SZENZOROK ÉS MIKROÁRAMKÖRÖK



Hasonló dokumentumok
SZENZOROK ÉS MIKROÁRAMKÖRÖK

MIKROELEKTRONIKAI ÉRZÉKELİK I. Major applications 10. ELİADÁS AKUSZTIKUS HULLÁMOK TERJEDÉSÉN ALAPULÓ ESZKÖZÖK

Akusztikus felületi hullámú TV A N R A S J

Optoelektronikai Kommunikáció. Az elektromágneses spektrum

Elektromágneses hullámok, a fény

Akuszto-optikai fénydiffrakció

2. ábra Soros RL- és soros RC-kör fázorábrája

KONDUKTOMETRIÁS MÉRÉSEK

X. Fénypolarizáció. X.1. A polarizáció jelenségének magyarázata

PÉCSI TUDOMÁNYEGYETEM Kémia Doktori Iskola. Új típusú rétegek optikai ammónia érzékelőkhöz. PhD értekezés Markovics Ákos

TUDOMÁNYOS DIÁKKÖRI DOLGOZAT

Ultrahang és elektromos impulzusok alkalmazása

AZ ÉGÉSGÁTLÁS KÖRNYEZETI HATÁSAINAK VIZSGÁLATA

Az oszcillátor olyan áramkör, amely periodikus (az analóg elektronikában általában szinuszos) jelet állít elő.

Mikrohullámok vizsgálata. x o

MŰSZAKI ISMERETEK. Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP /1/A

Elektromágneses módszerek

TERMÉK ADATLAP. *) Az IP védelmi besorolását, a hangszórót zárt dobozba építve, az elejét vizsgálva állapították meg.

A Föld belső szerkezete

ANYAGTECHNOLÓGIA. Betonfelületek vízzáróságát fokozó anyagok permeabilitása


DL 18/2 100 V Art. No DL 18/2 T 8 OHM Art. No TERMÉK ADATLAP. Kapcsolat: info@hangfalmania.hu Tel: +36/

Elektromágneses módszerek geofizikai-földtani alkalmazásai. Pethő Gábor (Miskolci Egyetem)

Hz U. oldat. R κ=l/ra. 1.ábra Az oldatok vezetőképességének mérése

A jövő anyaga: a szilícium. Az atomoktól a csillagokig február 24.

AZ ELEKTROMÁGNESES KOMPATIBILITÁS BEVEZETÉS

SZENZOROK ÉS MIKROÁRAMKÖRÖK 8. ELŐADÁS: AKUSZTIKUS HULLÁMÚ (PIEZOELEKTROMOS) ÉRZÉKELŐK

HÍRKÖZLÉSTECHNIKA. 2.ea. Dr.Varga Péter János

Oscillating Wave Test System Oszcilláló Hullámú Tesztrendszer OWTS

Nyomásérzékelés

Az optikai szálak. FV szálak felépítése, gyakorlati jelenségek

Kommunikáció. Ebben a fejlődési folyamatban három fontos paraméter van, mely alapvetően meghatározza mindegyik kommunikációfajta hatékonyságát:

Speciálkollégium. Dr. Fintor Krisztián Magyary Zoltán Posztdoktori Ösztöndíj TÁMOP A/ Nemzeti Kiválóság Program Szeged 2014

A tételekhez segédeszköz nem használható.

X. Szigetelésdiagnosztikai Konferencia

Intelligens Rendszerek Elmélete

Az infravörös spektroszkópia analitikai alkalmazása

2. OPTIKA 2.1. Elmélet Geometriai optika

Anyagszerkezettan és anyagvizsgálat (BMEGEMTAGK1)

Analitikai szenzorok második rész

MÛSZAKI INFORMÁCIÓK. Érzékelési távolság

5 Egyéb alkalmazások. 5.1 Akkumulátorok töltése és kivizsgálása Akkumulátor típusok

az elektromosság orvosi alkalmazásai

EÖTVÖS LABOR EÖTVÖS JÓZSEF GIMNÁZIUM TATA FELADATLAPOK FIZIKA. 11. évfolyam. Gálik András. A Tatai Eötvös József Gimnázium Öveges Programja

Budapesti Műszaki és Gazdaságtudományi Egyetem Építőmérnöki Kar

A SZEMCSEALAK ALAPJÁN TÖRTÉNŐ SZÉTVÁLASZTÁS JELENTŐSÉGE FÉMTARTALMÚ HULLADÉKOK FELDOLGOZÁSA SORÁN

Tantárgy: TELJESÍTMÉNYELEKTRONIKA Tanár: Dr. Burány Nándor Tanársegéd: Mr. Divéki Szabolcs 3. FEJEZET

17. Kapcsolok. 26. Mit nevezünk crossbar kapcsolónak? Egy olyan kapcsoló, amely több bemenet és több kimenet között kapcsol mátrixos módon.

HÍRADÁSTECHNIKA I. Dr.Varga Péter János

Janklovics Zoltán. Hálózatvédelem 2. Villámvédelem EMC Tel.: Túlfeszültség-védelem, EMC

Diagnosztika labor. Előadók: Kocsis Szürke Szabolcs Somogyi Huba Szuromi Csaba

Keverék összetételének hatása a benzinmotor üzemére

HORVÁTH GÉZÁNÉ * A hazai készletmodellezés lehetőségei az Európai Unióban

Az elektrosztatika törvényei anyag jelenlétében, dielektrikumok

MÁSODIK TÍPUSÚ TALÁLKOZÁS A MÁTRÁBAN CLOSE ENCOUNTERS OF THE SECOND KIND IN MÁTRA HILL

FIATAL MŰSZAKIAK TUDOMÁNYOS ÜLÉSSZAKA

3 Tápegységek. 3.1 Lineáris tápegységek Felépítés

Elektromágneses terek gyakorlat - 6. alkalom

Korszerű Diagnosztikai Módszerek

Hőképek feldolgozása: passzív és aktív termográfia

CCD detektorok Spektrofotométerek Optikai méréstechnika. Németh Zoltán

Egyszerû és hatékony megoldások

Mechatronikai rendszerek speciális érzékelői és aktuátorai

SC 4.7 ND. 4 Ohm - Art. No OHM - Art. No TERMÉK ADATLAP

Benzinmotor károsanyag-kibocsátásának vizsgálata

A ROBBANÓANYAGOK KEZELÉSBIZTOSSÁGÁRÓL

Elektropneumatika. 3. előadás

Áramvezetés Gázokban

GENERÁTOR. Összeállította: Szalai Zoltán

Készítette: Bujnóczki Tibor Lezárva:

SC-250. Áramlásmérő. meister. strömungstechnik. gmbh. Működési paraméterek. Alkalmazási terület. Mérési tartományok. Működési elv.

Mutatós műszerek. Lágyvasas műszer. Lapos tekercsű műszerek. Kerek tekercsű műszerek

Jármőipari EMC mérések

5. Tisztítás Felületek tisztítása HT40 PRO belső szélzsák tisztítása...14

SPEKTROFOTOMETRIAI MÉRÉSEK

TERMÉK ADATLAP. Az ARIA frekvenciamenet, impedancia menet karakterisztikája: Technical Data: Rated power Maximum power

SZENZOROK ÉS MIKROÁRAMKÖRÖK 16. ELŐADÁS: KÉMIAI ÉRZÉKELŐK I

MAGYAR RÉZPIACI KÖZPONT Budapest, Pf. 62 Telefon , Fax

Elektrokémiai módszerek

UV-LÁTHATÓ ABSZORPCIÓS SPEKTROFOTOMETRIA

Gerhátné Udvary Eszter

(11) Lajstromszám: E (13) T2 EURÓPAI SZABADALOM SZÖVEGÉNEK FORDÍTÁSA. (51) Int. Cl.: A61B 17/17 ( ) 11. ábra

Integrált áramkörök termikus szimulációja

Anyagszerkezettan vizsgajegyzet

A projekt eredetileg kért időtartama: 2002 február december 31. Az időtartam meghosszabbításra került december 31-ig.

7. elıadás KRISTÁLYFIZIKAI ALAPOK

A fény. Abszorpciós fotometria Fluoreszcencia spektroszkópia. A fény. A spektrumok megjelenési formái. A fény kettıs természete: Huber Tamás

Környezeti hatások vizsgálata laboratórium

Modern alkalmazások. Rendszerbe illesztés. Modern alkalmazások. Aktuátorok. Aktuátor (Munkahenger) Master KRC. Szelepek (Út-váltó, folytóvisszacsapó

TERMÉK ADATLAP. *) Az IP védelmi osztályt, a hangszórót zárt dobozba szerelve, front irányú behatások szempontjából állapították meg.

Definíció (hullám, hullámmozgás):

RONCSOLÁSMENTES VIZSGÁLATTECHNIKA

I. Atomszerkezeti ismeretek (9. Mozaik Tankönyv: oldal) 1. Részletezze az atom felépítését!

Óbudai Egyetem Kandó Kálmán Villamosmérnöki Kar Mikroelektronikai és Technológia Intézet. Mikro- és nanotechnika (KMENT14TNC)

A VÍZ OLDOTT SZENNYEZŐANYAG-TARTALMÁNAK ELTÁVOLÍTÁSA IONCSERÉVEL

ACTIVE frekvenciaváltó. Kezelési Kézikönyv 230V / 400V 0,55 kw 132,0 kw

Fizika belépő kérdések /Földtudományi alapszak I. Évfolyam II. félév/

Számítógépes irányítások elmélete (Súlyponti kérdések)

A tételhez nem használható segédeszköz.

Vastagréteg hangfrekvenciás oszcillátorok

Átírás:

SZENZOROK ÉS MIKROÁRAMKÖRÖK 3. ELŐADÁS: ÉRZÉKELŐ SZERKEZETEK ALAPTÍPUSAI ÉS ANYAGAI 2014/2015 tanév 2. félév 1 A szenzorok működésének két alapeleme a környezet és az érzékelőkben lévő specifikus anyagok kölcsönhatása, továbbá a szerkezetekben ennek hatására létrejövő olyan változások, melyek a jelkialakítást végzik. Az előadás áttekinti az érzékelő szerkezeteknek a jelkialakítás során a szenzorban lejátszódó paraméterváltozások szerinti csoportosítását. 2 1

ÉRZÉKELŐ SZERKEZETEK ALAPTÍPUSAI 1. Impedancia típusú érzékelők: a mérendő mennyiség változását kapacitás és/vagy ellenállás, vagy induktivitás változására vetítik. 2. Félvezető eszköz alapú típusok: a mérendő mennyiség változásait a karakterisztika és/vagy valamely jellemző paraméter megváltozásával követik. Pl. dióda karakterisztikájának, vagy egy FET nyitófeszültségének eltolódása. 3. Tömbi vagy felületi akusztikus hullámokon, illetve a hullámok terjedésén alapuló eszközöknél a rezonanciafrekvencia eltolódik vagy a fázistolás megváltozik. 3 ÉRZÉKELŐ SZERKEZETEK ALAPTÍPUSAI 4. A kalorimetrikus érzékelők működésének alapja azon hőmennyiség mérése (elnyelt vagy kibocsátott) melyet a detektálni kívánt fizikai jelenség (pl. sugárzás, kémiai reakció, stb.) hoz létre. 5. Elektrokémiai cellák: elektródpotenciál, cellaáram, és/vagy a cella áram megváltozása. 6. Optikai szálas érzékelők (viszonylag új szenzorgeneráció): a mérendő mennyiség megváltoztatja az átvezetett vagy visszavert fényhullám jellemzőit (intenzitás, polarizáció, frekvencia, fázis). 4 2

IMPEDANCIA TÍPUSÚ SZERKEZETEK: ELLENÁLLÁS ÉS KAPACITÁS Érzékelés: fajlagos ellenállás, illetve permittivitás megváltozása. Ennek hatására: Ellenállás, illetve kapacitás változás. 5 IMPEDANCIA TÍPUSÚ SZERKEZETEK Bizonyos esetekben (pl. piezoelektromos és piroelektromos érzékelőknél a síkkondenzátor generátoros üzemmódja is lehetséges, ennek alapja az elektromos polarizáció, illetve a felületi töltéssűrűség megváltozása. Ekkor nem az impedanciát mérik, bár a szerkezet azonos! 6 3

IMPEDANCIA TÍPUSÚ INTERDIGITÁLIS SZERKEZETEK Nagy aktív felület, jó kölcsönhatás a környezettel. Kis kapacitás és ellenállásértékek! Váltóáramú mérés: komplex impedancia helygörbe felvétele. 7 8 4

9 IMPEDANCIA TÍPUSÚ SZERKEZETEK: INDUKTIVITÁS Speciális alkalmazásokban induktív érzékelők is előfordulnak: tekercsek, illetve transzformátorok. Az önindukciós, illetve kölcsönös indukciós együttható a környezeti hatásokra megváltozik, pl. magnetoelasztikus átalakítók, vagy elmozdulásérzékelő transzformátorok. 10 5

INDUKTÍV ÁTALAKÍTÓK OSZTÁLYOZÁSA 11 VARIABLE-INDUCTANCE SENSORS Lineáris mozgásérzékelő 12 6

Variable differential transformer (LVTD) The LVDT is a variable-reluctance device, where a primary center coil establishes a magnetic flux that is coupled through a mobile armature to a symmetrically-wound secondary coil on either side of the primary. Two components comprise the LVDT: the mobile armature and the outer transformer windings. The secondary coils are series-opposed; wound in series but in opposite directions. When the moving armature is centered between the two series-opposed secondaries, equal magnetic flux couples into both secondaries; the voltage induced in one half of the secondary winding is 180 degrees out-of-phase with the voltage induced in the other half of the secondary winding. When the armature is moved out of that position, a voltage proportional to the displacement appears FÉLVEZETŐ DIÓDÁK MINT SZENZOROK A karakterisztika a környezeti hatásokra (hőmérsékletvátozás, töltéshordozógeneráció) eltolódik. Hőmérséklet-, fény- és sugárzás (EM, részecske) érzékelők. 14 7

PN-ÁTMENETES NUKLEÁRIS RÉSZECSKE ÉRZÉKELŐ Pn-átmenetes (p + -n - -n + dióda) sugárzásérzékelő: kb. 3eV energia kelt egy elektronlyukpárt, magasabb jelszint mint a klasszikus gáztöltésű érzékelőknél), jó linearitás széles energiatartományban, nagyobb érzékenység, kisebb helyfoglalás. FET TÍPUSÚ ÉRZÉKELŐK Szenzor effektus: gatepotenciál megváltozása a környezet hatására (felületi töltés vagy kilépési munka változás). 16 8

FET TÍPUSÚ ÉRZÉKELŐK Az ionszelektív érzékelők a folyadékok ionkoncentrációja meghatározására szolgálnak. Ennek fontos speciális esete a ph azaz a savasság/lúgosság mértékének meghatározása. Mikroelektronikai kivitel: félvezető alapú, lényegében FET/MOSFET szerkezet. A vezérlőelektróda (gate) szerepét maga a mérendő folyadék játssza. Az érzékelési folyamat kihasználja azt, hogy a FET töltésvezérelt eszköz. 17 FET TÍPUSÚ ÉRZÉKELŐK FET típusú mikroelektronikai kémiai- (és gáz-) érzékelők: ISFET - ion-selective FET OGFET - oxide-gate FET OSFET - oxide-semiconductor FET ADFET - adsorption-fet Pd-gate FET (GasFET) ChemFET (Chemical FET) 18 9

ISFET (CHEMFET) ION SENSITIVE FET MOSFET gate kontaktus nélkül. Ionátengedő réteggel nem csak ph mérésre alkalmas. ph mérés: potenciálkülönbség mérése az ionérzékeny és a referencia elektród között. 19 BIOSZENZOR: UREA ÉRZÉKENY ISFET Enzim: olyan katalizátor, mely csak egy bizonyos reakciót gyorsít (pl. inzulin glükóz). ENFET=ENzymeFET Az ureáz a vese működésével kapcsolatban van jelen a vérben, és katalizálja a következő reakciót: (NH 2 ) 2 CO+2H 2 O+H + 2NH 4+ +HCO 3 - Az oldat ph-ját befolyásolja a reakció, ez az ISFET-tel mérhető. 10

AKUSZTIKUS HULLÁMOK TERJEDÉSÉN ALAPULÓ ESZKÖZÖK Piezoelektromosságon alapuló eszközök. Tömbi, illetve felületi akusztikus hullámok. Rezonátor típus: állóhullám, a rezonanciafrekvencia eltolódása mérhető. Hullámvezető típus: hullámterjedési tulajdonságok megváltozása fázistolás révén mérhető. Váltakozó feszültség mechanikai hullám Mechanikai hullám elektromos polarizáció 21 AKUSZTIKUS HULLÁMÚ ESZKÖZÖK Piezoelektromos eszközök, amelynek belsejében vagy felületén akusztikus hullámok alakulnak ki, ezek jellemzői változnak az érzékelés során. Működésük alapja, hogy bennük, elektromos váltakozó feszültség rákapcsolásával akusztikus mechanikus hullámok kelthetők,a mechanikai hullámok pedig elektromos polarizáció változást, és így váltakozó feszültséget generálnak. Ha a generált villamos feszültséget visszacsatoljuk a mechanikai hullámok keltését szolgáló rendszerre, a rendszer rezonanciába kerül. Érzékelőkben a rezonanciafrekvencia a mérendő paraméter függvényében eltolódik, a kimenőjel tehát egy kvázidigitális elektromos frekvenciajel. 22 11

AKUSZTIKUS HULLÁMÚ ESZKÖZÖK A tömbi akusztikus hullámú eszközök síkkondenzátor jellegű szerkezetében ez a visszacsatolás a struktúrán belül megtörténik. A felületi akusztikus hullámú érzékelőkben piezoelektromos hordozókon kialakított interdigitális elektródák keltik és veszik a felületi hullámokat, az oszcillációt és az állóhullám-keltést az erősítőn keresztül történő visszacsatolás biztosítja. A felületi érzékelők előnye hogy a relatív frekvencia változás független az eszköz saját tömegétől, valamint arányos a rezonanciafrekvenciával, így nagyobb frekvenciákon nagyobb érzékenység érhető el (tömbi: 6-20 MHz között 0.1 ng/mm 2, felületi: GHz tartomány, 0.05 pg/mm 2 ) 23 PIEZOELEKTROMOS HATÁS Piezoelektromosság (görög πιεζο összenyom): kristályelektromosság, nyomás v. húzás (mechanikai feszültség) hatására fellépő töltésszétválasztódás (polarizáció). Anizotrop kristályokban a nyomás (húzás) hatására a szemközti felületen ellentétes előjelű elektromos töltések lépnek fel. A mechanikai igénybevétel hatására dipólusok keletkeznek (töltésszétválasztás, a pozitív és negatív töltések súlypontjai eltolódnak), illetve a meglévő dipólusok iránya megváltozik (pl. elfordulnak), így a felületek feltöltődnek. A töltések előjele megváltozik, ha a nyomófeszültséget húzófeszültségre váltják át. 12

MIÉRT A KVARC? Of the large number of piezoelectric materials available today, quartz is employed preferentially in transducer designs because of the following excellent properties: high material stress limit, around 100 MPa (~ 14 km water depth) temperature resistance (up to 500 C) very high rigidity, high linearity and negligible hysteresis almost constant sensitivity over a wide temperature range ultra high insulation resistance (10 +14 Ω) allowing low frequency measurements (<1 Hz) 25 RUGALMAS HULLÁMOK a. Tömbi longitudinális hullám (bulk longitudinal wave) végtelen kiterjedésű anyagban. b. Tömbi transzverzális hullám (bulk transverse wave) végtelen kiterjedésű anyagban. c. Felületi akusztikus (Rayleigh-) hullám (surface (Rayleigh) wave) félvégtelen mintában. A behatolási mélység ~λ nagyságrendű. d. Lemez (Lamb-) hullámok (plate waves (Lamb waves)), d < λ. 26 13

Hullám-és rezgési modusok akusztikus hullámú érzékelő eszközökben TSM - thickness shear mode: tömbi transzverzális módus (más elnevezés: BAW - bulk acoustic wave, tömbi akusztikus hullám) SAW - surface acoustic wave: AFH - akusztikus felületi hullám FPW - flexural plate wave: Lamb-hullám ("meghajló" módus") APM - acoustic plate mode: akusztikus "lemez" módus 27 ESZKÖZÖK CSOPORTISÍTÁSA Mérési/érzékelési lehetőségek akusztikus rezonátorokkal és késleltető eszközökkel. 28 14

KVARC MIKRO- ÉS NANOMÉRLEG Tömbi akusztikus hullámú eszköz, síkkondenzátor jellegű szerkezet. Kvarc mikromérleg 29 AFH (SAW) TÍPUSÚ SZENZOR Az AFH típusú érzékelőben egy szelektív gázadszorbens réteggel bevont és egy bevonat nélküli eszköz egy-egy RF oszcillátort alkot. Az abszorbeált gáz mennyiségétől függően megváltoznak a felületi akusztikus hullámok terjedési tulajdonságai (sebessége) és ez elhangolja az oszcillátort. A két oszcillátor jeléből egy keverővel a különbségi frekvenciával arányos jelet állítanak elő, mely egyben arányos az érzékelőrétegen abszorbeált gáz mennyiségével. 30 15

ALKALMAZÁSOK A kvarc oszcillátor (tömbi akusztikus hullám, bulk acoustic wave, BAW) és az akusztikus felületi hullámú (AFH, surface acoustic wave, SAW) eszköz egyaránt használható tömegváltozás érzékelésére. Különböző részecskék megkötődése a felületen tömegváltozást és így frekvenciaváltozást eredményez. Ha a felületen adszorbens réteg van, akkor a kvarc mikromérleg vagy az AFH eszköz mint kémiai- vagy gázérzékelő funkcionál. 31 KALORIMETRIKUS ÉRZÉKELŐK Az érékelés alapelve: a környezeti hatás által előidézett hőmérséklet-különbség mérése. Környezeti hatás: hőközlés, hőelvonás, vagy a hőelvezetési viszonyok megváltozása. Hatások pl.: endo- vagy exoterm kémiai reakció; hősugárzás vagy más sugárzás hőhatása; hőáram vagy áramló közeg hőszállítása. Működtetés: általában a környezettől eltérő, stabilizált hőmérsékleten (fűtés vagy hűtés szükséges). 32 16

KALORIMETRIKUS ÉRZÉKELŐK katalitikus bevonat Kalorimetrikus érzékelők elvi felépítése. Pt-ellenállás: fűtés és érzékelés. A katalitikus bevonat elindítja a mérendő komponens kémiai reakcióját: hőtermelés vagy hőelvonás. 33 KALORIMETRIKUS ÉRZÉKELŐK Működési módok: Adiabatikus működési mód: A két fűtőteljesítmény megegyezik, a hőmérsékletkülönbséget detektálják. Izotermikus működési mód: az érzékelő elem fűtőteljesítményét változtatják míg a hőmérséklete meg nem egyezik a referenciaelemével. A fűtőteljesítmény változását detektálják. 34 17

35 ELEKTROKÉMIAI CELLÁK MINT ÉRZÉKELŐK Az elektrokémiai cellákat elterjedten használják kémiai mennyiségek (pl. ionok és oldott gázok koncentrációja) meghatározására, valamint újabban az enzimatikus és immunérzékelőkben. 36 18

ELEKTROKÉMIAI CELLÁK MINT ÉRZÉKELŐK A legegyszerűbb esetben az elektrokémiai cella minimum két elektródából és a közöttük lévő ionvezető anyagból (elektrolit) áll. Mérendő közeg (elektrolit) a cellában Membrán: vékony üveg réteg. Mindkét elektróda vezető elektrolittal van töltve Amikor ionok diffundálnak át a membránon, potenciálkülönbség jön létre a membrán két oldalán. 37 ELEKTROKÉMIAI CELLÁK MŰKÖDTETÉSE Működtetés: egyensúlyi vagy stacionárius állapotban, tranziens válaszok is érzékelhetők Üzemmódok: potenciometrikus, amperometrikus (voltammetrikus), vezetőképesség mérés (konduktometria) 38 19

OPTIKAI HULLÁMVEZETŐKÖN ALAPULÓ ÉRZÉKELŐK Érzékelési elv: a mérendő mennyiség megváltoztatja az átvezetett vagy visszavert fényhullám jellemzőit (intenzitás, polarizáció, frekvencia, fázis). Generátor típusú működés is lehetséges: maga a mérendő közeg egyben a fényforrás is (pl. kemolumineszcencia). 39 OPTIKAI HULLÁMVEZETŐKÖN ALAPULÓ ÉRZÉKELŐK Intenzitásmérés: az áthaladó vagy visszavert fény intenzitását mérik. Spektrumanalízis: az áthaladó vagy visszavert fény spektrumának megváltozását mérik. Gyakorlatban adott hullámhosszon mért intenzitásváltozás mérésével helyettesítik. Fázisváltozás mérése: Terjedő vagy áthaladó fény fázisának eltolódását mérik. Ekkor a gerjesztés monokromatikus és koherens kell, hogy legyen. A fáziskülönbséget interferométerben intenzitásmérésre vezetik vissza. Polarizáció változásának detektálása: poláros gerjesztésű fény polárszögének megváltozását mérik. Polárszűrőkkel szintén intenzitásmérésre vezetik vissza. 40 20

KÖPENYBÁZISÚ ÉRZÉKELŐ Működési mechanizmus: A köpenyben megváltoznak az optikai paraméterek (törésmutató, abszorpció), ennek révén megváltoznak a fényvezető szál terjedési és átviteli paraméterei. 41 OPTÓD/OPTRÓD Optód: Hasonlít az elektródra, de optikai elven működik. Általában két optikai szálból áll (be-kimenet). Működése az optódvégen elhelyezett anyagok által előidézett spektrális változásokon, vagy az emittált fény jellemzőinek változásán alapul. Az optódvégen elhelyezett indikátor színváltozása miatt a reflektált fény spektruma megváltozik a gerjesztéshez képest - abszorpció változáson alapuló optód. 42 21

OPTÓD 43 OPTÓD/OPTRÓD Fluoreszcencián alapuló: az optródok anyaga szekunder fényt emittál, mely a gerjesztő fénysugártól eltérő tulajdonságokat mutat. Ennek környezeti hatásokra történő spektrális változásait lehet az érzékelőkben felhasználni. Kemilumineszcencián vagy biolumineszcencián alapuló érzékelőkben nincs szükség gerjesztő fényforrásokra, a katalizált fényemissziót lehet érzékelésre használni. 44 22

FÉNYSZÁLAS INTERFEROMÉTER ÉRZÉKELŐK Interferométer működési elve: a két optikai ág eltérő hatásnak van kitéve. A referenciaág a külső hatások ellen védve van, a másik ág (szenzor) a külső hatásokra megváltoztatja optikai tulajdonságait, pl. hossz vagy törésmutató. Ezáltal a két ág között optikai úthossz különbség jön létre. 45 23