Mobil Internet 2 3. előadás IPv6 alapok



Hasonló dokumentumok
Internet Protokoll 6-os verzió. Varga Tamás

Dr. Wührl Tibor Ph.D. MsC 04 Ea. IP kapcsolás hálózati réteg

Az adott eszköz IP címét viszont az adott hálózat üzemeltetői határozzákmeg.

IPv6. A következő generációs Internet Protocol. Dr. Simon Vilmos. docens BME Hálózati Rendszerek és Szolgáltatások Tanszék svilmos@hit.bme.

IPv6 és mobil IP. Dr. Huszák Árpád Szabadkai Műszaki Főiskola

Számítógép-hálózatok. Gyakorló feladatok a 2. ZH témakörének egyes részeihez

Az IPv6 a gyakorlatban

Hálózati architektúrák laborgyakorlat

Gyakorló feladatok a 2. ZH témakörének egyes részeihez. Számítógép-hálózatok. Dr. Lencse Gábor

A TCP/IP modell hálózati rétege (Network Layer) Protokoll-készlet: a csomagok továbbítása. Legjobb szándékú kézbesítés

IPv6 Biztonság: Ipv6 tűzfalak tesztelése és vizsgálata

Számítógépes Hálózatok 2011

23. fejezet Az IPv6 protokoll

IPv6 gyorstalpaló Mohácsi János NIIF Intézet

Számítógépes Hálózatok ősz Hálózati réteg IP címzés, ARP, Circuit Switching, Packet Switching

Routing update: IPv6 unicast. Jákó András BME EISzK

IPv6 alapok. (elmélet és gyakorlat) Fábián Attila

IPv6 dióhéjban Mohácsi János IPv6 forum elnökhelyettes, NIIF Intézet. Első Magyar IPv6 Fórum konferencia

IP címek fogyása Geoff Huston október

ÉS BEVEZETÉSÉT TÁMOGATÓ TECHNOLÓGIÁK

IP anycast. Jákó András BME TIO

Vajda Tamás elérhetőség: Tankönyv: Andrew S. Tanenbaum Számítógép hálózatok

Adatközpont IPv6 bevezetés. Szakmai konzultáció 2011 május 31.

Dr. Wührl Tibor Ph.D. MsC 04 Ea. IP P címzés

17. IPv6 áttérési technikák

16. IPv6 áttekintés és technikai megoldások

Médiakommunikációs hálózatok (VIHIM161) Médiatechnológiák és -kommunikáció szakirány

Tartalom. Hálózati kapcsolatok felépítése és tesztelése. Rétegek használata az adatok továbbításának leírására. OSI modell. Az OSI modell rétegei

IP - Mobil IP. Hogyan érnek utol a csomagok? Dr. Simon Vilmos. adjunktus BME Hálózati Rendszerek és Szolgáltatások Tanszék svilmos@hit.bme.

A TCP/IP számos adatkapcsolati réteggel együtt tud működni:

Adatkapcsolati réteg. A TCP/IP számos adatkapcsolati réteggel együtt tud működni: Ethernet, token ring, FDDI, RS-232 soros vonal, stb.

Hálózattervezés alapjai Címek, címkiosztás, routing (IPv4, IPv6)

IV. - Hálózati réteg. Az IP hálózati protokoll

IPv6 alapok, az első lépések. Kunszt Árpád Andrews IT Engineering Kft.

VIII. Mérés SZÉCHENYI ISTVÁN EGYETEM GYŐR TÁVKÖZLÉSI TANSZÉK

Az IP hálózati protokoll

Az Ethernet példája. Számítógépes Hálózatok Az Ethernet fizikai rétege. Ethernet Vezetékek

KANDÓ KÁLMÁN VILLAMOSMÉRNÖKI KAR HÍRADÁSTECHNIKA INTÉZET. IPv4 csomagok vizsgálata Wireshark analizátorral I. Dr. Wührl Tibor Dr.

DATA (variable) 32 bits (4 Bytes) IP fejléc hossza általában 20 bájt. Type of Service. Total Length. Source Address. Destination address

DATA (variable) D = Delay, késleltetés T = Throughput, átviteli sebesség R = Reliability, megbízhatóság. 32 bits (4 Bytes)

Az internet ökoszisztémája és evolúciója. Gyakorlat 2

A hasznos teher beágyazásának biztonságát szolgáló fej- és farokrész A kiegészítő fejrészek sorrendje

Kommunikációs hálózatok I. (BMEVIHAB01)

Hálózati Technológiák és Alkalmazások

Médiakommunikációs hálózatok (VIHIM161) évi fóliái alapján készült

Hálózati Technológiák és Alkalmazások. Vida Rolland, BME TMIT november 5. HSNLab SINCE 1992

1. LABORGYAKORLAT 2011 TAVASZI FÉLÉV ÓBUDAI EGYETEM PRÉM DÁNIEL. Hálózati protokollok. Számítógép hálózatok gyakorlata

Application TCP. IPv6 IPv6. IPv4 Host. IPv6 Host. Dual Stack Host

Hálózati Technológiák és Alkalmazások. Vida Rolland, BME TMIT október 29. HSNLab SINCE 1992

DNS és IPv6. Jákó András BME TIO

Hálózati réteg - áttekintés

IP Internet Protocol. IP címzés, routing, IPv6, IP mobilitás. Dr. Simon Vilmos

Médiakommunikációs hálózatok (VIHIM161) évi fóliái alapján készült

IPv6 Elmélet és gyakorlat

Ethernet/IP címzés - gyakorlat

MULTIMÉDIA TOVÁBBÍTÁSA AZ IP FELETT

Felhő alapú hálózatok (VITMMA02) Hálózat virtualizálás: Overlay hálózatok OpenStack Neutron Networking

Hálózati réteg. Feladata: a csomag eljusson a célig Több útválasztó Ez a legalacsonyabb rétek, mely a két végpont

Az internet ökoszisztémája és evolúciója. Gyakorlat 4

HOGYAN VEZESSÜK BE HÁLÓZATUNKON AZ IPV6-OT? Mohácsi János NIIF Intézet. IPv6 tutorial

IPv6 általános jellemzés

Adatátviteli rendszerek Mobil IP. Dr. habil Wührl Tibor Óbudai Egyetem, KVK Híradástechnika Intézet

Hálózati architektúrák laborgyakorlat

Hálózati architektúrák és Protokollok GI 8. Kocsis Gergely

Számítógép hálózatok tervezése és üzemeltetése Címek, címkiosztás, routing (IPv4, IPv6)

OpenBSD hálózat és NAT64. Répás Sándor

Átmenet az IPv4-ből az IPv6-ba

Tartalomjegyzék. Mobil Internet választható tárgy. 1. mérés: IP alapok. A mérést kidolgozta: Dr. Jeney Gábor Utolsó módosítás: március 25.

SCHNETv6 IPv6 a Schönherzben. 5/7/12 Tóth Ferenc - IPv6 a Schönherzben 1

13. gyakorlat Deák Kristóf

Windows rendszeradminisztráció és Microsoft szerveralkalmazások támogatása. Kocsis Gergely, Supák Zoltán

Internet Control Message Protocol (ICMP) Az Internet hiba- és vezérlı üzenet továbbító protokollja. Készítette: Schubert Tamás (BMF) Tartalom

Tűzfalak működése és összehasonlításuk

Mobil Internet 1 2. előadás Adminisztratív információk és IPv4 alapok Jeney Gábor jeneyg@hit.bme.hu. BME Híradástechnikai Tanszék 2007/2008 II.

Department of Software Engineering

Hálózati architektúrák és Protokollok PTI 5. Kocsis Gergely

IPV6 TRANSITION. Számítógép-hálózatok (BMEVIHIA215) Dr. Lencse Gábor

Hálózati architektúrák és Protokollok Levelező II. Kocsis Gergely

Alapok, TCP/IP, IPv6, Routing

Aktuális hálózati problémák megoldásainak vizsgálata

Számítógép-hálózatok IPv6

IPv6 Az IP új generációja

Az IPv4 problémái közül néhány: Az IPv4 problémái közül néhány: IPv6 fő célkitűzései. Az IPv4 problémái közül néhány:

2011 TAVASZI FÉLÉV 3. LABORGYAKORLAT PRÉM DÁNIEL ÓBUDAI EGYETEM. IP címzés. Számítógép hálózatok gyakorlata

Windows rendszeradminisztráció és Microsoft szerveralkalmazások támogatása. 3. óra. Kocsis Gergely, Kelenföldi Szilárd

Tartalom. Az adatkapcsolati réteg, Ethernet, ARP. Fogalma és feladatai. Adatkapcsolati réteg. A hálókártya képe

Beállítások 1. Töltse be a Planet_NET.pkt állományt a szimulációs programba! A teszthálózat már tartalmazza a vállalat

Unicast. Broadcast. Multicast. A célállomás egy hoszt. A célállomás az összes hoszt egy adott hálózaton

Unicast A célállomás egy hoszt. Broadcast A célállomás az összes hoszt egy adott hálózaton

Internet Protokoll (IP)

Hálózati architektúrák és Protokollok GI 7. Kocsis Gergely

Broadcast és Multicast. Számítógépes Hálózatok IPv4-Header (RFC 791) Multicasting

Hálózati architektúrák és Protokollok PTI 6. Kocsis Gergely

Az internet ökoszisztémája és evolúciója. Gyakorlat 4

Számítógép hálózatok

Hálózatok Rétegei. Számítógépes Hálózatok és Internet Eszközök. TCP/IP-Rétegmodell. Az Internet rétegei - TCP/IP-rétegek

(Cisco Router) Készítette: Schubert Tamás. Site-to-Site VPN/1

Autonóm rendszerek (AS) tipusai. Számítógépes Hálózatok Inter-AS-Routing. Inter-AS routing: BGP (Border Gateway Protocol)

Számítógépes Hálózatok 2012

Nagyteljesítményű mikrovezérlők TCP/IP

Átírás:

Mobil Internet 2 3. előadás IPv6 alapok Jeney Gábor jeneyg@hit.bme.hu BME Híradástechnikai Tanszék 2007/2008 II. félév

Kivonat Miért nem elég az IPv4? Az IPv6-os fejléc kiegészítő fejlécek IPv6 címzés címzési típusok ICMPv6 Együttélés IPv4 vs. IPv6 dual stack tunneling / encapsulation és NAT BME-HIT 2

Az IPv6 története Jelenleg IPv4 (1970-es évek elejéről) Nagy tapasztalat (30++ év) 1983 óta az Internet alapja Folyamatos fejlesztés IPv6? 1990-es évek elejétől szabványosítják 1995 óta szabványos (draft) Rengeteg hiányzó komponens Kevés tapasztalat Folyamatos fejlesztés BME-HIT 3

Az IPv6 újdonságai Kiterjesztett címtér 128 bit, szemben az IPv4 32 bitjével 6,65 10 23 cím/m 2 Állapotmentes auto-konfiguráció Egyszerűsített fejléc összesen 40 byte (16+16+8) gyorsabb feldolgozás Az opciók és kiterjesztések jobb kezelése kiterjesztés fejlécek BME-HIT 4

Miért kell az IPv6? Az IPv4 korlátozott 4,3 milliárd cím, 60% az USA-ban egyre növekvő felhasználói populáció (pl. ADSL, mobil készülékek, játék konzolok) KEVÉS CÍM (a NAT nem megoldás) Az IPv6 teret hódít Japán, Korea, Kína, EU, India Ausztrália, Taiwan, Szingapúr, Egyiptom Új szolgáltatások IPv6 felett pl. mobilitás támogatás BME-HIT 5

IPv6 vs. IPv4 fejléc változott törölt 0 bits 4 8 16 24 31 Ver IHL Service Type Total Length Identifier Flags Fragment Offset Time to Live Protocol Header Checksum 32 bit Source Address 32 bit Destination Address Options and Padding BME-HIT 6

Az IPv6-os fejléc ami eltűnt Az alábbi IPv4-es mezők tűntek el Fejléc hossz (fix 40 byte) Azonosító Flags Fragment offset Fejléc ellenőrzőösszeg A középső három a töredezés kezeléshez volt szükséges, ami az IPv6-ban nem létezik Ellenőrzőösszeg = lassúság BME-HIT 7

Az IPv6-os fejléc ami átalakult Type-of-Service => forgalmi osztály (traffic class) prioritások kezelése Protocol Type => Next header TCP, UDP, de kiegészítő fejlécek is, lásd később Time To Live (TTL) => Hop Limit Címzett és feladó címe (hosszabb) Új mező: Folyam azonosító (flow label) hatékonyabb csomagtovábbítás BME-HIT 8

Az IPv6-os fejléc 0 bits 4 8 16 24 31 Ver Traffic class (8) Flow label (20) Payload length (16) Next header (8) Hop limit (8) 128 bit Source Address 128 bit Destination Address BME-HIT 9

Az IPv6 kiegészítő fejlécei Ebben a sorrendben Hop-by-Hop Options header (jumbogram) Destination Options header (köztes célnál) Routing header (routing type) Fragment header Authentication header Encrypted Security Payload header Destination Options header (végső célnál) (Upper layer header) A Next header jelzi mi következik BME-HIT 10

Hop-by-hop options fejléc Minden opciós fejlécben: Köv. fejléc, fejléc hossza, opciók Minden érintett node-nak fel kell dolgozza Hop-by-hop = lépésről lépésre A jelenlegi egyetlen hop-by-hop: jumbogram Jumbogram = nagyon nagy csomag Alapból Payload length = 16 bit (max. 64 kbyte) Így: 32 bit (max. 4 Gbyte) BME-HIT 11

Destination options fejléc Ez is egy opciós kiegészítő fejléc Formátuma az opciós fejlécé A végállomásnak kell feldolgoznia Kétszer is előfordulhat Ha a routing fejlécet is használjuk Első (routing header előtti) A routing headerben előírt állomások dolgozzák fel Az utolsó (routing header utáni) A célállomás dolgozza fel BME-HIT 12

Routing kiegészítő fejléc (IPv4-ben ez volt a Source routing option) Laza/szigorú útvonalmegjelölés A fejlécben: Következő fejléc Node-ok (címek) száma Routing típus (laza/szigorú) Hátralévő szegmensek száma (következő cím) (Reserved) Az érintendő állomások címei BME-HIT 13

Fragment kiegészítő fejléc Router nem töredezhet, csak a forrás Ha jumbogram, akkor nem A fejlécben: Következő fejléc Reserved Fragment offset (honnantól fragmentálunk) pl. az IPv6-os fejléc nem darabolható Azonosító (identification) Hanyadik darabka BME-HIT 14

Authentication kiegészítő fejléc Autentikációs céllal (eredetiség) Valóban a küldő küldte Nem történt benne változás A fejlécben: Köv. fejléc, payload length, reserved SPI (Security Parameter Index) Sorszám (Sequence number) UDP esetén is! Autentikációs adatok (Authentication data) BME-HIT 15

ESP kiegészítő fejléc Célja: titkosítás (bizalmasság) csak az arra feljogosított tudja olvasni Fejlécben: SPI Sorszám (Sequence number) Titkosított adatok (Encrypted data) (payload, padding, padding hossza, köv. fejléc) Autentikációs adatok (Authentication data) Kétféle: szállító (transport) és alagút (tunnel) BME-HIT 16

IPv6 címzés néhány számadat IPv4 32 bit 2 32 = 4,29 10 9 darab cím (elvileg) már több, mint 6,5 milliárd ember a Földön összesen 2 113 389 darab hálózat IPv6 128 bit 2 128 = 3,4 10 38 darab cím (elvileg) 6,65 10 23 darab cím/m 2 2 45 darab /48-as hálózat (global unicast 001) 3,5 10 15 darab hálózat mindegyikből további 65 535 /64-es alhálózat BME-HIT 17

IPv6 cím típusok Címzett alapján Unicast (egyes küldéses) Multicast (többes küldéses) Anycast Route-olhatóság alapján globális (global) nem globális (non-global) link-local egyedi lokális IPv6 cím (régen site-local) BME-HIT 18

IPv6 cím 128 bit = 8 x 16 bit hexadecimális formában pl. 2001:00B8:0000:0000:0002:B3FF:FE1E:8329 Egyszerűsítési lehetőségek Bevezető nullák elhagyása 2001:B8:0:0:2:B3FF:FE1E:8329 Dupla kettőspont: csupa nullák helyettesítésére 2001:B8::2:B3FF:FE1E:8329 Csak egyszer lehet! Prefixek jelölése: IPv6 cím/prefix alakban 2001:B8:0:56::/64 BME-HIT 19

Nevezetes IPv6 címtartományok Kiosztható 2000::/3 global unicast FE80::/10 link-local unicast FEC0::/10 korábbi site-local már nem használatos FC00::/7 lokális egyedi IPv6 címek FF00::/8 multicast Speciális :: unspecified address (mint 0.0.0.0 az IPv4-ben) ::1 loopback BME-HIT 20

IPv4 és IPv6 keveréke címzés IPv6-ba ágyazott IPv4 cím (elavult) IPv4 kompatibilis IPv6 cím ::ipv4_cím pl. 62.2.84.115-ből: ::3e02:5473 IPv6-ra leképzett IPv4 cím ::FFFF:ipv4_cím manapság ez az általánosan elterjedt és használt pl. 62.2.84.115-ből: ::ffff:3e02:5473 6to4 cím 2002:public_ipv4_cím::/48 ISATAP címek dual stack node-ok között IPv4 felett Teredo címek (NAT mögött) BME-HIT 21

Globális unicast címek Bináris 001-gyel kezdődnek (2000::/3) n bit a globális route-olhatósági prefix (pl. földrajzi pozíció alapján) 64-n bit alhálózati azonosító 64 bit interfész azonosító Pl. Műegyetem: Egyetemi szinten: 2001:738::/32 pl. Híradástechnikai Tanszék: BME-HIT 22

Lokális IPv6 címek Link-local: soha nem szabad route-olni nem kell hozzá semmilyen beállítás ad-hoc hálózatok, router nélküli hálózatok esetén ideális, vagy szomszéd felderítéshez Alakja: FE80::[64_bitnyi_Interface_ID] Pl. ha az Ethernet kártya hardver címe 00:1A:6B:3A:9F:BC, akkor a link-local cím FE80::21A:6BFF:FE3A:9FBC lesz Egyedi lokális IPv6 címek: FC[40_bit_global_ID]:[16_bit_subnet_ID]: [64_bitnyi_Interface_ID] BME-HIT 23

Anycast címek A nagy terhelésű eszközökhöz találták ki számítógépek egy csoportjából egyetlen (tipikusan a legközelebbi) állomást címzi Az unicast tartományból szabadon Subnet-router anycast [n_bitnyi_subnet_prefix]:[128-n_bitnyi_0] az első router fogja feldolgozni a linken Reserved address anycast cím Az utolsó 7 biten, pl. 126 (7E): mobil IPv6 Home-Agent anycast BME-HIT 24

Multicast címek FF[0RPT][4_bitnyi_scope][Csoport_ID] 0RPT flagek (bitek) R=0 Randevú pont nincs beágyazva P=0 Multicast cím prefix infó nélkül T=0 Jól ismert multicast cím (1: ideiglenes) Scope példák 1: Interface-local scope 2: Link-local scope 5: Site-local scope E: Global scope BME-HIT 25

Multicast cím példák Minden node a küldővel azonos linken FF02::1 a küldővel azonos site-on FF05::1 Minden router a küldővel azonos linken FF02::2 a küldővel azonos site-on FF05::2 Minden DHCP ügyfél FF02::1:2 Minden DHCP szerver FF05::1:3 Minden NTP szerver a küldővel azonos site-on FF05::101 az Interneten FF0E::101 BME-HIT 26

Cím választás Az IPv6 természeténél fogva több cím létét is lehetővé teszi, melyek különbözhetnek scope-jukban (link-local, global) állapotukban (elsőbbségi, érvénytelenített) Melyiket használjuk? létezik ajánlás erre nézve (RFC 3484) azonos scope, vagy a kisebb scope elsőbbségi 6to4, vagy ISATAP helyett natív, ha van a leghosszabb prefix egyezésű BME-HIT 27

Internet Control Message Protocol 6-os verzió (ICMPv6) Sokkal fejlettebb, mint az ICMPv4 Multicast management (IGMP helyett) Neighbor Discovery (ARP, RARP helyett) a szomszéd állomások, routerek, elérhető szomszédok és változó adatkapcsolati címek feltérképezésére Echo request/echo reply (ping) Packet too big (fragment fejlécek helyett) Két típusú üzenet hiba információs BME-HIT 28

ICMPv6 hibaüzenetek Címzett elérhetetlen (destination unreachable) ha az IP datagram nem továbbítható Nincs route a célhoz, cím/port elérhetetlen, adminisztratíve tiltott Túl nagy csomag (Packet Too Big) az MTU a köv. linken kisebb a csomagméretnél Lejárt az idő (Time Exceeded) ha a hop számláló nullára csökkent Paraméter probléma (Parameter problem) ha valamelyik paraméter nem értelmezhető BME-HIT 29

ICMPv6 információs üzenetek Echo request / echo reply multicast felderítő üzenetek router listener router felderítő (router discovery) szomszéd felderítő (neighbor discovery) hálózat újraszámozás (router renumbering) mobilitás támogatáshoz kapcsolódó üzenetek Részletesen lásd a későbbi előadásokon BME-HIT 30

ICMPv6: echo request és reply Ugyanúgy, mint az ICMPv4-nél Az echo request üzenet adatát az echo reply üzenetbe kell másolni A ping6 alkalmazás is ezt használja BME-HIT 31

ICMPv6 Neighbor Discovery Feladatai Cím automatikus konfigurálása (autoconf.) network prefix, router automatikus felderítése duplikált IP cím érzékelés MAC cím felderítés Szomszédos routerek felderítése A nem elérhető szomszédok azonosítása (NUD) MAC cím váltások érzékelése Router solicitation és router advertisement BME-HIT 32

ICMPv6: Router felderítés Két üzenet Router advertisement (router információk) Router solicitation (az előbbi kikényszerítése) Ami a router advertisement üzenetben jön: Current Hop limit (ajánlás a hop limitre) Autoconfig flags (DHCP, vagy más stateful) Router lifetime (meddig elérhető a router, s) Reachable time (szomszédok vonatkozásában) Retransmission timer (szomszéd üdvözlésre) Options (MAC cím, MTU, network prefix) BME-HIT 33

ICMPv6: Neighbor Discovery Neighbor solicitation és advertisement MAC cím feloldás (IPv4-ben ARP volt) A szomszédok elérhetőségének azonosítása Duplikált IP címek azonosítása ICMP redirect Inverse Neighbor Discovery (IND) IPv4-ben ez volt a RARP Sebezhetőség, biztonság SEcure ND (SEND) BME-HIT 34

ICMPv6 példa: Szomszéd kérelmezés A neighbor solicitation üzenetben jön: Típus: 135 Kód (code): nem használjuk Checksum Reserved Célcím (target address): aminek a MAC címét fel akarjuk oldani Options: pl. source link-layer address: a küldő MAC címe BME-HIT 35

ICMPv6 Autoconfiguration Két típus: stateless és stateful Stateful = DHCP az IPv4-ben hívják: ~ autoconfiguration, ~ DHCP Stateless: hálózati prefix alapján vagy MAC cím, vagy random ID duplikált címek szűrése DAD-del A kettő kombinálható pl. stateless a címhez stateful a DNS-ek címéért BME-HIT 36

Az autokonfiguráció lépései Stateless = semmiből indul, Lépések: Link-local cím generálása (MAC cím alapján) Link-local cím egyediség tesztje (ND-vel) Ha OK, akkor tovább, ha nem OK, akkor vissza Link-local cím beállítása az interfészen Kapcsolatba lépés a routerrel (R.Sol., R.Adv.) Router direction (ha stateful: DHCP server címe) Globális cím konfiguráció (DHCP, vagy R.adv.) BME-HIT 37

ICMPv6: Router renumbering Alhálózatok prefixeinek átírására szolgál A hálózati adminisztrációt könnyíti Természetesen követelmény az autentikáció Sorszámozás a régebbi, keringő üzenetek ellen Két üzenet: Router renumbering command Router renumbering result Match prefix part => use prefix part A régi prefixből így lesz új BME-HIT 38

ICMPv6 Path MTU discovery Az IPv6-nál nincs fragmentálás Ha a csomag nagy (> MTU): eldobja a router küld egy ICMPv6 üzenetet a forrásnak (PTB) A PTB tartalmazza a következő link MTU-ját Módszer: küldjünk echo requestet a címre kezdjünk nagy MTU-val, majd lépdeljünk lefelé az új MTU-val próbálkozik soha nem megy 1280 byte alá GOTO eleje BME-HIT 39

ICMPv6 Multicasting Multicast Listener Discovery Multicast Router Discovery BME-HIT 40

Együttműködés, migráció Az IPv4 és az IPv6 sokáig együtt fog élni egymás mellett IPv4 világ kész, az IPv6 világ most épül Három módszer kettős protokoll stack (dual stack) alagút (tunneling, vagy encapsulation) IPv6 szigetek összekötése IPv4 felett fordítás (translation) IPv6 hosztok kommunikációja IPv4 hosztokkal A fentiek kombinálhatóak is BME-HIT 41

Dual stack A legáltalánosabb megoldás manapság mind IPv4, mind IPv6 felett működni képes routereken és hosztokon DNS A rekord az IPv4-es címre AAAA rekord az IPv6-os címre Automatikusan azt használja, ami elérhető IPv4-es hosztokkal IPv4 felett, 6-ossal 6 felett pl. a Linux, ha lehet, az IPv6-ot preferálja BME-HIT 42

Tunneling/encapsulation BME-HIT 43

Hálózati cím és protokoll fordítás A már korábban tárgyalt NAT kiterjesztése IPv6-os címeket IPv4-esre fordítunk és fordítva BME-HIT 44

Hivatkozások RFC 3513: Internet Protocol Version 6 (IPv6) Addressing Architecture, http://www.ietf.org/rfc/rfc3513.txt RFC 2894: Router Renumbering for IPv6, http://www.ietf.org/rfc/rfc2894.txt RFC 2461: Neighbor Discovery for IP Version 6 (IPv6), http://www.ietf.org/rfc/rfc2461.txt RFC 2462:IPv6 Stateless Address Autoconfiguration, http://www.ietf.org/rfc/rfc2462.txt RFC 1897: IPv6 Testing Address Allocation, http://www.ietf.org/rfc/rfc1897.txt RFC 3041: Privacy Extensions for Stateless Address Autoconfiguration in IPv6, http://www.ietf.org/rfc/rfc3041.txt BME-HIT 45