Fizik énököknek záolái ykolt (MEGOLDÁSOK) 9 / I félé I MATEMATIKAI ÖSSZEFOGLALÓ Métékeyé-átáltáok I/ 58 k 58 = = = c k e) 58, 58 6 c Vektoűeletek I/4 ) Fx = F co ϑ= 4 N co =, 78N = F in ϑ= 4 N in = N I/6 Fy I/5 ) = x + y = + =, 4 y ϑ = c t = c t =,6 e) 4 + b c = 4 (, 7, 6) + (,, 5) (6,, ) = (8, 8, 4) + (4, 6, ) (8,, ) = ( 6,, 7) x A éé ibáj I/7 A eoldá lpj onló áozöek oldlink ányoá A jelöléeket z ábán uttjuk be A áozöek A cúcnál leő zöe közö, é ele zeközti oldlk páuzok, íy z ABC áozö onló z ADE áozööz, yi AB BC x y =, onnn = Ezt átendeze x AD DE x = y A Az elő eetben fenti eyenletből x = 5 dódik H tpéz oldlánk ééeko -t téedünk, yi ló oz 96, c y 95,8 c, kko táolá ende x = 6,, illete x =,8 dódik, teát táoláéé oán elköetett ib lefeljebb x =, H tpéz öidebb oldlát 99 c-nek éjük, kko táy táolá éteúd felénk eő éétől x = A -e ibát fiyelebe ée táolá x = 5 y x = 8,, teát z elköetett ib ne több, int x = 5 x B y C Mejeyzé: ib peziit becléeko z zono ennyié ééeko etáozott ibák közül nyobbt zoktuk edni éé ibájként D E Füénytni lpieetek I/ ) ételezéi ttoány: ; étékkézlet: ; onotonitá: zioún onoton nöekő; zélőétékek: ± zkdái ely: ninc inflexió pont: x = - - - - - -
Fizik énököknek záolái ykolt (MEGOLDÁSOK) 9 / I félé Htáéték- é diffeenciálzáítá I/4 ),,,,,,, 4 5 n 5 7 9 n b) 4 5 n c) ( ) n n n,,,,,,, { } ooztnk ne létezik táétéke, it köetkezőképpen láttunk be: ezt ooztot két ézoozt bontjuk, kko páo n-eke táéték +, pátln n-e -, yi ninc eyetlen olyn záéték, ely tetzőleeen kici könyezetébe benne tláltó oozt inden elee, n elé ny I/5 ) d( x) = b) d( x+ 4) = + = c) d x ( ) = x d) e) f) ) d x x + x+ ( 5 ) = x 5 x+ + = 9x x+ d( x in x) = in x + x co x = in x+ x co x d(co x in x) dco x din x = x + x = x x+ x x = x x = x in co in in co co co in co in x din x dco x d co x in x t x = = = = co x co x+ in x co x co x co x de x ) ( ) i) j) x x x de x = e = e iel = e x ( ) d e x x de x dx x x x = x + e = 6x e + e = ( 6x+ ) e ( ) d x t x = t x+ x t ' x = t x+ x co x I/6 Telje néyzetté lkítál () t z t = z + t t = z t = z t +, y () z t = z + t t = z t +, ely kifejezéeknek kko lez xiuuk, néyzete t, ebből z x = z + Ey füénynek ott n xiu, ol z elő diffeenciálánydo null, é ebben pontbn pozitíól netí előjelet ált: d z t t dzt () + = = t, dt dt elynek zéuelye: t =, é z () t = t >, t <, é t <, t > x = + = + A xiáli á: z z z A diffeenciálánydo-füény tet ebeéének időfüényét dj e
Fizik énököknek záolái ykolt (MEGOLDÁSOK) 9 / I félé I/7 ) x =, x =, eyene onlú eyenlete ozá b) x = t + b, x =, eyene onlú eyenleteen youló ozá c) x = A cot, x = Ain t, eyene onlú, peiodiku ozá, elye A x A, d) x = A ( co ωt) ω= A ω ( co ωt) x = Aω in ωt e) x = A ( co( ωt π) ) ω= Aω ( co( ωt π )) = Aω co( ωt), x = Aω in ωt, ω köfekenciájú oniku ezé, iel t=-bn x=, = Aω, ez ey π kezdőfáziú oniku ezé β f) t β ( ) co t β x = Ae β ω t+ Ae ( ω) in ω t= Ae t ( β coω t+ω in ωt) ( ) β t x = Ae ω β coωt βωin ωt, exponenciálin cillpodó ezé βt βt βt ) x = A e ( β) in( ω t+ϕ ) + A e ω co( ω t+ϕ ) = A e ( β in ( ω t+ϕ ) +ω co( ω t+ϕ) ) ( ) in ( ) co( ) β t x = A e ω β ω t+ϕ + βω ω t+ϕ, int f),, II KINEMATIKA EGYSZERŰ MOZGÁSTÍPUSOK Eyene onlú eyenlete ozá, eyenlete köozá II/ k Ey fényé z z táolá, elyet = ebeéel fény é ltt etez Az eyene onlú eyenlete ozá útképletét znál: k k = t = é = (65, 5 4 6) = 9,47 k II/4 k A = 45 ebeéű otoo eltí ebeée k ebeéel ldó konojoz képet z elő eetben = k, áodik eetben = + k olt Miel tudjuk, oy z ozúáú épkocikonojt otoo z elő 7 eetben t = 7 pec=, í áodik eetben t 6 = pec= ltt előzte e, ezeket z előző két eyenletbe 6 t k elyetteíte: = k é = + k A két eyenletet eyál elozt =, elyből k -t kifejeze t t t + k k 7 ( t t) 45 ( 6 6 ) k k = = = 5 7 ( t + t ) ( + ) 6 6 II/9 k Az = k uú köpály keülete = π = k π = 6,8 k Ezt z utt = 8 = 5 ebeéel 6,8 k ldó epülőép t = = = k,776 = 79,4 ltt tezi e A fenti időtt epülőép T keinéi, 8 y peióduideje Az ω zöebeé (felznál, oy epülőép T peióduidő ltt 6 -ot, zz π diánt tez π π e): ω = = =,5/ T 79, 4 Ey félköt epülőép peióduidő fele, zz T / = 9,6 ltt tez e Az cp centipetáli youlá kizáítá (5 ) kétféleképpen töténet: cp = = =5,6, illete cp = ω = (, 5 ) = 5,6
Fizik énököknek záolái ykolt (MEGOLDÁSOK) 9 / I félé Eyene onlú eyenleteen youló ozá II/ Az = 5 / youlál ozó olyó áltl t é t időpontok között etett (t, t ) út: ( t, t) = t t = ( t t ) 5 Az elő áodpecben etett út ezek lpján: (,) = (() ( ) ) =,5 Honlóképpen, é 4 áodpecben etett utk ende 7,5,,5 é 7,5 A néy út ány ::5:7 Az = 5 youlál ozó olyó ebeéáltozá t A = é t B = 4 időpontok között: t (, t ) = t t = t ( t ) = 5 (4 ) = A B B A B A II/4 k ) Miel z utó álló elyzetből indult, kezdeti ebeée k/ olt H t = 9, ltt éte el = 8 ebeéet, k 8, z átlo youlá = = = = =,5 t t 9, 9, II/6 A tet,, 4 5, lint 6 7 időttok ltt eyenlete, időtt ltt eyenleteen youló, 4, lint z 5 6 időttok ltt eyenleteen luló ozát éez A youlá idő fikon ebeé idő fikon deiáláál nyeető 5,5 (/) 5-5 4 5 6 7 8,5 -,5 (/) (/ ) - - -5 t () -,5 A tet elozdulá ebeé-idő fikon ltti teületek előjele özezééel táoztó e: A = (,75, 5) néyzetác 5 / = 475 II/ A = / kezdeti ebeéel feldobott lbd = 98, youlál ozo felfelé H t-el jelöljük zt z időpontot, iko lbd ebeée =, é felználjuk, oy = t, t időponti lbd áltl etett út: = t t = = = 5,9 = 9,8 Miel lbd pályáj zietiku, izfelé i uynennél pontnál, zz 5,9 -el kezdőpozíciój felett éi el = ebeéet 4
Fizik énököknek záolái ykolt (MEGOLDÁSOK) 9 / I félé II/ A tet eyene onlú pály entén ozo é ebeée z időel lineáin áltozik, íy ez ozá eyene onlú eyenlete youló ozá A = + t özefüéel özeonlít kpjuk, oy =, = d =,6 Ezekkel z dtokkl kizáíttó, oy z y tenely entén tet elozdulá: y = t+ t = 6+,7= 8,7 A tet új elyzete: P ( ; ( 4, + 8,7) )= ( ;,9 ) Hjítá, ne eyenleteen youló ozá, youló köozá II/4 Vízzinte jítáko tet ozá két, eyától füetlen elozdulá bonttó fel Az eyik elozdulá ízzinte iányú, eyene onlú eyenlete ozá, jítá ebeééel: x = t = = 4 = 5 = A kő z eljítá elyétől ltt ízzinte iánybn 4 étet, füőleeen lefelé étet táolodott el A áik elozdulá füőlee iányú, é zbdeéként ítjuk le: y t ( ) III A TÖMEGPONT DINAMIKÁJA Eyene onlú ozá III/ Annk z eőnek nyá, elyet z töeű ebe fejt ki lift pdlójá: F = ( + ), ol itáció youlá, pedi lift youlá Az youlá előjele pozití, lift felfelé youl, é netí, lefelé youl A fentieknek efelelően z ebe áltl pdló kifejtett eő nyá z eye eetekben: F = 7 k 9,8 = 686,7 N, F = 7 k (9,8 ) = 476,7 N, F = 7 k (9,8 + ) = 896,7 N III/5 A poblé ey olyn o kezdőebeéel töténő füőlee jítánk tekintető, elynél tet lejtő okozt kényze köetkeztében itáció youlá elyett ey = inα = 9,8 in = 4,95 nyáú, füőleeen lefelé iányuló youlál ozo A oltpont eléééi eltelt t idő nnk felználáál o kptó e, oy oltponton tet ebeée zéu: = o t t = ( 8 o o o o o ) A felő oltpont eléééi etett út: = ot t = o 6,5 = = = = 4,95 Miel ozá zietiku, izékezéi etett út fenti éték kétzeee, zz,4 Uynezen okból izékezéi eltelt idő t időtt kétzeee, zz 8 o t = = =,6 4,95 III/7 A ládá tó tpdái úlódái eő Fúl = µ, ol µ tpdái úlódái eyütttó, lád töee é itáció youlá Aoz, oy fékezéko lád éppen ne cúzon e, ládá tó teetetlenéi eő lefeljebb kko leet, int tpdái úlódái eő: = F F = µ, iből fékezé lulá: III/9 fék fék te úl µ =, 9,8 =,96 A lejtőe elyezett tet eyenúlybn n indddi, í e ne ozdul Háo eő t á, neézéi eő, lejtőe eőlee nyoóeő é úlódái eő (kezdetben tpdái eő, jd cúzái úlódái eő) H neézéi eőt felbontjuk lejtőel páuzo é eőlee özeteőke, kko z eyenúly feltételéből kpjuk, oy Fny = coα é F = in α Akko ozdul e tet, tpdái eő xiáli étékét eldj neézéi eő lejtőel páuzo özeteője 5
Fizik énököknek záolái ykolt (MEGOLDÁSOK) 9 / I félé Miel tx µ µ F = co α ( = Fny), z eyenúly lefeljebb ddi állt fel, iko lejtő zöe ey kiciel kiebb, int Miel á in > µ co, innen µ < t =,577 Abból, oy -nál éppen eozdul tet, z köetkezik, oy µ 577, A ozá dtiból, = t felználáál kpjuk, oy =,5 A in α cúzái úlódái eő F = µ coα, ozáeyenlet in α F =, innen µ = =,58,5 co α N 5 III/ Íjuk fel Pitoz-tételt pio zínnel kieelt deékzöű áozöe: ( 5 ) ( ) + =, ebből = H z utó íd tetején eyenlete köozát éez, kko köozáoz zükée eőe felító z N = özefüé, ol úlyeő é N nyoóeő Az utó ne álik el z úttól, N, iből z utó ebeéée k özefüé dódik Ebből z utó xiáli ebeée: x = = 9,8 = 5, 7 = 8, 6 III/ Jelölje tet ebeéét, ω köozá zöebeéét é F cp köozá fennttááoz zükée centipetáli eőt ω t 5 A t = ltt etett zöelfodulá: N = = =,9 fodult A tet töee centipetáli eő π π nyáából táoztó e, felznál, oy = ω : F F cp cp Fcp 5 N Fcp = = = ω = = =,5 k ω 5 III/4 A leálá pillntzeű, ezét uóbn ébedő eő ne tud eáltozni A uóbn léő eő nyobb, int ekko köpályán ttáoz zükée, ezét többleteő itt köpályáoz képet befelé kell dék éznek elozdulni A leált éz pedi z elálá pontjábn z eedeti pály éintőjének iányáb ozdul el III/6 α Az F kötéleő füőlee koponene olyó tó itáció eőel tt ellent, íy zzl zono nyáú, í ízzinte koponen köozá fennttááoz zükée centipetáli eőt biztoítj Ezek lpján F co α =, iből kötél füőleeel bezát zöe: 5, k 9,8 α = c co = c co =, 5 F 6 N A fenti étékből kötél ízzinteel bezát zöe 9,5 = 56,5 Az l ozúáú kötélen füő olyó áltl beját köpály u = l in α, centipetáli eő nyá pedi F = F in α Miel F cp cp =, olyó keületi ebeée: 6
Fizik énököknek záolái ykolt (MEGOLDÁSOK) 9 / I félé Fcp F inα linα 6 N in,5,4,9 k = = = = =,8 5, k Az ω zöebeéel töténő köozá peióduideje: ( l α) π π π in π,4 in,5 T = = = = =,84 ω,9 III/8 H z l ozúáú dezkából α jlázöű lejtőt kézítünk, jt léő tee úlyánk ck noáli koponenét, zz ' coα nyáú eőt kell elbíni H z k teebíáú dezk lejtő foájábn elbíj z töeű tetet, teljeül köetkező eyenlet: ' coα, iből lejtő jlázöée 6 k α cco = cco = 6,86 dódik ' 75k III/9 Eézítük ki z ábát, z eők bejzoláál A tete áo eő t, két kötélben ébedő eő é neézéi eő, elyek eedője zéu, izen tet eyenúlybn n Áltláno elyzetű eők eetén célzeű koponeneket özeonlítni Tekintük ízzinte özeteőket: FAco 45 = FB co 6 A füőlee koponeneke: F in 45 + F in 6 = co 45 Az elő eyenletből FB = FA = 4, 4 N co 6 FAin 45 + FBin 6 A tet töee: = =,59 k, ol = 9,8 A B IV TÖLTÖTT RÉSZECSKE SZTATIKUS ELEKTROMOS ÉS MÁGNESES TÉRBEN IV/ A dik, q töltét két között kell elelyezni oz, oy á tó két eő ellentéte iányú leyen, íy eedőjük zéu leeen Jelölje x q é Q táoláát, q- tó két eő ellentéte iányú, é leyen 4 eyenlő: k qq = k q Q, ol x > Innen x = L x ( L x) Ez q töltéének előjelétől füetlenül indi teljeül Édeke eizálni zt, oy ilyen áltozá töténik, q töltét elozdítjuk ey picit z eyik tölté iányáb IV/4 Vizáljuk e kö lkú zálpon (ey átlón léő) két tölté áltl keltett téeőéet, jd páonként folytuk ezt, feltételezzük, oy q>: Az elő eetben: ( 9) ( ) q q q Eeedő,9 = k k = 6k = 6 E, báely két ey átlón léő töltétől zázó téeőé zálp közepén ponton ekko A áodik ábán láttó 6 téeőé-ekto, ely indeyike - töltétől zázik Ezek özeekto bejelölt zietitenelye eik (előzö ondoljon, oy zietikuk özee bizton ee eik) Vyi kiuttó fél -ko utt z eedő téeőé iányáb 7
Fizik énököknek záolái ykolt (MEGOLDÁSOK) 9 / I félé IV/6 Q Rjzoljuk le áo cúcbn léő töltét é ájuk tó - F = k nyáú eőt, ol, áozö oldlánk oz Báely cúcbn léő töltée tó Q Q eők özee zono F = e k co k = nyáú, é táonl áozö zieti középpontján átey Ezt z eőt kell kieyenlítenie középpontb uttó F* eőnek, elyet középpontb tett Q * (Q-l ellentéte előjelű) tölté biztoítt A cúc é középpont táolá úlyonl /-éze: d = = = A cúcokbn léő töltéek eyenúlyánk feltétele: * * * QQ QQ QQ * Q * F = k = k, zz k = k, innen Q = Q IV/7 A belő öbe elyezett Q(>) tölté öb külő felzínén eyenleteen elyezkedik el, et töltéek tzítják eyát, íy öb belejében ne leet tölté Gondoltbn eyük köül ezt öböt nyobb uú, de é elee külő öbbel Ez utóbbi ékony fé flábn töltéeoztá itt, belő felületen ellentéte, netí -Q* tölté lez, kíül pedi Q* pozití Aoz, oy külő fé öbéj belejében téeőé leyen, z öze belő öbből induló eőonlnk be kell fejeződnie ey külő öb belő oldlán keletkezett netí töltében, ez ck úy leetée, Q=Q* Veyük éze, oy ot két öb eziől olyn, int ck eyetlen c uú öbünk lenne é tettünk oln Q töltét Mot teyük á ondoltbn külő öbe i Q töltét, ennek ninc tá öb belejée Eljutottunk z eedeti feldt eoldááoz: Az táolábn téeőé: Q 9 N C N E = k = 9 = 6 4 C 5 C A külő öb külő felzínén: Q E N E 8 = k = = C ( ) IV/9 A jz zeint képzeljük el z elekton ozáát, nyoljuk el neézéi eő táát Az elekton yoítá után ebeéel ékezik két leez közé z A pontb, jd U leezek között állndó Fel = E q = q d nyáú é leezeke eőlee iányú eő t á indddi, í ki ne lép leezek közötti téből B pontbn Ezután ne t á eő, ezét ozá B ebeéű eyene onlú, eyenlete ozá lez A leezek közötti ozá nyon onló ízzinte jítál ozó tetekéez Miután elképzeltük ozát, célzeű záolánál ézeke kell bontni feldtot: ) Száítuk ki ekko kezdőebeée: ználjuk fel, oy z elektoo té unkáj ozái eneiáját nöelte: 8
Fizik énököknek záolái ykolt (MEGOLDÁSOK) 9 / I félé U yq 7 U y q =, innen = =,87 b) A leezek közötti ozá oán leezekkel páuzo elozdulá állndó ebeéel töténik, leezek közötti l 9 utt: t = =,7 idő ltt futj be U q Fel Eq 5 A leezeke eőleeen youló ozát éez: = = = d =,5 youlál, elozdulá é B 6 pontnál leeze eőlee ebeée: b = t =,, = t =,77 L 9 c) A leezek közül kilép, é eyene onlú ozát éez BC-el jelölt zkzon t = =,6 idei, é ezltt leeze eőleeen elozdul: c =,8= 8, táolál Íy z elektonnyláb eltéülée z enyőn özeen kb 4 IV/4 A ézeckéke tó úlyeő okkl kiebb, int Loentz eő Ezét úlyeőt ne ezük fiyelebe A deuteon ey potonból é ey neutonból álló ézecke, eltekinte poton é neuton töee közti különbétől deuteon töee poton töeének kétzeee, illete neuton elee één poton é deuteon ézecke töltée eeyezik Adtok: q p = q d = q, p =, d =, p =5 c I A ézeckék ozái eneiáj zono: p p = d d Beelyetteíte z dtokt: p = d p Kifejeze deuteon ebeéét: d = II Mánee tében ozó töltött ézeckée Loentz ( F l = q B ) eő t Miel ézeckék ánee indukció eőleeen lépnek káb, ezét z eő nyá: F l = q B Iány, indi ézeckék ebeéée eőlee, ezét ézeckék köpályán ozonk A ézecke ozáeyenlete: cp = q B, é fiyelebe ée, oy: cp =, = q B Kifejeze köpály uát: = q B Íy poton é deuteon eetén: p d p =, d = q B q B Beelyetteíte deuteon ebeéée nyet kifejezét: ( p / ) p d = = q B q B A poton eetén kpott kifejezét beelyetteíte: d p =, d =, c 9