Atomok elsődleges kölcsönhatás kovalens ionos fémes véges számú atom térhálós szerkezet 3D ionos fémek vegyületek ötvözetek molekulák atomrácsos vegyületek szilárd gázok, folyadékok, szilárd anyagok
Gázok Molekulák közti összetartó erők kicsik: Másodlagos kötőerők: apoláris molekulák indukált dipól indukált dipól kölcsönhatás diszperziós (London-féle) poláris molekulák dipól dipól kölcsönhatás (+ diszperziós)
Gázok teret kitöltik. sszenyomhatóak. Ideális gázok : a molekulák közti kölcs. elhanyagolható Reális gázok
Gázok Bármely gáz fizikai állapota az alábbi négy adattal jellemezhető: 1. Nyomás 2. Hőmérséklet 3. Térfogat 4. Mennyiség
Boyle-Mariotte törvény Gázok Nyomás / atm Robert Boyle (1627 1691) Edme Mariotte (1620 1684) Adott mennyiségű ideális gázra, adott hőmérsékleten: pv=állandó Két állapotra: Térfogat p 1 V 1 =p 2 V 2
Gay-Lussac törvény Gázok nyomásmérő nyomásmérő jeges víz forró víz Joseph Louis Gay-Lussac (1778 1850) A bór és a jód felfedezője. Léggömbbel vizsgálta a levegő összetételének, valamint a Föld mágneses térerejének változását. A meteorológia tudomány egyik alapítója. Adott mennyiségű és térfogatú ideális gázra: Két állapotra: p/t=állandó p 1 /T 1 =p 2 /T 2
Charles-Gay Lussac törvény Térfogat / ml Gázok Jacques Alexandre César Charles (1746 1823) Adott mennyiségű és állandó nyomású ideális gázra: V/T=állandó Hőmérséklet / ºC Két állapotra: V 1 /T 1 =V 2 /T 2
Egyesített gáztörvény Adott mennyiségű ideális gázra: Két állapotra: pv/t=állandó p 1 V 1 /T 1 =p 2 V 2 /T 2
Számítási feladat: Van két csappal összekötött 1-1 literes tartály. Az egyikben vákuum van, a másikban nitrogén gáz, melynek nyomása 30 kpa. A hőmérséklet 25 ºC. Mennyi lesz a nyomás a tartályokban, ha a csapot kinyitjuk és a hőmérsékletet 50 º-ra emeljük?
Gázok Avogadro-törvény: Azonos nyomású, térfogatú és hőmérsékletű gázokban a részecskeszám is azonos. Másképp: V = nv m V m : moláris térfogat, [m 3 /mol] n: mólszám [mol] Néhány gáz moláris térfogata 0 ºC-on és 101,325 kpa nyomáson ---------------------------------------------------------------------------------- Hélium He 22,398 dm 3 Argon Ar 22,401 dm 3 Hidrogén H 2 22,410 dm 3 Nitrogén N 2 22,413 dm 3 Oxigén O 2 22,414 dm 3 3
Feladat: egy 0,5 dm 3 térfogatú edényben oxigéngáz van. A hőmérséklet 25 ºC. Az edényben a nyomás 90 kpa. Hány gramm oxigén van az edényben? Gázok p, T, V állapotjelzők Ideális gázok: a gázmolekulák között nincs kölcsönhatás Ideális gáztörvény: pv = nrt R = 8,314 J K 1 mol 1 = 8,314 m 3 Pa K 1 mol 1 (gázállandó)
Gázok Dalton-törvény: egy gázkeverék össznyomása az összetevők parciális nyomásának összege. Dalton-törvény: p = (p A +p B +p C ), pv = (n A +n B +n C )RT Moltört: p A x A = = p A, B és C összetevő parciális nyomása n A n
A levegő összetétele légzés során Parciális nyomás (kpa) ------------------------------------------------- Gáz belélegzett levegő kilélegzett levegő ~25 ºC ~36 ºC ------------------------------------------------------------------ Nitrogén 79,287 75,860 Oxigén 21,332 15,465 Széndioxid 0,040 3,733 Vízgőz (rel.hum.20%) 0,666 6,267 ------------------------------------------------------------------ Összesen 101,325 101,325
Számítási feladat: Van két csappal összekötött 1-1 literes tartály. Az egyikben 20 kpa nyomású oxigén gáz van, a másikban 30 kpa nyomású nitrogén gáz. A hőmérséklet 25 ºC. Mennyi lesz az oxigén illetve a nitrogén parciális nyomása a tartályokban, ha a csapot kinyitjuk? Mennyi lesz, ha a hőmérsékletet 50 º-ra emeljük?
Kinetikus gázelmélet 1. posztulátum: gázokban a molekulák mérete elhanyagolható a köztük levő távolsághoz képest összenyomható, a molekulák térfogatát nem kell figyelembe venni. 2. posztulátum: A gázmolekulák különböző irányokban és sebességgel egyenes vonalú (egyenletes) mozgást végeznek. (Brown mozgás) 3. posztulátum: A gázmolekulák között ható erők az ütközések kivételével elhanyagolhatóan kicsik (akár 0). egyenletes térfogat kitöltés, gázkeverékek függetlensége. 4. posztulátum: A gázmolekulák ütközése rugalmas, nem vész el a kinetikus energia (nem alakul át). nyomás tartás 5. posztulátum: A gázmolekulák átlagos mozgási energiája a hőmérséklettől függ A Brown mozgás gyorsul a hőmérséklettel
Brown mozgás Kinetikus gázelmélet
Gázok = 3RT M pl. H 2 20 C v = 1900 m/s v / v : átlagsebesség Nyomás: falnak ütközés p ~ T (5. poszt.); p ~ N; p ~ 1/V (logikus ) molekulák hányada molekula sebessége / m/s
Gázok molekula sebessége / m/s molekulák hányada
Reális gázok Reális gázok van der Waals- -egyenlete p + n 2 a (V-nb) = nrt a,b - konstansok V 2 intermolekuláris vonzerõ p / atm (1 atm = 10 5 Pa) molekulatérfogat korrekció
van der Waals-állandók Reális gázok
Ideális gázok törvényei Azt a hipotetikus gázt, ami pontosan az ideális gáztörvényeknek megfelelően viselkedik tetszőleges nyomáson és hőmérsékleten ideális gáznak nevezzük. A valódi gázok nem ideálisak, de az ideális gázok törvényei jól használhatók: --- 1 atm környékén, vagy kisebb nyomásokon --- jó közelítés egyszerű számításoknál Számítási feladat: Mennyi 1 mol nitrogén nyomása 25 ºC-on, ha térfogata a.) 50 dm 3, b.) 1 dm 3?