Broadcast és Multicast. Számítógépes Hálózatok IPv4-Header (RFC 791) Multicasting

Hasonló dokumentumok
Számítógépes Hálózatok 2011

Számítógépes Hálózatok ősz Hálózati réteg IP címzés, ARP, Circuit Switching, Packet Switching

Autonóm rendszerek (AS) tipusai. Számítógépes Hálózatok Inter-AS-Routing. Inter-AS routing: BGP (Border Gateway Protocol)

Számítógépes Hálózatok 2012

Autonóm rendszerek (AS) tipusai. Számítógépes Hálózatok Inter-AS-Routing. Inter-AS routing: BGP (Border Gateway Protocol)

Számítógépes Hálózatok 2012

Felhasználói réteg. Számítógépes Hálózatok ősz IP címek és a Domain Name System (DNS) Domain Name System (DNS) Domain Name System

Számítógépes Hálózatok 2008

Számítógépes Hálózatok ősz Felhasználói réteg DNS, , http, P2P

Felhasználói réteg. Számítógépes Hálózatok Domain Name System (DNS) DNS Felépítés. Domain Name System

Az RSA-séma. Számítógépes Hálózatok RSA példa. Elektronikus aláírás

Számítógépes Hálózatok 2008

Elektronikus aláírás. Számítógépes Hálózatok Internet tőzfalak (firewalls) IPsec (RFC 2401)

Számítógépes Hálózatok 2010

Számítógépes Hálózatok 2013

Torlódás elkerülési elv: AIMD. Számítógépes Hálózatok Additive Increase Multiplicative Decrease (AIMD): Fairness és Hatékonyság

Számítógépes Hálózatok 2013

Az adott eszköz IP címét viszont az adott hálózat üzemeltetői határozzákmeg.

IPv6. Számítógépes Hálózatok 2013

Dr. Wührl Tibor Ph.D. MsC 04 Ea. IP kapcsolás hálózati réteg

Számítógépes Hálózatok Felhasználói réteg DNS, , http, P2P

Felhasználói réteg. Számítógépes Hálózatok Domain Name System (DNS) DNS. Domain Name System

Hálózati architektúrák laborgyakorlat

Internet Protokoll 6-os verzió. Varga Tamás

Névfeloldás hosts, nsswitch, DNS

Routing update: IPv6 unicast. Jákó András BME EISzK

Hálózati Technológiák és Alkalmazások

Beállítások 1. Töltse be a Planet_NET.pkt állományt a szimulációs programba! A teszthálózat már tartalmazza a vállalat

Hálózati Technológiák és Alkalmazások. Vida Rolland, BME TMIT október 29. HSNLab SINCE 1992

Két típusú összeköttetés PVC Permanent Virtual Circuits Szolgáltató hozza létre Operátor manuálisan hozza létre a végpontok között (PVI,PCI)

Multiprotocol encapsulation (RFC1483) - IETF Classical IP over ATM (RFC1577) - IETF LAN Emulation (LANE) - ATM Forum Multiprotocol over ATM (MPOA) -

Windows rendszeradminisztráció és Microsoft szerveralkalmazások támogatása. 3. óra. Kocsis Gergely, Kelenföldi Szilárd

DNS és IPv6. Jákó András BME TIO

Windows hálózati adminisztráció

Ethernet/IP címzés - gyakorlat

Hálózati réteg - áttekintés

Gyakorló feladatok a 2. ZH témakörének egyes részeihez. Számítógép-hálózatok. Dr. Lencse Gábor

Számítógép-hálózatok. Gyakorló feladatok a 2. ZH témakörének egyes részeihez

Windows rendszeradminisztráció és Microsoft szerveralkalmazások támogatása. 3. óra. Kocsis Gergely, Supák Zoltán

Hálózati architektúrák laborgyakorlat

Hálózati architektúrák laborgyakorlat

IP anycast. Jákó András BME TIO

Routing. Számítógép-hálózatok. Dr. Lencse Gábor. egyetemi docens Széchenyi István Egyetem, Távközlési Tanszék

IP alapú távközlés. Virtuális magánhálózatok (VPN)

Statikus routing. Hoszt kommunikáció. Router működési vázlata. Hálózatok közötti kommunikáció. (A) Partnerek azonos hálózatban

Domain Name System (DNS)

Dinamikus routing - alapismeretek -

Az IPv6 a gyakorlatban

Az Ethernet példája. Számítógépes Hálózatok Az Ethernet fizikai rétege. Ethernet Vezetékek

IV. - Hálózati réteg. Az IP hálózati protokoll

2011 TAVASZI FÉLÉV 3. LABORGYAKORLAT PRÉM DÁNIEL ÓBUDAI EGYETEM. IP címzés. Számítógép hálózatok gyakorlata

VIII. Mérés SZÉCHENYI ISTVÁN EGYETEM GYŐR TÁVKÖZLÉSI TANSZÉK

III. előadás. Kovács Róbert

IPv6. A következő generációs Internet Protocol. Dr. Simon Vilmos. docens BME Hálózati Rendszerek és Szolgáltatások Tanszék svilmos@hit.bme.

Unicast. Broadcast. Multicast. A célállomás egy hoszt. A célállomás az összes hoszt egy adott hálózaton

Unicast A célállomás egy hoszt. Broadcast A célállomás az összes hoszt egy adott hálózaton

Az internet ökoszisztémája és evolúciója. Gyakorlat 2

Windows rendszeradminisztráció és Microsoft szerveralkalmazások támogatása. 3. óra. Kocsis Gergely, Supák Zoltán

Broadcast és Multicast. Számítógépes Hálózatok és Internet Eszközök. Multicasting. IP Multicast Címek

A TCP/IP számos adatkapcsolati réteggel együtt tud működni:

Adatkapcsolati réteg. A TCP/IP számos adatkapcsolati réteggel együtt tud működni: Ethernet, token ring, FDDI, RS-232 soros vonal, stb.

Hálózati réteg. Feladata: a csomag eljusson a célig Több útválasztó Ez a legalacsonyabb rétek, mely a két végpont

Hálózati Technológiák és Alkalmazások. Vida Rolland, BME TMIT november 5. HSNLab SINCE 1992

Hálózati architektúrák és Protokollok GI - 9. Kocsis Gergely

Hálózatok Rétegei. Számítógépes Hálózatok és Internet Eszközök. TCP/IP-Rétegmodell. Az Internet rétegei - TCP/IP-rétegek

Transzport Réteg. Transzport réteg protokollok

Alhálózatok. Bevezetés. IP protokoll. IP címek. IP címre egy gyakorlati példa. Rétegek kommunikáció a hálózatban

Windows rendszeradminisztráció és Microsoft szerveralkalmazások támogatása. Kocsis Gergely, Supák Zoltán

IPv6 gyorstalpaló Mohácsi János NIIF Intézet

UTP vezeték. Helyi hálózatok tervezése és üzemeltetése 1

Tájékoztató. Használható segédeszköz: -

Kommunikációs rendszerek programozása. Routing Information Protocol (RIP)

1. A számítógép-hálózatok ISO-OSI hivatkozási modelljének hálózati rétege 1.a Funkciói, szervezése

A kapcsolás alapjai, és haladó szintű forgalomirányítás. 1. Ismerkedés az osztály nélküli forgalomirányítással

Konfiguráljuk be a TCP/IP protokolt a szerveren: LOAD INETCFG A menüpontokból válasszuk ki a Proctcols menüpontot:

Mobil Internet 2 3. előadás IPv6 alapok

A TCP/IP modell hálózati rétege (Network Layer) Protokoll-készlet: a csomagok továbbítása. Legjobb szándékú kézbesítés

Dr. Wührl Tibor Ph.D. MsC 04 Ea. IP P címzés

21. tétel IP címzés, DOMAIN/URL szerkezete

Számítógépes Hálózatok és Internet Eszközök

Segédlet a Hálózati architektúrák és protokollok laborgyakorlathoz v0.6

Médiakommunikációs hálózatok (VIHIM161) évi fóliái alapján készült

Routing IPv4 és IPv6 környezetben. Professzionális hálózati feladatok RouterOS-el

Hálózati architektúrák és Protokollok GI 8. Kocsis Gergely

Windows rendszeradminisztráció és Microsoft szerveralkalmazások támogatása. 2. óra. Kocsis Gergely, Kelenföldi Szilárd Barizs Dániel

Hálózati informatikus Mérnökasszisztens

Számítógép hálózatok

IPv6 Elmélet és gyakorlat

routing packet forwarding node routerek routing table

DNS hamisítás szerepe, működése, védekezés. Benda Szabolcs G-5S5A Peller Nándor G-5i10 Sőregi Gábor G-5S5A

IPv6 Biztonság: Ipv6 tűzfalak tesztelése és vizsgálata

A 35/2016. (VIII. 31.) NFM rendelet szakmai és vizsgakövetelménye alapján.

Számítógépes Hálózatok és Internet Eszközök

IPv6 és mobil IP. Dr. Huszák Árpád Szabadkai Műszaki Főiskola

Hálózatok építése és üzemeltetése

IP Internet Protocol. IP címzés, routing, IPv6, IP mobilitás. Dr. Simon Vilmos

ARP ÉS DHCP. Médiakommunikációs hálózatok (VIHIM161) évi fóliái alapján készült. Dr. Lencse Gábor

Hálózati beállítások Készítette: Jámbor Zoltán 2016

Hálózati operációs rendszerek II.


Átírás:

Számítógépes Hálózatok 2008 10. Hálózati réteg IP címzés, ARP, DNS, Circuit Switching, Packet Switching Broadcast és Multicast Broadcast routing Egy csomagot (másolatot) minden más csomópontnak el kell küldeni Megoldások: A hálózat elárasztása (flooding) Jobb: Konstruáljunk egy minimális feszítőfát Multicast routing Az adatokat egy küldőtől egyidejűleg több fogadóhoz kell eljuttatni Real time Streaming, Video-On-Demand, Telefon-, Videokonferencia (all-to-all multicast), IP D címosztály: Egy multicast-csoport (group) minden tagja ugyanazt a címet használja Megoldások: Optimális: Minimális Steiner Fa Probléma NP-teljes (2-approximáció O(n log n) idő alatt kiszámítható!) Más (nem-optimális) fát konstruálni 1 2 Multicasting IPv4-Header (RFC 791) Naív megoldás: Multicast-via-Unicast: A küldő egy külön másolatot küld az adatokról minden foadónak. Nagyon inefficiens: A küldött csomagok száma sokkal nagyobb, mint ami szükséges lenne (különösen rossz all-to-all multicast esetén). Egy multicast-fa felepítése segítségével: Minden linken csak egyszer továbbítódik egy csomag. A routerek döntik el, hogy egy csomagot több linken is továbbítanak-e. Küldő Naív megoldás Küldő Multicast-fa Version: 4 = IPv4 IHL: fejléc hossz 32 bites szavakban (>5) Type of Service Optimalizálás delay, throughput, reliability, monetary cost szerint Checksum (csak a fejlécnek) Source és destination IP cím Protocol: azonosítja a megfelelő protokollt pl. TCP, UDP, ICMP, IGMP Time to Live (TTL): maximális hop szám 3 4

IPv4 címek IPv4 címek Osztály alapú címzés (1993-ig) 5 fix osztály, melyek mindegyikét egy prefix azonosítja A, B, C osztály: fix hosszúságú hálózat prefix és host-id D a multicast osztály; E: lefoglalt Class A 0 Class B 10 Network ID Network ID 8 16 Host ID Host ID Class C 110 Multicast Addresses 24 32 128 NWs; 16 M hosts 16K NWs; 64K hosts 2M NWs; 256 hosts Problémák: A és B osztályú hálózatok sok állomást tartalmazhatnak, ami a routerek számára nehezen kezelhető subnetting Elfogynak a címek: a címosztályok sok címet pazarolnak el pl. egy szervezetnek 1000 állomással már B címosztályra lenne szüksége, ami elpazarol 64K-2K=62K címet classless addressing Class E 1111 Reserved for future use Class D 1110 5 6 IPv4 címek -- Subnetting Képzeljünk el egy szervezetet, amely B címosztállyal rendelkezik és a szervezeten belül több LAN van (pl. Egyetem különböző Karai, ) A központi routernek nem kell tudni minden állomásról, csak az egyes LAN-ok egy routeréről új hierarchiaszint Subnetting Bevezetünk alhálózatokat (subnet), melyeket az IP host-részéről leválasztott bitek azonosítanak (a hálózaton kívülről nem látható!) A lokális routereknek tudni kell, hol van ez a leválasztás: ez a subnet mask által adható meg Network Host Network Subnet Host 1111....1111 00000000 Mask Pl.: a subnet mask 11111111.11111111.11111111.00000000 azt jelenti, hogy az IP cím 10000100.11100110.10010110.11110011 a 10000100.11100110 hálózatban a 10010110 alhálózatban a 11110011 host-ot azonosítja IPv4 címek -- Classless Inter Domain Routing (CIDR) (RFC 1519) A címoszályok nagyon sok IP címet pazarolnak 1993 óta: Classless Inter Domain Routing (CIDR) A hálózat cím és a host-id hossza szabadon adható meg hálózati maszk által. Pl.: hálózati maszk 11111111.11111111.11111111.00000000 az IP cím 10000100.11100110.10010110.11110011 a 10000100.11100110.10010110 hálózatban a 11110011 host-ot azonosítja Ezek valódi hálózatokat jelentenek amit a többi router is lát a subnetting-gel ellentétben az IP csomagokba nem kell kiegészítés többi routernek kezelni kell ezeket a változó hosszúságú hálózati címeket (forwarding és a routing algoritmus) 7 8

IPv4 címek -- CIDR Route aggregation A BGP, RIP v2 és OSPF routing protokollok különböző hálózatokat egy prefix által kezelhetnek Pl. minden hálózat, melynek a prefixe 10010101010* az X szomszédos routeren keresztül érhető el IP cím lefordítása MAC címre: ARP (RFC 826) Address Resolution Protocol (ARP) IP cím MAC címre fordítása Broadcast a LAN-ban, lekérdezni azt, hogy melyik állomáshoz tartozik az adott IP cím Csak az a csomópont válaszol, amelyhez az IP tartozik, a MAC címmel A router akkor a csomagot oda ki tudja szállítani 9 10 IPv6 32 bites IP címek egyre szűkösebben állnak rendelkezésre 4 milliárd ilyen IPv4 cím van (32 Bit) de ezek statikusan hálózati és host-részre vannak osztva címek mobil telefonoknak, hűtőszekrényeknek, autóknak, stb Autokonfiguráció DHCP, Mobile IP, átszámozás Új szolgáltatások Biztonság (IPSec) Quality of Service (QoS) Multicast Egyszerűsítés a routernek Nincs IP checksum Nem partícionálja az IP csomagokat A címek: DHCP DHCP (Dynamic Host Configuration Protocol) Kézi hozzárendelés (hozzákötni a MAC címhez, pl. szervereknél) Automatikus hozzárendelés (fix hozzárendelés, de nem előre beállított) Dinamikus hozzárendelés (újrakiosztás lehetséges) Új számítógép kapcsolódása konfiguráció nélkül A számítógép kér egy IP címet a DHCP szervertől Az dinamikusan hozzárendel egy IP címet a számítógéphez Miután a számítógép elhagyja a hálózatot, az IP cím újra kiosztható Dinamikus hozzárendelés esetén az IP címeket frissíteni kell Ha egy számítógép egy régi IP címet akar felhasználni, ami lejárt, vagy már újra ki van osztva akkor a kéréseket vissza kell utasítani Probléma: IP címek lopása 11 12

IPv6-Header (RFC 2460) Version: 6 = IPv6 Traffic Class QoS-hez (prioritásokhoz) Flow Label QoS-hez, valós idejű alkamazásokhoz Payload Length Az IP csomag fennmaradó részének (a datagrammnak) a hossza Next Header (mint IPv4-ben): pl. ICMP, IGMP, TCP, EGP, UDP, Multiplexing,... Hop Limit (Time to Live) Hop-ok max. száma Source Address Destination Address 128 Bit IPv6-Adresse 0 1 2 3 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 Version Traffic Class Flow Label Payload Length Next Header Hop Limit + + + Source Address + + + + + + Destination Address + + + IPsec Security Architecture for the IP (RFC 2401) Biztonsági protokollok Authentication Header (AH) Biztosítja az adat küldőjének authentifikációját, kapcsolat mentes adat integritást, védelemet Replay-támadásokkal szemben Encapsulating Security Payload (ESP) IP fejléc titkosítás nélkül, adatok titkosítva, authentifikálással Kulcs management: IKE (Internet Key Exchange) Protokoll Egy Security Association létrehozása Security szolgáltatásokkal védett simplex kapcsolat két állomás, vagy egy állomás és egy security gateway (router, amely támogatja IPsec-et), vagy két security gateway között Idientifikáció, kulcsok, hálózatok, megújítási időközök az authentifikációhoz és IPsec kulcsok rögzítése 13 14 IPsec IPsec transport üzemmódban (direkt kapcsolatokhoz) IPsec fejléc az IP fejléc és az adatok között van Megvizsgálják az IP routerek (azokban jelen kell lenni IPsec-nek) IPsec tunnel üzemmódban (ha legalább egy IPsec nélküli router közötte) Az egész IP csomagot titkosítja és a IPsec fejléccel együtt egy új IP csomagba teszi Csak a kapcsolat két végén kell hogy jelen legyen IPsec IPsec része az IPv6-nak porting IPv4-re létezik IP címek és a Domain Name System (DNS) IP címek Minden hálózat interface egy hálózatban világszerte egyértelmű IP címmel rendelkezik 32 bit, amely Net-ID és Host-ID-ra oszlik Net-ID: az Internet Network Information Center adja ki Host-ID: a helyi hálózat adminisztrátor adja ki Domain Name System (DNS) Megfeleltet az IP-címnek egy nevet, mint pl. a 157.181.161.52 címnek a pandora.inf.elte.hu nevet Elosztott robosztus adatbázis 15 16

Domain Name System (DNS) Az emberek számára 4 byte IPv4 cím nehezen kezelhetők: 209.85.135.99 google.com-hoz 157.181.151.154 az ELTE-hez Mit jelent? 207.46.19.30 157.181.35.45 Jobb: Természetes szavak az IP-címekhez Pl. www.google.com vagy www.elte.hu A Domain Name System (DNS) lefordítja ezeket a címeket IP-címekre (és fordítva) elosztott adatbázis DNS Felépítés DNS neveket képez le IP-címekre Pontosabban: neveket erőforrás-bejegyzésekre A nevek hierarchikusan struktúráltak egy névtérben Max. 63 jel komponensenként, összesen max. 255 jel Minden domain-en belül, a domain tulajdonosa ügyeli fel a névteret a domain alatt 17 18 DNS Resource Record DNS Resource Records -- Példák Erőforrás bejegyzés (resource record RR): a domain-ekről, egyes host-okról, stb... adnak információt RR formátum: (name, ttl, class, type, value) name: pl. domain név vagy host név ttl (time to live): érvényesség (másodpercben) class: Internet esetén mindig IN type: lásd a táblázatot value: pl. IP-cím RR Példa: pandora.inf.elte.hu. 43200 IN A 157.181.161.52 Példák RR tipusokra Type=A name: egy végrendszer (host) neve value: egy IP-cím Type=NS name: egy domain (pl elte.hu) value: a domain authoritative name server-jének az IPcíme Type=MX value: a name-hez tartozó mail server neve Type=CNAME name: egy alias név egy kanonikus névhez value: a kanonikus név Type = SOA (start of authority) name: a domain neve value: szerverek neve, melyek a zónához tartozó mérvadó információkat rendelkezésre bocsátják, paraméterek a zónához a zóna sorszáma, frissítési intervallum a másodlagos szervernek, 19 20

DNS Name Server A névtér zónákra van osztva Minden zónához tartozik egy Authoritativ Server a mérvadó információval Egy Primary Name Server Továbbá egy vagy több Secondary Name Server a megbízhatóság miatt Minden Name Server ismeri a saját zónáját a gyermek-zónák Name-Server-jeit Servers/Resolvers Minden végrendszernek van egy feloldója (resolver) Tipikusan egy könyvtár, amit felhasználásokhoz kapcsolhatunk Lokális name-server-ek kézzel konfigurálva (pl. /etc/resolv.conf) Name servers Tipikusan egy zónáért felelősek Lokális szerverek A lokális végrendszereknek végeznek lekérdezéseket távoli végrendszer nevekről Megválaszolják a lekérdezéseket a lokális zónáról 21 22 DNS: Root Name Servers DNS lekérdezések A root zonáért felelősek Jelenleg 13 root name server világszerte A-M számozva Lokális szerverek kapcsolatba lépnek a root szerverrel, ha ők nem tudják megválaszolni a lekérdezést Jól ismert root szerverekkel konfiguráltak Iteratív lekérdezés: A megkérdezett szerver annyi információt ad a válaszban, amit ő maga tud Pl. annak a szervernek a nevét, akit meg kell kérdezni Rekurzív lekérdezés: A megkérdezett szerver rekurzívan kideríti a hiányzó információt A lokális szerverek tipikusan rekurzív lekérdezési módban dolgoznak Root vagy távoli szerverek iteratívban local name server dns.eurecom.fr 1 8 requesting host surf.eurecom.fr 3 root name server 2 4 7 iterated query intermediate name server dns.umass.edu 5 6 authoritative name server dns.cs.umass.edu gaia.cs.umass.edu 23 24

DNS üzenet formátum Tipikus feloldási folyamat 12 bytes név, lekérdezés tipus mezeje Erőforrás bejegyzések a válaszban Bejegyzések az authoritative szerverekhez További hasznos információ Identification Flags No. of Questions No. of Answer RRs No. of Authority RRs No. of Additional RRs Questions (variable number of answers) Answers (variable number of resource records) Authority (variable number of resource records) Additional Info (variable number of resource records A www.inf.elte.hu név feloldásának lépései A felhasználás hívja a gethostbyname() függvényt A végrendszer lekérdezi a lokális name server-t (S 1 ) S 1 lekérdezi a root server-t (S 2 ) a www.inf.elte.hu névvel S 2 válaszol a elte.hu-hoz (S 3 ) tartozó NS bejegyzéssel Honnan tudjuk meg az A bejegyzést S 3 -hoz Erre való az additional information section S 1 lekérdezi S 3 -t a www.inf.elte.hu névvel S 3 válaszol a www.inf.elte.hu-hoz tartozó A bejegyzéssel Több A bejegyzés is érkezhet a válaszban mit jelent ez? 25 26 Caching Prefetching DNS válaszok tárolódnak az érintett szervereken (caching) Gyors válasz ismételt lekérdezés esetén Más lekérdezések bizonyos részeket újra felhasználhatnak a válaszból Pl. NS bejegyzéseket a domain-ekhez DNS negatív lekérdezések tárolódnak a cache-ben Ne kelljen megismételni a kudarcot Pl. elgépelés A cache-ben tárolt adatok érvényessége egy idő után lejár Az érvényesség idejét (TTL) az adat tulajdonosa határozza meg Minden bejegyzés tartalmaz TTL-t Name server minden válaszhoz adhat további adatokat Tipikusan prefetcing-hez használják CNAME/MX/NS tipikusan más végrendszer nevére mutat Válaszok tartalmazzák a végrendszerek címeit, amelyekre mutatnak az additional section részben 27 28

DNS lekérdezés példa Példa egy későbbi lekérdezésre Client www.inf.elte.hu Local www.inf.elte.hu NS elte.hu www.inf.elte.hu NS inf.elte.hu www.inf.elte.hu www=ipaddr root & hu elte.hu inf.elte.hu DNS server Client ftp.inf.elte.hu Local ftp.inf.elte.hu ftp=ipaddr root & hu elte.hu inf.elte.hu DNS server 29 30 Megbízhatóság, rendelkezésre állás DNS szerverek replikáltak A name service müködik, ha egy replika működik A lekérdezések kiegyensúlyozhatók a replikák között (load balancing UDP-t használ a lekérdezéshez Megbízhatónak kell lenni Miért nem TCP? Timeout esetén alternatív szervert próbál Exponential backoff, ha visszatér ugyanahhoz a szerverhez Ugyanaz az azonosító minden lekérdezéshez Mindegy melyik szerver válaszol Reverse Name Lookup Melyik számítógéphez tartozik az 157.181.161.9 IP-cím? Lekérdezés: 9.161.181.157.in-addr.arpa Miért van megfordítva a cím? dns.inf.elte.hu root arpa in-addr 157 181 161 inf hu elte dns 157.181.161.9 9 31 32

Dinamikus DNS Probléma Időlegesen hozzárendelt IP-címek Pl. DHCP által Dinamikus DNS Amint egy csomópont egy új IP-címet kap, regisztrálja azt azon a DNS-szerveren, amely őérte felelős Rövid TTL bejegyzések biztosítják azt, hogy a bejegyzések gyorsan aktualizálódjanak egyébként a lekérdezések rosz számítógépre irányítódnának Felhasználás Egy privát domain regisztrálása lásd www.dyndns.com Circuit Switching vagy Packet Switching Circuit Switching (vonal kapcsolás) Egy kapcsolat létrehozása felhasználók között kapcsoló állomások által vonalak explicit hozzárendelésével vagy erőforrások explicit hozzárendelésével, pl. idő slots Quality of Service egyszerű, kivéve a kapcsolatfelépítés Probléma statikus hozzárendelés a kommunikációs médium inefficiens kihasználása dinamikus terhelés esetén Felhasználás Telefon, telegráf, mobil telefon 33 34 Circuit Switching vagy Packet Switching Packet Switching (csomag kapcsolás) Az IP alapelve Az adatokat csomagokra osztja és a csomagokat küldő/fogadó információval ellátva egymástól függetlenül küldi Probléma: Quality of Service A kapcsolat minősége az egyes csomagoktól függ A csomagok puffereződnek vagy el is veszhetnek Előny: A médium hatékony kihasználása dinamikus terhelés esetén Összefoglalva Packet Switching gyakorlatilag minden felhasználási területen felváltotta a Circuit Switching-et Ok: a médium hatékony kihasználása 35