Áram mágneses hatása, elektromágnes, váltakozó áram előállítása, transzformálása

Hasonló dokumentumok
Áram mágneses hatása, elektromágnes, váltakozó áram előállítása, transzformálása

Mágnesesség, indukció, váltakozó áram Tudománytörténeti háttér Már i. e. 600 körül Thalész felfedezte, hogy Magnesia város mellett vannak olyan

Mágnesesség, indukció, váltakozó áram Tudománytörténeti háttér Már i. e. 600 körül Thalész felfedezte, hogy Magnesia város mellett vannak olyan

Elektromágneses indukció, váltakozó áram

Mágnesesség, elektromágnes, indukció Tudománytörténeti háttér Már i. e. 600 körül Thalész felfedezte, hogy Magnesia város mellett vannak olyan talált

Mágnesesség, indukció, váltakozó áram Tudománytörténeti háttér Már i. e. 600 körül Thalész felfedezte, hogy Magnesia város mellett vannak olyan

Indukció Ha vezetéket vagy tekercset mozgatunk mágneses térben a vezetékben, tekercsben feszültség keletkezik. Ugyanez történik, ha nem a tekercs

Az áram hatásai, áram folyadékokban, gázokban, félvezetőkben

Elektromágneses indukció, váltakozó áram

Az elektromágneses indukció jelensége

Mágneses mező jellemzése

Elektromágnesség tesztek

Időben állandó mágneses mező jellemzése

Elektromágneses indukció kísérleti vizsgálata

A mágneses tulajdonságú magnetit ásvány, a görög Magnészia városról kapta nevét.

Az elektromágneses indukció jelensége

Elektromosság, áram, feszültség

Elektromos áram, áramkör, kapcsolások

MÁGNESES INDUKCIÓ VÁLTÓÁRAM VÁLTÓÁRAMÚ HÁLÓZATOK

Elektromos ellenállás, az áram hatásai, teljesítmény

Mágneses mező tesztek. d) Egy mágnesrúd északi pólusához egy másik mágnesrúd déli pólusát közelítjük.

Elektromos áram, egyenáram

Fizika Vetélkedő 8 oszt. 2013

A kísérlet, mérés megnevezése célkitűzései: Váltakozó áramú körök vizsgálata, induktív ellenállás mérése, induktivitás értelmezése.

2.) Fajlagos ellenállásuk nagysága alapján állítsd sorrendbe a következő fémeket! Kezd a legjobban vezető fémmel!

Mágneses mező jellemzése

Ha valahol a mágneses tér változik, akkor ott a tér bizonyos pontjai között elektromos potenciálkülönbség jön létre, ami például egy zárt vezető

Négypólusok helyettesítő kapcsolásai

Elektromos ellenállás, az áram hatásai, teljesítmény

1 kérdés. Személyes kezdőlap Villamos Gelencsér Géza Simonyi teszt május 13. szombat Teszt feladatok 2017 Előzetes megtekintés

Fizika 8. oszt. Fizika 8. oszt.

Elektromos töltés, áram, áramkörök

FIZIKA II. Az áram és a mágneses tér kapcsolata

7. L = 100 mh és r s = 50 Ω tekercset 12 V-os egyenfeszültségű áramkörre kapcsolunk. Mennyi idő alatt éri el az áram az állandósult értékének 63 %-át?

FIZIKA. Váltóáramú hálózatok, elektromágneses hullámok

IDŐBEN VÁLTOZÓ MÁGNESES MEZŐ

TestLine - Fizika 8. évfolyam elektromosság 2. Minta feladatsor

Elektromágnesség tesztek

71. A lineáris és térfogati hőtágulási tényező közötti összefüggés:

Orvosi jelfeldolgozás. Információ. Információtartalom. Jelek osztályozása De, mi az a jel?

Gépészmérnöki alapszak, Mérnöki fizika 2. ZH, december 05. Feladatok (maximum 3x6 pont=18 pont)

Elektromos áram, áramkör

A munkavégzés a rendszer és a környezete közötti energiacserének a D hőátadástól eltérő valamennyi más formája.

ELEKTROMOSSÁG ÉS MÁGNESESSÉG

Fizika II. tantárgy 4. előadásának vázlata MÁGNESES INDUKCIÓ, VÁLTÓÁRAM, VÁLTÓÁRAMÚ HÁLÓZATOK 1. Mágneses indukció: Mozgási indukció

TestLine - Fizika 8. évfolyam elektromosság alapok Minta feladatsor

Nagyállattenyésztési és Termeléstechnológiai Tanszék VILLAMOSÍTÁS. Gépjármű-villamosság. Készítette: Dr.Desztics Gyula

MÁGNESESSÉG. Türmer Kata

A tanítási óra anyag: A villamos energia termelése és szállítása. Oktatási feladat: Villamos energia termelésének és szállításának lépései

EGYENÁRAM. 1. Mit mutat meg az áramerısség? 2. Mitıl függ egy vezeték ellenállása?

Magnesia. Itt találtak már az ókorban mágneses köveket. Μαγνησία. (valószínű villámok áramának a tere mágnesezi fel őket)

MÉSZÁROS GÉZA okl. villamosmérnök villamos biztonsági szakértő

Elektrotechnika. Ballagi Áron

TARTALOMJEGYZÉK. Előszó 9

A teljes elektromágneses spektrum

Gyakorlat 34A-25. kapcsolunk. Mekkora a fűtőtest teljesítménye? I o = U o R = 156 V = 1, 56 A (3.1) ezekkel a pillanatnyi értékek:

Elektromos áram, egyenáram

EGYFÁZISÚ VÁLTAKOZÓ ÁRAM

1. Milyen módszerrel ábrázolhatók a váltakozó mennyiségek, és melyiknek mi az előnye?

Használható segédeszköz: szabványok, táblázatok, gépkönyvek, számológép

Az elektromágneses indukció jelensége

Periódikus mozgás, körmozgás, bolygók mozgása, Newton törvények

Az áram hatásai, az áram munkája, teljesítménye Hőhatás Az áramló elektronok beleütköznek a vezető anyag részecskéibe, ezért azok gyorsabb

AZ EGYENÁRAM HATÁSAI

Az elektromágneses tér energiája

Mechanikai hullámok. Hullámhegyek és hullámvölgyek alakulnak ki.

2. Ideális esetben az árammérő belső ellenállása a.) nagyobb, mint 1kΩ b.) megegyezik a mért áramkör eredő ellenállásával

a) Valódi tekercs b) Kondenzátor c) Ohmos ellenállás d) RLC vegyes kapcsolása

Orvosi Fizika 14. Bari Ferenc egyetemi tanár SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet

= Φ B(t = t) Φ B (t = 0) t

Gyakorlat 30B-14. a F L = e E + ( e)v B képlet, a gravitációs erőt a (2.1) G = m e g (2.2)

FIZIKA KÖZÉPSZINTŐ SZÓBELI FIZIKA ÉRETTSÉGI TÉTELEK Premontrei Szent Norbert Gimnázium, Gödöllı, május-június

Számítási feladatok megoldással a 6. fejezethez

Hullámok, hanghullámok

Mágneses erőtér. Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat. A villamos forgógépek mutatós műszerek működésének alapja

Számítási feladatok a 6. fejezethez

MÁGNESES TÉR, INDUKCIÓ

ALAPFOGALMIKÉRDÉSEK VILLAMOSSÁGTANBÓL 1. EGYENÁRAM

FIZIKA II. Az áram és a mágneses tér kapcsolata

Mágnességtan, transzformátor Fizika 8. Szaktanári segédlet

Elektrotechnika 11/C Villamos áramkör Passzív és aktív hálózatok

Irányítástechnika Elıadás. Relék. Relés alapkapcsolások

Váltakozó áram. A töltések (elektronok) a vezetővel periodikusan ismétlődő rezgő mozgást végeznek

LI 2 W = Induktív tekercsek és transzformátorok

Elektromos áram, egyenáram

-2σ. 1. A végtelen kiterjedésű +σ és 2σ felületi töltéssűrűségű síklapok terében az ábrának megfelelően egy dipól helyezkedik el.

A természetes energia átalakítása elektromos energiáva (leckevázlat)

Elektromos áram. Vezetési jelenségek

Hálózati egyenirányítók, feszültségsokszorozók Egyenirányító kapcsolások

Fizika minta feladatsor

Tételek Elektrotechnika és elektronika I tantárgy szóbeli részéhez 1 1. AZ ELEKTROSZTATIKA ALAPJAI AZ ELEKTROMOS TÖLTÉS FOGALMA 8 1.

Újpesti Bródy Imre Gimnázium és Ál tal án os Isk ola

9. évfolyam. Osztályozóvizsga tananyaga FIZIKA

Maghasadás, láncreakció, magfúzió

Egyenáram tesztek. 3. Melyik mértékegység meghatározása nem helyes? a) V = J/s b) F = C/V c) A = C/s d) = V/A

VILLANYSZERELŐ KÉPZÉS MÁGNESES TÉR ÖSSZEÁLLÍTOTTA NAGY LÁSZLÓ MÉRNÖKTANÁR

Rezgőmozgás, lengőmozgás

Mágneses indukcióvektor begyakorló házi feladatok

2. ábra Változó egyenfeszültségek

Newton törvények, lendület, sűrűség

Átírás:

Áram mágneses hatása, elektromágnes, váltakozó áram előállítása, transzformálása A feltekercselt vezeték; tekercs, amelyben áram folyik, rúdmágnesként viselkedik, olyan mágneses tere lesz, mint a rúdmágnesnek. Lesz Északi és Déli pólusa és vonzza a vasat. Elnevezése: elektromágnes Az elektromágnes belsejében kialakuló mágneses tér, a mágneses indukció (B) nagysága függ a tekercs menetszámától, hosszától, a tekercsben folyó áram erősségétől, és a tekercsben levő anyagtól (pl. vas esetén nagyobb a mágneses tér erőssége). A mágneses tér erősségének B -nek mértékegysége: T (Tesla)

Példák az elektromágnes alkalmazásaira: Mágneses emelődaru: Bekapcsolva mágneses lesz és vonzza a vasat, amit fel tud emelni, kikapcsolva leteszi. Távkapcsoló relé Az egyik áramkör bekapcsolásakor az abban levő elektromágnes magához húzza a másik áramkör kapcsolóját és ezzel bekapcsolja a másik áramkört. Arra használják, hogy a nagy áramú (ezért veszélyes) 2. áramkört egy kis áramú (veszélytelen) áramkör bekapcsolásával lehessen távolról bekapcsolni. pl. Vasúti sínek átkapcsolása kapcsolótáblán, ipari berendezések be és kikapcsolása asztali kapcsolótáblán, közvilágítás vagy reflektorok távkapcsolása.

Automata biztosíték Ha abban az áramkörben, amiben a biztosíték van, veszélyesen megnő az áram, akkor az elektromágneses biztosítékban levő tekercsnek megnő a mágneses tere, ami magához húz egy kapcsolót, ami kikapcsolja az egész áramkört, így megakadályozza, hogy a megnőtt áram problémát okozzon. Hangszóró, fülhallgató Az elektromágnes ugyanolyan frekvenciával mozgatja az előtte levő vaslemezt (vonzza a membránt), mint amilyen frekvenciájú áram érkezik rá. A hang vagy zene áramjelét alakítja át a membrán rezgésévé. A membrán a rezgését átadja a levegőnek, és ez a rezgés így hanghullámot hoz létre.

Elektromotor A tekercs egy mágneskeretben van. A tekercsre kapcsolt áram hatására mágneses lesz és megpróbál beállni a mágneskeret Észak-Déli pólusai irányába, és elfordul. Ekkor az áram irányát megfordítják így továbbfordul Dél-Északi irányba, és így tovább az áram hatására folyamatosan forog a mágneskeretben. Ezt a forgást áttételekkel át lehet adni bármilyen forgó szerkezetnek (pl. kerék, keverőlapát, stb. ) Így működik pl. az elektromos autó, elektromos vonat, trolibusz, fúrógép, körfűrész, turmixgép, mosógép, ventilátor, körhinta, fűnyíró, elektromos borotva, stb.

Mozgó töltésekre (áram) ható erő mágneses térben Lorentz erő Ha egy mágneses térben levő vezetékre áramot kapcsolnak akkor a vezeték elmozdul, mágneses erő hat rá. Ez akkor is igaz, ha nem vezetékben folyó áramról (sok töltés áramlik), hanem csak 1 mozgó töltésről van szó. Vagyis mágneses térben mozgó töltésre erő hat. Ezt az erőt nevezik Lorentz erőnek. Ennek az erőnek az az oka, hogy az áramnak mágneses tere van (elektromágnes) és ez a mágneses tér taszítást, vonzást fejt ki a vezeték vagy töltés körül levő másik mágneses térre. A Lorentz erő védi meg a földi lakosságot a világűrből érkező töltésektől, amelyek a szervezetünkben az ionizáló hatásuk miatt káros kémiai reakciókat hoznának létre. A Föld mágneses tere viszont eltéríti (Lorentz erő) a felszín felé haladó töltéseket a Föld sarkai felé. Ott a töltések a levegő részecskékkel ütközve fényt bocsátanak ki, ezt látjuk sarki fényként. A Lorentz erőt használják még részecskegyorsítókban, ahol tudományos kutatás céljából különböző részecskéket gyorsítanak fel mágneses térben és más részecskékkel ütköztetik, és megfigyelik az ütközések eredményeit, új részecskék létrejöttét.

Indukció Ha vezetéket vagy tekercset mozgatunk mágneses térben a vezetékben, tekercsben feszültség keletkezik. Ugyanez történik, ha nem a tekercs mozog, hanem a mágneses tér változik a tekercs belsejében. Ezt a két jelenséget külön nevezték el, de a hatás ugyanaz: Mozgási indukció: A tekercs mozog mágneses térben. Nyugalmi indukció: A tekercs áll és a mágneses tér változik a tekercs belsejében. A keletkező elektromos feszültség nagysága akkor nagyobb, ha - gyorsabb a tekercs mozgása, vagy a mágneses tér változása, - nagyobb a tekercs menetszáma, - nagyobb a mágneses tér Az energiamegmaradás miatt a keletkező feszültség, áram iránya olyan irányú, hogy akadályozza az őt létrehozó mágneses tér változását. Ezt a törvényt Lenz törvényének nevezik. pl. egy rézcsőben leeső mágnest a rézcsőben indukált áram mágneses tere fékezi, lassabban esik le.

Az indukció felhasználásai: pl. dinamó, vagy nagyobb fajtája a generátor, vagy indukciós főzőlap A legfontosabb gyakorlati alkalmazása az elektromos áram előállítása. Ezt végzi a generátor: Mágneses térben forgatott tekercsben váltakozó irányú feszültség keletkezik. Forgó mozgás felhasználásával lehet így elektromos feszültséget, áramot előállítani. A keletkezett feszültség és áram iránya (+ és -) azonos periódusonként változik, mert a tekercs egyik oldala a mágnesnek hol az egyik (Északi) hol a másik (Déli) pólusa előtt fordul el. A generátor elődjét a dinamót Jedlik Ányos fedezte fel. Váltakozó áram - A generátor által előállított feszültség nagysága és iránya szinuszosan változik. A váltakozás egy periódusának időtartamát periódusidőnek nevezik, ennek reciproka a frekvencia, ami megadja, hogy 1 másodperc alatt hány periódus változik. Effektív feszültségnek nevezik a váltakozó feszültségnek azt az értékét, aminek megegyezik a hatása, teljesítménye egy ugyanolyan nagyságú egyenfeszültséggel.

Effektív feszültség számítása a maximális értékből: Hálózati feszültség A Magyarországon használt hálózati feszültség is váltakozó feszültség, effektív értéke 220-230 V, a frekvenciája 50 Hz. Transzformátor Sok elektromos eszköz működik kisebb feszültségen, mint a hálózati feszültség. Pl. mobiltelefon 3-5 V, számítógép 5 V, hifi, erősítő-keverő különböző áramkörei, borotva, fax, TV különböző áramkörei, elektromos hangszerek (pl. szintetizátor), Az ilyen feszültség előállításához a 230 V-os feszültséget le kell csökkenteni. Ezt végzi a transzformátor. Ilyen van a tápegységekben, adapterekben, töltőkben. Két tekercsből áll. Az első, amelyre rákapcsolják azt a feszültséget, amit át kell alakítani, az a primer tekercs. A primer tekercs belsejében a rákapcsolt váltakozó feszültség, áram hatására változó mágneses tér alakul ki (elektromágnes). E mellé helyezett másik tekercsben (elnevezése: szekunder tekercs) a mágneses tér változás hatására feszültség keletkezik.

A szekunder tekercsben keletkezett feszültség (U 2 vagy U sz ) és a primer tekercsre kapcsolt feszültség (U 1 vagy U p ) aránya beállítható a két tekercs menetszámának arányával (N 2 vagy N sz, N 1 vagy N p ): vagy U 1 /U 2 = N 1 /N 2 A transzformátor teljesítménye A transzformátor mindkét tekercsében az áram teljesítménye ugyanakkora. Képletben: P 1 = P 2 U 1 I 1 = U 2 I 2

Mivel az áram hővesztesége annál nagyobb, minél nagyobb az áramerősség, ezért a nagy távolságokra célszerű kis áramon vezetni az erőművekben előállított feszültséget. Kis áramhoz nagy feszültség tartozik a transzformátorban a fenti teljesítmény képlet szerint. Tehát az erőművekben a generátor által előállított feszültséget, áramot távvezetékeken nagy feszültségre (több 10-100 ezer Volt) feltranszformálva vezetik és a települések előtt egy transzformátor állomás letranszformálja 230 V-ra. Erőművek A különböző erőművek különböző energiát felhasználva állítják elő a forgómozgást (turbinát forgatnak). A turbina forgómozgása forgatja a generátort, ami előállítja a váltakozó feszültséget, áramot. Az erőművek abban különböznek, hogy mi állítja elő a forgómozgást. Pl. Hőerőmű olaj vagy szén égetésével vizet forralnak, a keletkezett nagy nyomású gőz forgatja meg a turbinát. Atomerőmű Atommag energia felszabadulásából keletkezett hővel forralják a vizet, és a keletkezett gőz forgatja a turbinát.

Vízerőmű A víztározó gátján lezúduló víz forgatja meg a turbinát. Szélerőmű A szél forgatja a szélkereket, ami áttétellel forgatja a turbinát. Naperőmű Egyik fajtája: Tükrökkel egy pontba irányítják a Nap sugarait, ahol így nagy hő keletkezik. Ezzel a hővel vizet forralnak, és a nagy nyomású gőz forgatja a turbinát. Másik fajtája: Napelemek közvetlenül elektromos feszültséget, áramot hoznak létre a fény hatására. Magyarázat: Turbina: a szerkezetbe beáramló nagy nyomású gőz, vagy beáramló víz, vagy elégetett nagy nyomású légnemű üzemanyag tudja megforgatni a turbina lapátkerekeit (hasonlóan a malomkerékhez).