER-REINFORCED COMPOSITE BY HSS AND CARBIDE

GÉPELEMEK GÉP. Gépegység /Részegység/ Alkatrész /Gépelem/ Alkatrész. Alkatrész GÉPELEMEK CSOPORTOSÍTÁSA

A vizsgafeladat ismertetése: Hegesztett termék előállításának ismertetése, különös tekintettel a munkabiztonsági és környezetvédelmi ismeretekre.

A hazai munkahelyi étkezés értékrend alapú élelmiszerfogyasztói modellje

KOMPOSZTÁLÁS, KÜLÖNÖS TEKINTETTEL A SZENNYVÍZISZAPRA

b) Adjunk meg 1-1 olyan ellenálláspárt, amely párhuzamos ill. soros kapcsolásnál minden szempontból helyettesíti az eredeti kapcsolást!

Kézi forgácsolások végzése

Mesterkurzusok hegeszt szakembereknek

LDPE előállítása. 1. Mi az LDPE és mire használják? 1.1. Történet 1.2. Felhasználási területek

A tűzoltás módjai. A nem tökéletes égéskor keletkező mérgező anyagok

Első számú Időszakos beszámoló

RÖVID TÁJÉKOZTATÓ A SZAKKÉPESÍTÉSEKRŐL

Tájékoztató az eljárás eredményéről (1-es Hirdetmény típusa: minta)/ké/ KÉ

E.ON Dél-dunántúli Gázhálózati Zrt. EDD-MK v03. Földgáz csatlakozóvezetékek és felhasználói berendezések. üzembe helyezése és megszüntetése

Gépbiztonság. Biztonságtechnikai és szabványok áttekintése.

Az Új Ururu Sarara FTXZ-N + RXZ-N

Szerelési, üzemeltetési útmutató

Családi házak utólagos hőszigetelése. ROCKWOOL kőzetgyapottal

Nemcsak más, hanem jobb! MdA. mágneses dinamikus finomiszapleválasztó TERVEZÉSI SEGÉDLET

DÍSZNÖVÉNYEK ÖNTÖZÉSE KONDICIONÁLT FELÜLETEK ALATT IRRIGATION OF ORNAMENTAL PLANTS IN GREENHOUSE

Gázhegesztő Hegesztő Hegesztő Hegesztő

MELEGZÖMÍTŐ VIZSGÁLATOK ALUMÍNIUMÖTVÖZETEKEN HOT COMPRESSION TESTS IN ALUMINIUM ALLOYS MIKÓ TAMÁS 1

Műszaki Biztonsági Szabályzat

UNIVERZÁLIS VIZSGÁLÓLÁMPA EXALIGHT

UNIVERSAL 2P MIG hegesztıgép. Használati utasítás

IX. Az emberi szem és a látás biofizikája

Gázhegesztő Hegesztő 4 2/61

XV. FIATAL MŰSZAKIAK TUDOMÁNYOS ÜLÉSSZAKA

FAN COIL. Használati utasítás. VEF022HSLB, VEF032HSLB, VEF052HSLB VEF022VSLC, VEF052VSLC, VEF072VSLC típusokhoz.

Villamos sínek felrakóhegesztése előmelegítés nélkül

ZRT. Légtechnikai rendszerek. Variálható örvénybefúvó VD sorozat DN 315, DN 400. Alkalmazási terület. Működési leírás

Szabó Péter János. Intenzív alakítási és hőkezelési folyamatok mikroszerkezetre gyakorolt hatásának értelmezése visszaszórtelektron-diffrakcióval

Hegesztő és bevonatoló rendszerek Áttekintés

31/1994. (XI. 10.) IKM rendelet. Hegesztési Biztonsági Szabályzat kiadásáról. Hegesztési Biztonsági Szabályzat

7. REHAU h szivattyú program REHAU rendszertároló

Duálfázisú lemezek csaphegesztése

SolarHP MEGNÖVELT HATÁSFOKÚ, SÖTÉTEN SUGÁRZÓK

FÉMKOMPOZITOK KOPÁSÁLLÓSÁGÁNAK VIZSGÁLATA INVESTIGATION OF THE WEAR RESISTANCE PROPERTIES OF METAL MATRIX COMPOSITES

Termoelektromos polimerek és polimerkompozitok

Dr. Gulyás József - Dr. Horváth Ákos - Illés Péter - Dr. Farkas Péter ACÉLOK HENGERLÉSE

Eszkimó Magyarország Oktatási Zrt.

KEZELÉSI UTASÍTÁS CE 0085AQ0327

Hegesztési folyamatok és jelenségek véges-elemes modellezése

4. A GYÁRTÁS ÉS GYÁRTÓRENDSZER TERVEZÉSÉNEK ÁLTALÁNOS MODELLJE (Dudás Illés)

ENERGIA-MEGTAKARÍTÁS ÉS KLÍMAVÉDELEM ZÖLDFALAK ALKALMAZÁSÁVAL ENERGY SAVING AND CLIMATE PROTECTION WITH GREEN WALLS APPLICATION

SOLARTUBE TL

1. A VILLAMOSENERGIA-TERMELÉS ÉS ÁTVITEL JELENTŐSÉGE

Szerelési és karbantartási utasítás

PLATTÍROZOTT ALUMÍNIUM LEMEZEK KÖTÉSI VISZONYAINAK TECHNOLÓGIAI VIZSGÁLATA TECHNOLOGICAL INVESTIGATION OF PLATED ALUMINIUM SHEETS BONDING PROPERTIES

MEGHÍVÓ. MTA-ME Anyagtudományi Kutatócsoport eredményei

DUNAÚJVÁROSI FŐISKOLA ANYAGTUDOMÁNYI ÉS GÉPÉSZETI INTÉZET. Gyártástechnológia. Dr. Palotás Béla

1 modul 2. lecke: Nikkel alapú szuperötvözetek

Közbeszerzési Értesítő száma: 2016/23

Messer Hungarogáz. Szakmai nap 2012 november 28

FOTÓKATALIZÁTOROS LEVEGİTISZTÍTÓ MODELL AP-3

MŰANYAGOK TULAJDONSÁGAI

HITELESÍTÉSI ELŐÍRÁS TARTÁLYOK

Átírás:

űszaki tudományos közlemények 2. XV. űszaki Tudományos Ülésszak, 2014. Kolozsvár, 227 234. http://hdl.handle.net/10598/28543 A TRIP ACÉL PONTHGSZTÉSÉNK HATÁSA RSISTANC SPOT WLDING FFCT IN CAS OF TRIP STL Vajdics Dániel 1, Kovács-Coskun Tünde 2 1,2 Óbudai gyetem, Bánki Donát Gépész és Biztonságtechnikai érnöki Kar, Anyagtudományi és Gyártástechnológiai Intézet, 1084 agyarország, Budapest, Népszínház u. 8; Telefon / Fax: +36-1-666-5327, vajdics.daniel@hotmail.com, kovacs.tunde@bgk.uni-obuda.hu Abstract The TRIP steel is a widely applicable advanced high strength steel type, which has good strength and ductile properties besides low carbon and alloying elements. Since its structure is composed by ferrite, bainite, martensite and retained austenite, transformation can happen in its structure during spotwelding, where its mechanical properties can change. In our experiments we tried to examine the spotwelding effect in an experimental way with several adjustments. Keywords: resistance spot welding, TRIP steel, microstructure, mikrohardness Összefoglalás A TRIP acél egy széles körben alkalmazható, növelt szilárdságú acéltípus, mely alacsony karbon- és ötvözőtartalom mellett is jó szilárdsági és szívóssági tulajdonságokkal rendelkezik. ivel szövetszerkezetét ferrit, bénit, martenzit és maradék ausztenit alkotja, ponthegesztése során a szövetszerkezetben átalakulások jöhetnek létre, melyeknek hatására a mechanikai tulajdonságok is megváltoznak. Kísérleteinkben a ponthegesztés hatását vizsgáljuk kísérleti úton különböző beállítások mellett. Kulcsszavak: ellenállás-ponthegesztés, TRIP acél, szövetszerkezet, mikrokeménység 1. Bevezetés A TRIP (Transformation Induced Plasticity) más néven fázisátalakulással kiváltott képlékenységgel rendelkező acél a nagyszilárdságú acélok (Advanced High Strength Steel) családjába tartozik [1]. A nagyszilárdságú acélok kiemelt jelentőséggel bírnak a gépjárműipar számára, általában a karosszériaelemek alkotói. A nagyszilárdságú acélok további fajtái: duál fázisú (DP: Dual Phase), komplex fázisú (CP: Complex Phase), ferrite-bénites (FB: Ferritic-Bainitic), martenzites (S: artensitic), valamint a melegen alakított (HF: Hot Formed) és a legújabb fejlesztésű, ikerképződéssel előidézett képlékenységgel rendelkező (TWIP: Twinning-Induced Plasticity) acélok [2]. 1. ábra. TRIP acél mikroszerkezete [2] 227

Vajdics Dániel, Kovács-Coskun Tünde A TRIP acélok mikroszerkezete többfázisú (ferrit, bénit, ausztenit, martenzit), mint ahogy az 1. ábrán látható. A szövetszerkezete nagyrészt ferritből tevődik össze és minimum 5 térfogatszázalék maradék ausztenitet tartalmaz, valamint kemény szövetelemeket, bénitet és martenzitet [4]. A TRIP acél legfőbb tulajdonsága, hogy jól alakítható, és ugyanakkor nagy szilárdsággal rendelkezik. A nagy szilárdság hidegalakítás hatására alakul ki. Az ausztenit alakítás következtében progresszíven martenzitté alakul át. A 2. ábrán látható egy TRIP350/600 (folyáshatár= 350Pa, szakítószilárdság= 600Pa) típusú acél szakítódiagramja (a feszültség a mérnöki nyúlás függvényében), összehasonlítva a DP350/600 és HSLA350/450 (High Strength Low Alloy) acélokkal. 2. ábra. Nagyszilárdságú acélok összehasonlító szakítódiagramjai. [2] A TRIP acélok többes fázisú szövetszerkezete többlépcsős hőkezeléssel érhető el (3. ábra). A melegszalag utolsó szúrása vagy a hidegszalag felhevítése után úgynevezett interkritikus hőkezeléssel, amely A 1 és A 3 hőmérsékletek között van 50-50% ferrit és ausztenit szövetszerkezet keletkezik. zt követően bénites mezőbe 350-500 C-ra kell hűteni az acélt 15-32 C/s hűtési sebességgel, összetételtől függően. A bénites mezőből 3-10 perc állandó hőntartást követően megkezdődik a viszonylag lassú (3-8 C/s) hűtés szobahőmérsékletre. 3. ábra. TRIP acél gyártása. [3] A TRIP acélokat a gépjárműipar előszeretettel használja karosszériaszerkezeti elemekhez, főleg az ütközési energiát elnyelő elemek részeként és az utascella oldalsó elemeiként. Ütközés alkalmával nagy energiát képes elnyelni, az anyag szilárdsága deformáció következtében növekszik, ami a fázisátalakulásnak köszönhető (a maradék ausztenit alakítás következtében martenzitté alakul). A másik ok amiért jól alkalmazható az autóipar számára, nagymértékű alakíthatósága, ami lehetővé teszi bonyolultabb formájú karosszériaelemek gyártását is. 2. llenállás ponthegesztés Az ellenállás-ponthegesztés vékony lemezek átlapolt kötésére alkalmas eljárás. Hengeres elektródákkal közrefogott lemezeken átfolyatott áram hatására a munkadarabban ellenállás lép fel, aminek következtében hő keletkezik, ez az úgynevezett ellenálláshő. A Joule Lenz-törvény (1) értelmében a szilárd fázisú elektromos vezetőn fejlődő hő(energia) függ az ellenállástól (R) és az ellenálláson átfolyó (I) áramerősségtől [5]: r t h 2 I( t) R( t) dt (1) t 0 llenállásponthegesztésnél kétféle ellenállásnak van szerepe az anyagok belső 228

A TRIP acél ponthegesztésének hatása ellenállásának és az érintkezésüknél fellépő átmeneti ellenállásnak [4]. 5. ábra. R a átmeneti ellenállás a T hőmérséklet és az elektródaerő F e függvényében [5] 4. ábra. Az ellenállás-ponthegesztés hevítési szakaszában érvényre jutó ellenállások [5] A 4. ábrán az R 4 az érintkezési és R 6 az átmeneti ellenállást, az R 5 az anyag belső ellenállását jelöli. Az érintkezési ellenállás az elektródák és a darabok érintkezési felületein van jelen, ami elhanyagolható az elektródák jó hővezető-képessége, ill. hűtése miatt. A lemezek belső ellenállása a hőmérséklet növekedésével számottevően nő, amit a számításoknál figyelembe kell venni. Az átmeneti ellenállás a nem tökéletesen sík felületek pontszerű érintkezési helyein létrejövő helyi áramsűrűség-növekedésből és a felületi szennyezettségből ered. Az átvezetett áram Joule-hője az alkalmazott nyomóerővel együtt a felületi érdességcsúcsokat ellapítja, a felületi szennyeződéseket roncsolja. Ilyen módon a két anyagdarab rövid idő múlva szinte tökéletes fémes érintkezésbe kerül egymással, aminek következtében az átmeneti ellenállás megszűnik. zt mutatja az 5. ábra [5]. A hőfejlődés az érintkezési zóna hőmérsékletét növeli, miáltal a fémes anyagok ellenállsát is növeli, vagyis az áramkörnek továbbra is a darabok érintkezésénél lesz a legnagyobb ellenállása, itt fejlődik a legtöbb hő [5]. A ponthegesztett kötés létrehozásának fázisait a következő ábrák (6a, 6b, 6c, 6d,6e, 6f) szemléltetik: 6a. ábra. A munkadarab pozicionálása az alsó elektróda érintkezésével, majd a felső elektróda elmozdulásával összezárás megkezdése [5] 229

Vajdics Dániel, Kovács-Coskun Tünde 6b. ábra. lektródák zárása, a szükséges elektródaerő kifejtése a munkadarabra [5] 6d. ábra. Lencse alakú ömledék létrejötte és növekedés. [5] 6c. ábra. Az elektródaerő hatása alatt a szekunder áramkör zárása [5] 6e. ábra. A szekunder áramkör nyitása után az elektródaerő fenntartása mellett a hegfürdő dermedése megkezdődik [5] 230

A TRIP acél ponthegesztésének hatása 6f. ábra. Az elektródák szétnyitása [5] Az ellenállás-ponthegesztés technológiáját megkülönböztethetjük lágy, illetve kemény munkarenddel. Ugyanazt a bevitt hőenergiát előállíthatjuk rövidebb ideig tartó nagyobb árammal és hosszabb ideig tartó kisebb árammal is. Az előbbi a kemény munkarend, amelyet jó hővezető fémeknél alkalmaznak, mint például az alumíniumnál, a réznél és ötvözeteinél. A lágy munkarend edződésre hajlamos acéloknál ajánlott, de akkor is alkalmazható, ha a hegesztőberendezés nem képes megfelelő teljesítményre. Ha lehet választani a két munkarend közül, akkor a kemény munkarend javasolt inkább, mert kevesebb veszteséggel járó, gazdaságosabb folyamat [5]. 2.1. Ponthegesztő berendezés A TRIP acélok kísérleti ponthegesztése egy PFB 116 típusú, párhuzamos löketű asztali ponthegesztőgépen történt (7. ábra). Főbb jellemzői: - névleges teljesítmény 50% x= 15kVA; - max. hegesztőáram: 9,2kA; - elektródaerő (6 bar esetén): 185daN; - üresjárati feszültség: 3,5V; - hasznos karkinyúlás: 275mm. 7. ábra. PFB 116 ellenállás ponthegesztőgép [6] A felső elektróda mozgatása pneumatikus működtetésű. Az elektródák vízhűtéssel vannak ellátva. A hegesztőgép PX1500 plus vezérléssel rendelkezik a hegesztési ciklus irányítására. Az időzítő egységidejét a hálózati periódus (50Hz) határozza meg, mely megfelel a másodperc 1/50-es részének. A gépen 9 programhely található: - előtartási idő (0-99 periódus); - áram felfutási idő (0-20 periódus); - hegesztési idő (0-99 periódus); - teljesítmény (0-99) - impulzusszám (1-20) - impulzus-szünet idő (0-99 periódus) - utótartási idő (0-99 periódus) - nyugalmi idő (0-99 periódus) - energia funkció (0-1) 2.2. Hegesztési paraméterek A ponthegesztésnél három paraméter változott, az áramerősség (I), hegesztési idő (t h ), valamint a hűtés jellege (vízhűtéssel vagy levegőn hűtve). 231

Vajdics Dániel, Kovács-Coskun Tünde 1. táblázat. Beállított hegesztési paraméterek Jelölés I [ka] t h [s] T1 5,9 30 (levegőhűtéssel) T2 6,3 25 (levegőhűtéssel) T3 5,9 30 (vízhűtéssel) T4 (vízhűtéssel) 6,3 25 A gépen beállítható többi érték állandó: - előtartási idő: 99 periódus - áramfelfutási idő: 20 periódus - impulzusszám: 1 - impulzusszünet idő:0 - utótartási idő: 5 periódus - nyugalmi idő: 0 - energiafunkció: 0 - elektródaerő (F h ): 1,85kN 3. Vizsgálatok A hegesztett próbadarabok minősítése nyíró-szakítóvizsgálattal történt. A pontkötésekhez ez a legáltalánosabban használt roncsolásos vizsgálat. A vizsgálat szakítógépen történik, amelynek során regisztrálásra kerül az erő, illetve az elmozdulás. Az elnyírt próbatestek mikroszkópi vizsgálattal és keménységméréssel is minősítésre kerültek. A hegesztett próbadarabok geometriai méretei a 8. ábrán láthatóak: 2. táblázat. TRIP700 kémiai összetétele (%- ban) [3] C n Si Al P S 0,2 1,7 0,35 0,5 0,112 0,008 A vizsgált próbatestek korrózióvédelmi okok miatt cinkbevonattal is el vannak látva. A TRIP700 acél szakítóvizsgálatához felhasznált próbatestek geometriai méreteit a 9. ábra mutatja. 9. ábra. Szakítópróbatest geometriai méretei. A vizsgálat egy 130kN mérési tartományú szabályozott hajtású orsós szakítógépen került végrehajtásra. A szakítás során az erő és a hozzá tartozó elmozdulás regisztrálása történt, amelyből számítható volt a szakítószilárdság. A szakítógép a próbatesteket 12 mm/min sebességgel húzta. A mérési eredmények átlagából számolt szakítószilárdság 695 Pa. 3.1 Nyíró szakítóvizsgálat A 3. táblázatban összesítve vannak a vizsgálat eredményei, a szakítóerő átlagolt értékei, illetve a heglencseátmérő átlagai. 3. táblázat. Vizsgálat eredményei 8. ábra. Próbatest geometriai méretei A kémiai összetétel a 2. táblázatban látható tömegszázalékban kifejezve: Jel F(kN) Heglencseátmérő (mm) T1 11,3 5 T2 11 5,6 T3 10,6 5,3 T4 11,3 5,1 232

A TRIP acél ponthegesztésének hatása 4. táblázat. A vizsgálat utáni hegpontok Jel Hegesztett kötés F(kN) képei T1 11,3 A hegesztett pontvarratok keresztmetszetének közepén Vickers-mikrokeménység mérést végeztünk. A 10. ábrán a mérés helye látható. A mérés ZWICK 3212 típusú optikai keménységmérő berendezésen történt. A keménységmérés 1,2 kg terheléssel történt. T2 11 T3 10,6 Jel 5. táblázat. Keménységértékek Áramerősség (ka) Vízhűtés Keménység (HV1,2) T1 5,9-500 T2 6,3-470 T3 5,9 van 510 T4 6,3 van 585 T4 11,3 A 4. táblázatban látható a szakítóerő és a hegesztett kötés szakítás utáni fényképe a négy különböző beállítás esetén. 4.2 Keménységmérés 5. egállapítások 1. A kötés nyíróerejét nem befolyásolta nagymértékben a hegesztés során az elektródahűtés, amely jól látható a 3. táblázatból. 2. A hegpont átmérője az alkalmazott paraméterektől kismértékben függött. 3. Keménység a hegpont közepén (5. táblázat) a hűtött próbadarab esetében megnőtt. 4. agasabb áramerősséggel hűtés nélkül végzett kísérletnél a hegközéppontban mért keménység alacsonyabb, valószínűleg a nagyobb bevitt hő megeresztette a kialakult hegpont szerkezetét, míg azonos áramerősséggel (nagyobb hőbevitel) és hűtéssel is végzett ponthegesztés esetén a keménység jelentősen nőtt. 5. Feltételezhető, hogy a hegesztett varrat mechanikai tulajdonságai javulnak, ha hegesztés után nem történik gyors hűtés, hanem biztosított a lassú lehűlés. Amennyiben a hegesztés során biztosítani tudnánk az acél gyártása során alkalmazott hűlési körülményeket, akkor a heg- 10. ábra. ikrokeménység-mérés helye 233

Vajdics Dániel, Kovács-Coskun Tünde pont és a hőhatásövezet szívóssága az alapanyagnak megfelelő lehetne. Szakirodalmi hivatkozások [1] Zsoldos I.: Különleges autóipari acélötvözetek, karosszériaelemek lemezanyagai. Széchenyi István gyetem. http://www.sze.hu/~zsoldos/valogatott_fejezete k_az_anyagtudomanybol_sc_leckek/kors zer%c5%b1_ac%c3%a9lok_lecke.pdf [2] Keeler, S., Sc.D. echanical etallurgy, enachem Kimchi,.Sc. Welding ngineering: Adavanced High-Strength Steels Appliaction Guidelines Version 5.0. 2014.május. http://309fbf2c62e8221fbaf0- b80c17cbaf20104b072d586b316c6210.r88.c f1.rackcdn.com/ahss_guidelines_v5.0_20 140514.pdf [3] Orosz Cs.: Nagyszilárdságú TRIP-acélok hegesztett kötéseinek vizsgálata. 2006. [4] Bagyinszki, Gy.; Bitay,.: Hegesztéstechnka I. eljárások és gépesítés. rdélyi úzeum- gyesület. Kolozsvár, 2010. [5] Szunyogh, L.: Hegesztés és rokon technológiák. Kézikönyv. Gépipari Tudományos gyesület, Budapest, 2007. [6] RH hegesztéstechnika: llenálláshegesztés katalógus 2013. http://www.rehm.hu/download/dokumentumok/ H_katalogus_2013_1.pdf 234