Sequential synchronous activity in neural network

Hasonló dokumentumok
Correlation & Linear Regression in SPSS

Cluster Analysis. Potyó László

Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet. Correlation & Linear. Petra Petrovics.

Correlation & Linear Regression in SPSS

Computational Neuroscience

Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet Nonparametric Tests

Angol Középfokú Nyelvvizsgázók Bibliája: Nyelvtani összefoglalás, 30 kidolgozott szóbeli tétel, esszé és minta levelek + rendhagyó igék jelentéssel

Supporting Information

On The Number Of Slim Semimodular Lattices

Synchronization of cluster-firing cells in the medial septum

Pletykaalapú gépi tanulás teljesen elosztott környezetben

A modern e-learning lehetőségei a tűzoltók oktatásának fejlesztésében. Dicse Jenő üzletfejlesztési igazgató

Supplementary materials to: Whole-mount single molecule FISH method for zebrafish embryo

Ensemble Kalman Filters Part 1: The basics

Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet. Nonparametric Tests. Petra Petrovics.

Mapping Sequencing Reads to a Reference Genome

A rosszindulatú daganatos halálozás változása 1975 és 2001 között Magyarországon

Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet Factor Analysis

Statistical Inference

Phenotype. Genotype. It is like any other experiment! What is a bioinformatics experiment? Remember the Goal. Infectious Disease Paradigm

Genome 373: Hidden Markov Models I. Doug Fowler

Performance Modeling of Intelligent Car Parking Systems

ANGOL NYELV KÖZÉPSZINT SZÓBELI VIZSGA I. VIZSGÁZTATÓI PÉLDÁNY

Klaszterezés, 2. rész

Create & validate a signature

Construction of a cube given with its centre and a sideline

Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet. Hypothesis Testing. Petra Petrovics.

THS710A, THS720A, THS730A & THS720P TekScope Reference

discosnp demo - Peterlongo Pierre 1 DISCOSNP++: Live demo

Bevezetés a kvantum-informatikába és kommunikációba 2015/2016 tavasz

KN-CP50. MANUAL (p. 2) Digital compass. ANLEITUNG (s. 4) Digitaler Kompass. GEBRUIKSAANWIJZING (p. 10) Digitaal kompas

Computer Architecture

Decision where Process Based OpRisk Management. made the difference. Norbert Kozma Head of Operational Risk Control. Erste Bank Hungary

Cloud computing. Cloud computing. Dr. Bakonyi Péter.

Dr. Sasvári Péter Egyetemi docens

Mezőgazdasági gépesítési tanulmányok Agricultural Engineering Research MŰANYAG CSOMAGOLÓ- ÉS TAKARÓ FÓLIÁK REOLÓGIAI VIZSGÁLATA

A forrás pontos megnevezésének elmulasztása valamennyi hivatkozásban szerzői jogsértés (plágium).

Cashback 2015 Deposit Promotion teljes szabályzat

FAMILY STRUCTURES THROUGH THE LIFE CYCLE

2. Local communities involved in landscape architecture in Óbuda

EN United in diversity EN A8-0206/419. Amendment

Választási modellek 3

MAKING MODERN LIVING POSSIBLE. Danfoss Heating Solutions

Gitárerősítő. Használati utasítás

T Á J É K O Z T A T Ó. A 1108INT számú nyomtatvány a webcímen a Letöltések Nyomtatványkitöltő programok fülön érhető el.

16F628A megszakítás kezelése

USER MANUAL Guest user

Sebastián Sáez Senior Trade Economist INTERNATIONAL TRADE DEPARTMENT WORLD BANK

Statistical Dependence

Fizikai kémiai és kolloidkémiai laboratóriumi gyakorlatok gyógyszerészhallgatók részére 2018/2019. tanév, II. félév. Név

A BÜKKI KARSZTVÍZSZINT ÉSZLELŐ RENDSZER KERETÉBEN GYŰJTÖTT HIDROMETEOROLÓGIAI ADATOK ELEMZÉSE

Flowering time. Col C24 Cvi C24xCol C24xCvi ColxCvi

A jövőbeli hatások vizsgálatához felhasznált klímamodell-adatok Climate model data used for future impact studies Szépszó Gabriella

STUDENT LOGBOOK. 1 week general practice course for the 6 th year medical students SEMMELWEIS EGYETEM. Name of the student:

Utasítások. Üzembe helyezés

(Asking for permission) (-hatok/-hetek?; Szabad ni? Lehet ni?) Az engedélykérés kifejezésére a következő segédigéket használhatjuk: vagy vagy vagy

Cloud computing Dr. Bakonyi Péter.

Ültetési és öntözési javaslatok. Planting and watering instructions

Modular Optimization of Hemicellulose-utilizing Pathway in. Corynebacterium glutamicum for Consolidated Bioprocessing of

ELEKTRONIKAI ALAPISMERETEK ANGOL NYELVEN

NEUTRÍNÓ DETEKTOROK. A SzUPER -KAMIOKANDE példája

Geokémia gyakorlat. 1. Geokémiai adatok értelmezése: egyszerű statisztikai módszerek. Geológus szakirány (BSc) Dr. Lukács Réka

Professional competence, autonomy and their effects

A TÓGAZDASÁGI HALTERMELÉS SZERKEZETÉNEK ELEMZÉSE. SZATHMÁRI LÁSZLÓ d r.- TENK ANTAL dr. ÖSSZEFOGLALÁS

HALLGATÓI KÉRDŐÍV ÉS TESZT ÉRTÉKELÉSE

There is/are/were/was/will be

First experiences with Gd fuel assemblies in. Tamás Parkó, Botond Beliczai AER Symposium

KELER KSZF Zrt. bankgarancia-befogadási kondíciói. Hatályos: július 8.

Kezdőlap > Termékek > Szabályozó rendszerek > EASYLAB és TCU-LON-II szabályozó rendszer LABCONTROL > Érzékelő rendszerek > Típus DS-TRD-01

Eladni könnyedén? Oracle Sales Cloud. Horváth Tünde Principal Sales Consultant március 23.

DR. BOROMISZA ZSOMBOR. A zalakarosi termáltó tájbaillesztése

Longman Exams Dictionary egynyelvű angol szótár nyelvvizsgára készülőknek

FÖLDRAJZ ANGOL NYELVEN

Forensic SNP Genotyping using Nanopore MinION Sequencing

EEA, Eionet and Country visits. Bernt Röndell - SES

Irodalmazás Hivatkozás a szövegben: Szövegközi idézés f ormátumai: I. (Számozás), [Számozás]

Irodalmazás. Szó szerinti idézés idézőjelben csak indokolt esetben.

Supplementary Table 1. Cystometric parameters in sham-operated wild type and Trpv4 -/- rats during saline infusion and

1. Gyakorlat: Telepítés: Windows Server 2008 R2 Enterprise, Core, Windows 7

7 th Iron Smelting Symposium 2010, Holland

MATEMATIKA ANGOL NYELVEN

MŰSZAKI TUDOMÁNY AZ ÉSZAK-ALFÖLDI RÉGIÓBAN 2010

PIACI HIRDETMÉNY / MARKET NOTICE

IP/09/473. Brüsszel, március 25

EN United in diversity EN A8-0206/445. Amendment

KOGGM614 JÁRMŰIPARI KUTATÁS ÉS FEJLESZTÉS FOLYAMATA

Intézményi IKI Gazdasági Nyelvi Vizsga

Hasznos és kártevő rovarok monitorozása innovatív szenzorokkal (LIFE13 ENV/HU/001092)

Report on the main results of the surveillance under article 11 for annex II, IV and V species (Annex B)

ELEKTRONIKAI ALAPISMERETEK ANGOL NYELVEN

Minta ANGOL NYELV KÖZÉPSZINT SZÓBELI VIZSGA II. Minta VIZSGÁZTATÓI PÉLDÁNY

FÖLDRAJZ ANGOL NYELVEN GEOGRAPHY

A TISZA FOLYÓ MODELLEZÉSE EGYDIMENZIÓS HIDRODINAMIKAI MODELLEL. TISZA-VÖLGYI MŰHELY alapító konferencia

Bird species status and trends reporting format for the period (Annex 2)

EN United in diversity EN A8-0206/482. Amendment

CONCERTO COMMUNITIES IN EU DEALING WITH OPTIMAL THERMAL AND ELECTRICAL EFFICIENCY OF BUILDINGS AND DISTRICTS, BASED ON MICROGRIDS. WP 5 Del 5.

FÖLDRAJZ ANGOL NYELVEN

Adatbázisok 1. Rekurzió a Datalogban és SQL-99

Supplementary Figure 1

Összefoglalás. Summary

Átírás:

Sequential synchronous activity in neural network Maxim Komarov, Grigory Osipov Nizhny Novgorod Lobachevsky University Johan Suykens Katolieke University Leuven

Contents Introduction Biological data Mathematical image of sequential activity Neuronal activity and synaptic coupling models Hodgkin-Huxley equations Equations of chemical synaptic connection Winnerless competition principle Bifurcation analysis Sequential switching of activity between clusters of neurons Conditions of sequential switching Synchronization of neurons in cluster Network with random connections Conclusions

Introduction The responses of neural systems to different external stimuli can show different transient dynamics which is the sequential in time switching between different metastable states. (O. Mazor, G. Laurent, Neuron,2005) This dynamics can be associated with existence of stable heteroclinic channel (SHC) in the phase space of corresponding neural model (V.S. Afraimovich et al. Int. J. of Bifurcation and Chaos, 2004; T. Nowotny and M.I.Rabinovich, PRL, 2007; M.I. Rabinovich et al., Science 2008).

Sequential increasing of frequency of two proection neurons (PN 1,2 ) of locust antennal lobe Odors evoke reliable temporal response patterns in proection neurons. Spike raster plots and histograms of the responses of two simultaneously recorded proection neurons in locust antennal lobe to the odour cherry (21 trials, one trial corresponds to one row). M.Wehr and G. Laurent, Nature, 1996

Sequential activation of neurons in HVC of birds R.H.R. Hahnloser et. al. Nature, 2002 Spike raster plot of eight HVC (RA) neurons recorded in one bird during singing. Each row of tick marks shows spikes generated during one rendition of the song (ten renditions are shown for each neuron)

Neurons in the rat s gustatory cortex generate a taste-specific sequential pattern. The top row shows the sequential activity among 10 cortex neurons in response to four taste stimuli (the ticks denoting the action potentials). The translation of the four states into firing rates for each stimulus are given on the bottom row. L.M. Jones et. al., PNAS, 2007

Nonlinear dynamics approach to neural system Neural activity can be modeled by the system of differential or difference equations. This fact allows to apply well-known methods and approaches of nonlinear dynamics and theory of oscillations to study the neural activity. From the point of view of dynamical systems theory we trying to understand various processes which take place in neuronal ensembles, to detect the role of different biological parameters and mechanisms in neural functions, and also to investigate the problems of storing and processing of information. One of the maor modern hypothesis is the following: sequential dynamics can be modeled by the dynamical system which consist stable heteroclinic channel in the phase space. (M.I.Rabinovich)

Stable heteroclinic channel (SHC) is a dynamical image of sequential behavior SHC is a set of traectories in the vicinity of heteroclinic skeleton that consists of saddles and unstable separatreces that connect their surroundings (V.S. Afraimovich, 2008) Mikhail I. Rabinovich, Ramon Huerta, Pablo Varona, Valentin S. Afraimovich Transient Cognitive Dynamics, Metastability, and Decision Making. PLOS computational biology, 2008.

Hodgkin-Huxley (H-H) model dv 3 4 C m = gl ( Vl V ) + g Nam h( VNa V ) + g K n ( VK V ) + I ext + dt dm dt dn dt dh dt ds dt = α ( V )(1 m ) β ( V ) m m = α ( V )(1 n ) β ( V ) n h n = α ( V )(1 h ) β ( V ) h = α[ T ](1 S ) βs h m n V membrane potential m, h, n gating variables α x ( V ), β x ( V ) - nonlinear functions of V. I syn

ds I dt syn = N i= 1 i Model of chemical synaptic coupling = α[ T ](1 S g i S i ) ( t)( E βs rev V coupling Time series of membrane potential V and a fraction of bind receptors S ); [T] concentration of transmitter [T] = 1 during 1 ms after spike and [T]=0 otherwise, g β - constants - α, i An efficient method for computing synaptic conductances based on a kinetic model of receptor binding A. Destexhe et.al., Neural computation, 1994

Inhibitory coupling (E rev =-10 mv) g 21 g < g * 21 g > g * 21 Not enough coupling strength to full suppression of postsynaptic neuron Full suppression (subthreshold oscillations in postsynaptic neuron)

Winnerless competition principle g = g 12 = g 23 = g 31 h = g 21 = g 13 = g 32 g = h > g * g > g * > h SIMMETRY OF COUPLING Coexistence of three limit cycles - L 1,2,3 (winner takes all) ASIMMETRY OF COUPLING Sequential switching of activity (winnerless competition)

Bifurcation in the models of the second type of excitability (H-H, Bonhoeffer-Van der Pol). We change a coupling. Red line cross-section of saddle torus T 1 with the plane (x2,y2). Traectories from the region B go to the stable limit cycle L 2, traectories from the region A go the stable limit cycle L 1 µ 1,2 multipliers of the limit cycle L1

Unstable torus T1 and stable limit cycle L1. Traectories (red and green) from the vicinity of T 1 go to the stable limit cycle L 2

Schematic illustration of traectories L 1 L 2 B A L 3 T 3

Saddle torus merges in the stable limit cycle subcritical Neimark-Sacker bifurcation Change of coupling strength. Multipliers and torus cross-section L 1

Sequential switching between clusters of neurons Neural network huge number of neurons and connections between them Is it possible to obtain sequential switching between groups (clusters) of neurons? What conditions for synaptic coupling provide sequential switching between clusters of neurons? Can we obtain a sequence larger than 3 states?

Conditions of occurrence of sequential switching between clusters Non- inhibitory coupled neurons form the clusters of simultaneous activity Clusters of neurons must be organized in graph with all-to-all connections Asymmetry of connections is necessary for origin of the sequential switching

EXAMPLE: Sequential switching of activity between clusters in network of N=1024 neurons. Each cluster consists of 256 neurons.

EXAMPLE: Synchronization of bursting activity Sequential dynamics leads to synchronization of bursting activity inside the clusters

Stable heteroclinic channel 100 80 S K3 +S K4 40 0 0 40 S K2 80 100 80 40 S K1 +S K4 0 S_k1 = sum of all s_i from the cluster K1

Network with random inhibitory connections Is it possible to obtain constructions which are able to demonstrate sequential dynamics in network with random inhibitory connections? If yes, then how many such constructions - functional subsystems - can arise in random network? Functional subsystem - a result of some external force

Network with random inhibitory connections The mean value of number of functional subsystems <K> which are able to demonstrate sequential dynamics can be estimated as follows: < K >= C n i n i 2 CnCN n m 2 m i= 1 Cm n n m E ( 1 ) ((1 (1 p) ) ) (1 n CN m - number of clusters, n - number of elements inside each cluster, N - size of the network, p probability of unidirectional connection between any two neurons p) n 2 m

The mean value of number of functional subsystems <K> which are able to demonstrate sequential dynamics m-number of clusters, n-number of elements inside each cluster, N-size of the network, p probability of connection between any two neurons Example: N=100, p=0.7, m=5, n=2 <K> =6000

Power law dependence of maximum <K> on the size of network N Huge network capacity: 40 Example: N=1000, m=5,n=9 <K>=10 functional subsystems

EXAMPLE: 30 randomly coupled neurons. Probability p=0.28. This network has 392 functional subsystems from m=3 clustres of n=3 neurons each. We take only 3 functional subsystems. I ext + I We changed.we added noise. We changed initial condtions dv 3 4 Cm = gl ( Vl V ) + g Nam h( VNa V ) + g Kn ( VK V I ) + + ext dt I syn 0 750 1500 time

Responses of the random network in the form of different active sequences of clusters to different sets of stimuli. In time (0:750) we force neurons from three clusters: K1=(1,3,18); K2=(20,25,27); K3=(9,21,29)

Switching and synchronization (Mean field voltage)

Conclusions Sequential dynamics in models of neuronal networks can be a result of arising of stable heteroclinic channels (SHC) in the phase space of the system. Subcritical Neimark-Sacker bifurcation. Even the networks with random inhibitory connections can contain huge number of functional subsystems - constructions which are able to demonstrate sequential dynamics Certain set of external stimuli on the network provides certain sequence of firing clusters of neurons Observed rhythmic behavior is stable against noise and flexible to the inputs to the sensory system

Heteroclinic channels

Bohnoeffer Van der Pol eqs.