A természetes vegyületek néhány alaptípusa 1. ukleinsavak, nukleotid koenzimek 2. Aminosavak, peptidek, fehérjék 3. Mono-, di- és oligoszacharidok 4. Izoprenoidok terpenoidok karotinoidok szteroidok 5. xigéntartalmú természetes vegyületek ketidalapú poliéterek, polilaktonok, flavonoidok 6. Alkaloidok
Gyógynövény és Drogismeret Farmakognózia Fitokémia, gyógynövények alkalmazása Dr. Szőke Éva, egyetemi tanár (szakmai vezető), Semmelweis Egyetem, Balázs Andrea, Blázovics Anna, Kéry Ágnes, Kursinszki László, Lemberkovics Éva, Then Mária, dr. Alberti-Dér Ágnes, Balogh György, dr. Bányai Péter, Blazics Balázs, Böszörményi Andrea, Kalász uba, Könczöl Árpád, Lugasi Andrea, Szarka Szabolcs, Szentmihályi Klára, Vasas Gábor (2012) http://www.tankonyvtar.hu/hu/tartalom/tamop412a/2010-0008_farma/eloszo/eloszo.html
A biopolimerek lehetséges izomereinek száma A sztereoizomerek nincsenek figyelembe véve Termék A szerkezeti izomerek száma A komponensek Peptidek, szacharidok száma nukleotidok monomer Z 1 1 1 dimer Z 2 1 10 trimer Z 3 1 120 tetramer Z 4 1 1424 pentamer Z 5 1 17872 monomer Z 1 1 dimer YZ 2 20 trimer XYZ 6 720 tetramer WXYZ 24 34560 pentamer VWXYZ 120 214460
A természetes vegyületek fontosabb csoportjaival foglalkozó közlemények száma (kb. 3965000) alifás természetes vegyületek 9600 poliketidek 11720 szaccharidok 18800 egyszerű oxigénciklusok 2550 egyszerű aromás vegyületek 3200 benzofuranoidok 16700 benzopiranoidok 25400 flavonoidok 63400 tanninok 32100 lignánok 15600 policiklusos aromás vegyületek 78300 hemi- és monoterpenoidok 28700 szeszkviterpenoidok 51000 diterpenoidok 39000 szeszterterpenoidok 1200 triterpenoidok 44600 egyéb terpenoidok 3200 szteroidok 517500 aminosavak és peptidek 2922500 egyszerű alkaloidok 6100 feniletilamin-vázas alkaloidok 20400 indolvázas alkaloidok 13300 egyéb alkaloidok 12100 polipirrolvázas vegyületek 25700 egyéb természetes vegyületek 600 A Chemical Abstracts (SCIFIDER) adatbázis 2015-ben 685000 szervetlen és szerves vegyületet, 2,3 millió peptid és nukleotid szekvenciát, 8,4 millió egy- és többlépéses reakciót referáló közleményt tartalmazott
Gyógyszermolekulák eredet szerinti felosztása (FDA, 1981 2002) A gyógyszermolekulák 67%-ában játszottak szerepet a természetes anyagok! 33% 23% Biol. eredet 10% TA TA deriv. 5% 12% 3% 10% 4% Sz.A Sz.A/TA Sz.A/TA-PP Sz.A/TA- PP/TA Vakcina
SCoA aktív C 2 egység acetilkoenzim A Lineáris természetes vegyületek kialakulása β -D-glukopiranozid piroszõlõsav oxo forma piroszõlõsav enol forma P piroszõlõsav enol-foszfát a a SCoA C 2 egység SCoA C 4 egység C 6 egység SCoA telitett szénlánc b a SCoA C 2 egység b SCoA SCoA telitetlen szénlánc C * CSCoA C m evalonsav m evalolakton
hosszúszénláncú zsírsavak sztearinsav olajsav arachidonsav prosztaglandin PGF 2α
Benzolgyűrű kialakulása poliketid-láncból savkatalizált báziskatalizált Cl 3 C 3 C C 3 2 klórtetraciklin
ldallánc kapcsolása karbociklushoz C C C C - P - P P P C 2 P C 2 P P C 2 korizm isav C 2 C 2 C 2 C 2 C 2 2 X biogén aminok (tiram in) (adrenalin) katecholam inok dopam in + 3 + 2-2 - C 2-2 fahéjsav tirozin
Antocianinok és flavonoid vegyületek X flavén 2-fenil-kromén flavon flavonol flavilium só katechin izof lavon Antocianinok glikozidok (aglikonjaik az antocianidinek): a 2- fenil-kromén élénk vörös, bíbor, ibolya és kék színű polihidroxi származékai ) amelyek elsősorban növ ények szirom leveleiben ( pipacs, búzavirág, s tb.) és terméseiben ( cseresznye, eper, málna, s tb.) fordulnak elõ nagy változatosságban ( metilezett, ac etilezett ox idált és redukált f ormában) Flavonoidok: a 2-fenil-kromén 4-oxo származékai, amelyek a növ ények elsõsorban s árga színanyagaiként f ordulnak elõ
Az antocianinok szíme a sejtek p-ja és a molekulák aggregációs szintje szerint változik - Cl cianidin klorid p = 3 piros + - 2 + 2 "anhidrobázis" p = 8 ibolya - "pszeudo bázis" színtelen p = 11 kék
A monenzin A poliketid-eredetű poliéter antibiotikum bioszintézisének levezetése építőköveiből SCoA C SCoA C SCoA C SCoA 4x 7x monenzin A nátrium-só C-glikozid, spiroacetál Streptomyces cinnamonensis
Lipidek Lipid <gör. liposz zsír > A legváltozatosabb kémiai szerkezetű vegyületek Jellegzetesen apoláris oldószerekben [Et 2, CCl 3, CS 2, Et (forró)] oldódó molekulák Lipidek felosztása Egyszerű lipidek (nem hidrolizálhatók) 1. Terpén 2. Karotinoid 3. Szteroid 4. Prosztaglandin 5. (Feromon) 6. (Vitamin) Összetett lipidek (hidrolizálhatók) 1. Acil-glicerin (glicerid) 2. Viasz 3. Foszfolipid glicerofoszfo- szfingofoszfo- 4. Glikolipid glicerogliko- foszfogliko-
zsír vagy olaj triglicerid koleszterin szteroid A-vitamin terpenoid lecitin foszfatid (foszfatidil kolin)
Izoprenoidok izopentán C 6 glükóz izoprén-szabály izoprén C 3 - C 1 C 2 3x mevalolakton - C 1 PP izopentenil difoszfát IPP + hemiterpén C 3 C 5 P dezoxixilulóz foszfát DXP izomerizáció PP dimetilallil difoszfát DMAPP
1. Terpenoidok 2x IPP monoterpén (C 10 ) 2x 3x IPP szeszkviterpén (C 15 ) triterpének szteroidok 4x IPP diterpén (C 20 ) 2x tetraterpének* (C 40 ) 5x IPP szeszterterpén (C 25 ) * karotinoidok Illeszkedés módjai: láb - fej láb - láb fej - fej Igen elter jedtek a ter mészetben, elsősor ban a növényvilágban (több ezer szár mazék ismer etes) különösen illóolajokban Egy vagy több =, -, -R, -CR, C cisz-tr ansz és R-S izomér ia Adott alapvázak stb.
éhány jellegzetes képviselőjük geraniol (Pellargonium fajokban) nerol (narancsvirágban) linalool (gyöngyvirágban) limonén (citrom, narancs) * * mentol kámfor
Iridoidok: több, mint 600 képviselő molekula 3 C glc 3 C glc loganin szekologanin guaiazulén (kamillából) szeszkviterpén azulén aromás (4n+2) π-elektron
Biogenetikai átmenet a terpenoidokból a szteroidokba szkvalen (cápából), triterpén + + + elektr ociklizáció + + lanoszter in szter oid - + 1,2-vándorlás ( és C 3 ) 2 8 (=256) lehetséges sztereoizomer de általában csak egy képződik
2. Karotinoidok Tetr ater pének, több mint 700 ismer etes,,őszi színek: paradicsom, paprika, kukorica, őszi levél sárga, narancs, vörös, ibolya számos = E-Z geometriával, oxigén funkciós csoportok: -, -R, C C C C R stb. β-karotin retinol (A 1 vitamin) E retinal (all-transz) (a látóbíborban) hν 11-cisz-retinal Z a látás molekuláris alapja
3. Szteroidok Többszáz természetes és több ezer (fél)szintetikus képviselőjük ismeretes 2 3 A 1 4 12 11 19 C 9 21 20 22 18 17 13 D 16 14 10 8 15 5 B 7 6 23 24 25 26 27 szterán váz merev vázon kettőskötéseket, alkil oldalláncot, oxigén funkciós csoportokat (, -C, -C-, -C, észter, lakton, stb.) tartalmaz transz-anti-transzanti-transz a legtöbb természetes vegyületben cisz-anti-transz-anti-transz epesavakban cisz-anti-transz-szin-cisz digitálisz glikozidokban
Szteroidok nevezéktana A szteroidok az izoprénvázas vegyületek legfontosabb csoportját alkotják. A szteroidok az alábbi tetraciklusos gyűrűrendszert tartalmazzák, amelyhez a nyíllal megjelölt helyeken metilcsoport, illetve több szénatomos oldallánc (R) vagy újabb gyűrű kapcsolódhat. C 3 R 2 3 1 A 4 C 3 10 5 9 B 6 11 12 13 8 7 C 14 17 16 15 D 1,2-ciklopentanoperhidrofenantrén (gonán) Furka Árpád: Szerves kémia Tankönyvkiadó, Budapest, 1988.
A képleten feltüntettük a szénatomok számozását és a gyűrűk betűjelét is. A gyűrűkben és az oldalláncban előfordulhat kettős kötés is, sőt az A- és B-gyűrű aromás is lehet. A gyűrűkhöz és az oldallánchoz oxigéntartalmú funkciós csoportok kapcsolódhatnak. A gyűrűrendszer alakját a gyűrűk (cisz vagy transz) illeszkedése szabja meg. A szteroidok körében a gyűrűk illeszkedésének háromféle kombinációja fordul elő, amelyet az androsztán, az etiokolán és az izoetiokolán példáján mutatunk be. A C 3 B C 14 C 3 D A C 3 B C 14 C 3 D 5 5 androsztán 5α-androsztán etikolán 5β-androsztán C 3 A B 5 C 14 C 3 D izoetikolán 5β,14β-androsztán
A B- és a C-gyűrű illeszkedése mindig transz, az A/B és a C/D illeszkedés lehet transz és cisz is. Az újabb IUPAC-nómenklatúra mindhárom vázat androsztán váznak tekinti, a különbségeket a C-5 és a C-14 atomhoz fűződő hidrogénatom térállásának α vagy β megjelölésével fejezi ki, de utóbbit csak akkor kell kiírni, ha a C/D illeszkedés nem transz. A szubsztituensek térállása kétféle lehet: α vagy β. A szubsztituens térállása akkor β, ha a gyűrűrendszernek (mint görbe felületnek) ugyanarra az oldalára esik, mint a C-10-hez kapcsolódó metilcsoport. Az ellenkező oldalra eső szubsztituensek α-térállásúak. C 3 C 3 β C 3 10 α β C 3 10 β α α β α
a a térszerkezetet síkban ábrázoljuk, az anelláció típusát kétféleképpen is jelezhetjük. Vagy pontot teszünk arra az anellációs helyre, ahol a szubsztituens vagy a hidrogénatom felénk mutat, vagy feltüntetjük, hogy az anellációs helyekhez kapcsolódó szubsztituensek vagy hidrogénatomok milyen térhelyzetűek. A β-térhelyzetűeket kihúzott vonallal, az α- helyzetűeket szaggatott vonallal kötjük a vázhoz. C 3 C 3 C 3 C 3 C 3 C 3 A szteroidokat több csoportba szokták sorolni. Így megkülönböztetünk szterineket, epesavakat, szívre ható glikozidokat, szteroidszaponinokat, nemi hormonokat, mellékvesekéreg-hormonokat, metamorfózishormonokat és szteroidalkaloidokat.
Szteroidok teljes szintézise
Torgov-féle szintézis C 3 C 2 CMgBr TF C 3 C 2 3 C C 3 11 9 3 C 14 Ts - 2 C 2 3 C + C 3 C 3 C 3 C 3 9 8 14 2 /kat 1. 3, K 2. Cr 3 C 3 C 3 C 3 oxocsoport részbeni redukciója végett
ösztron
Fontosabb, terápiásan is hasznos szteroidok: Szterolok Alapváz: kolesztán (C 27 ), 3β- alkilcsoportok, kettőskötések koleszterin (ló agyvelőből) ergoszterin (élesztőből) hν dioszgenin (Dioscorea fajokból) D 2 vitamin (ergokalciferol) (Ca anyagcsere, csontképzés)
Alapváz: Epesavak (kólsav és kenodezoxikólsav glicinnel és taurinnak alkotott sói) kolán (C 24 ) C 5 oldallánc, C AB cisz α csoportok kólsav Az epében található. a-sója a zsírokat emulgeálja a vékonybélben.
Alapváz: Digitálisz-glikozidok 17 kardanolid (C 23 ) γ lakton oldallánc AB és CD cisz
Teljes glikozid acetil Teljes glikozid glukóz Teljes glikozid glukóz acetil Aglikon dezacetil-lanatozid C acetil-digoxin digoxin digoxigenin aglikon C 2 CC 3 3-β-D-digitoxóz lanatozid C (Digitalis lanata-ból) fontos szívgyógyszer β-d-glükóz
Alapváz: 21 20 Mellékvesekéreg-hormonok (kortikoszetroidok) 3 pregnán (C 21 ) 3,20-dioxo, 21- kettőskötés C 4 -nél mellékvesekéregből izolálták Mineralokortikoidok: aldoszteron ionegyensúly (a + retenció, K + szekréció) szabályozása szpironolakton (félszintetikus) aldoszteron-antagonista diuretikus hatás S
Glükokortikoidok: A szénhidrátanyagcsere szabályozása gyulladásgátló hatás hidrokortizon prednizolon (félszintetikus)
Gesztagének (női szexuálhormonok) C C progeszteron (corpus luteum és a placenta termeli) fenntartja a terhességet noretiszteron (nor) (szintetikus termék) ösztrogénnel kombinálva: antikoncipiens hatás
Ösztrogének (női szexuálhormonok) Alapváz: C 3 ösztrán (C 18 ) A gyűrű aromás, = csoport C-19 hiányzik C C ösztron ösztradiol 17-α-etinil-ösztradiol (szintetikus, orális) A gesztagének és az ösztrogének együttesen szabályozzák a szexuális funkciókat és a menstruációs ciklust
Alapváz: Androgének (férfi szexuálhormonok) androsztán (C 19 ), = csoport androszteron (először izolált vegyület) tesztoszteron (testis termeli) (természetes hormon) szabályozza a szexuális funkciókat
Anabolikus hatású vegyületek (tesztoszteron származékok) - félszintetikus vegyületek - rekonvaleszcenciában, oszteoporózisban metándienon sztanozolol az egyik legismertebb,,doppingszer A fehérjeszintézist stimulálják.
A szexualitás molekuláris alapja: aromás aromás ői: ösztr on ösztr adiol alifás alifás Férfi: andr oszteron tesztoszter on
More steroids with pharmaceutical effects hydroxydione (with narcotic effect) C 3 3 C 2 Br pancuronium bromide (peripherial muscle relaxant)
A porfinek általános szerkezete mezomerek tautomerek + + + + + + Fe Fe mezomerek konfigurációja: 1s 2, 2s 2 p 6, 3s 2 p 6 d 6 24 e + d 4, 4s 2 p 6 36 e = Kr konfiguráció
Alkaloidok tartalmú (rendszerint heterociklusos), közepes (de néha gyengén) bázikus, növényi (de néha állati) eredetű természetes vegyületek, rendszerint jelentős biológiai aktivitással. A nitrogén forrása általában aminosav, vagy belőle képződő biogén amin. éhány fontosabb biogén amin 2 - C 2 2 szerin aminoetanol acetilkolin C 3 C C 3 3 2 - C 2 2 2 lizin 2 pentametiléndiamin - C 2 2 2 glutaminsav γ-amino-vajsav
- C 2 2 2 tir ozin tir amin - C 2 2 2 hisztidin hisztamin - C 2 2 tr iptofán 2 tr iptamin
Alifás aminosavakból levezethető alkaloidok lizinből ornitinből C3 C 3 koniin (Conium maculatum) nikotin (icotiana tabacum) 3 C pirrolidin ornitinből piperidin alkohol: tropin 3 C (-)-kokain (Erythroxylon coca) erős lokalanesztetikum, de veszélyes kábítószer tropánváz (-)-hioszciamin (yoscyamus niger) (±)-atropin (Atropa belladonna) paraszimpatolitikum sav: tropasav
25 C + 3 C 3 Cl + 2-2 2 szukcinaldehid aceton-dikar bonsav 3 C -2 C 2 3 C biomimetikus szintézis (R. Robinson) tr opinon
Fenilalaninból levezetett alkaloidok X 2 X - + 2 - C 2-3 2 X Pictet-Spengler (Mannich) X X -2 X mor finán X benzil-izokinolin
3 C 5 C 2 3 C 5 C 2 C 3 C 2 5 C 3 C 2 5 papaverin (Papaver somniferum-ból) simaizom görcsoldó drotaverin (szintetikus) simaizom görcsoldó
3 C C 3 C 3 Cl - 3 C 3 C Cl - 3 C C 3 C 3 C 3 (+)-tubocurarine (Chondrodendron tomentosum) muscle relaxant (Claude Bernard, curare effect) bis(benzyl-isoquinoline) skeletone (-)-emetine (Cephaelis ipecacuanha) expectorant
Morfinalkaloidok 3 C R 1 R 2 R 1 R 2 morfin Me kodein Ac Ac heroin (Papaver somniferum-ból) morfin: kiváló fájdalomcsillapító, de veszélyes kábítószer kodein: jó köhögéscsillapító heroin: veszélyes kábítószer
Triptofánból levezetett alkaloidok 2 tript ofán 2 tript amin + 3 C szekologanin 3 C 3α- sztr ikt ozidin 3β- vinkozid
11 10 12 13 Me 9 1 8 7 2 Me 6 3 14 22 21 20 15 19 16 18 17 Az indolvázas alkaloidok három alaptípusa Me (-)-rezerpin I α típus Rauwolfia serpentina vérnyomáscsökkentõ neuroleptikum 5 4 Me Me Me 3 14 15 20 22 21 16 17 szénváz I 19 18 3 14 15 16 17 21 20 18 sztrichnin I β Strychnos nux vomica analeptikum különleges szerkezet 19 3 21 Me 17 14 15 16 21 20 22 19 18 katarantin II típus Catharanthus roseus gyógyszeralapanyag 3 22 16 17 14 20 15 20 19 szénváz II 18 szénváz III 22 16 17 21 3 20 14 15 19 18 Me 22 16 17 21 20 19 3 15 14 18 (+)-vinkamin III típus Vinca minor vérnyomáscsökkentõ
II. típus biszindol alkaloid 3 C III. β típus R = C 3 R = C vinblasztin vinkrisztin R C 3 tumorgátló hatás
Rubánvázas (Cinchona) alkaloidok (szekologaninból) kinuklidingyűrű rubánváz kinolingyűrű (triptaminból, indol szárm.) R R = (-)-cinchonin C 3 (-)-kinidin (Cinchona succirubra) A kinin jelentős maláriaellenes hatású szer. R R = (-)-cinchonidin C 3 (-)-kinin
Anyarozs (ergot) alkaloidok izopentenilpirofoszfátból Et 2 C 3 C3 lizergsav-dietilamid (LSD) (veszélyes hallucinogén) triptaminból lizergsav: C izolizergsav: C C 3 (-)-ergometrin a méhizomzat összehúzódását okozza Ala C 3 Phe Pro (Claviceps purpurea-ból) (-)-ergotamin dihidroszármazéka migrénben hasznos
. W. Kroto, R. F. Curl, R. E. Smalley (1985) Buckminsterfullerene obel Prize 1996,,természetes vegyület (a csillagközi térben kimutatható)
A legbonyolultabb (és legtoxikusabb),,kismolekulájú természetes vegyület Me Me Me Me S 3 a Me Me Me Me Me Me Me Me Me Me maitotoxin Me Me a 3 S Me Me Me Me Me Gambierdiscus toxicus (protozoon) C 164 256 68 S 2 a 2 2 aszimm. szubszt. kettős kötés 99 kiralitáscentrum 2.5x10 30 lehetséges sztereoizomer LD 50 : 50 ng/kg
Természetes vegyületek izolálása
TERMÉSZETES VEGYÜLETEK 1. Izoprénvázasak 1.1. Terpenoidok 1.2. Karotinoidok 1.3. Szteroidok 2. Szénhidrátok 2.1. Monoszacharidok 2.2. Di- és poliszacharidok 3. Aminosavak, peptidek, fehérjék 4. ukleinsavak 5. Alkaloidok 6. Lipidek (zsíradékok) 7. Flavonoidok, antocianinok 8. övényi szerves savak, csersavak Biopolimerek Apolárisak: 1 (kivéve glikozidok) 6 Mérsékelten polárisak: 5 7 (flavonoid aglikonok) Polárisak: 2, 3, 8, és 1.1, 1.3, 7-ből glikozidok, antocianinok
Az extrakciónál, izolálásnál (kromatografálásnál) gyakrabban használt oldószerek eluotróp sora Petroléter Ciklohexán Szén-diszulfid Szén-tetraklorid Benzol, toluol 1,2-diklóretán Diklórmetán Kloroform Dietil-éter Etil-acetát Tetrahidrofurán Aceton Etil-metil-keton n-butanol Etanol Metanol Víz Jégecet angyasav Piridin em elegyedik vízzel
I. Extrakció Megfelelő hatékonyságú extrakció céljából a növényanyagot elő kell készíteni. A legcélszerűbb előkészítés az aprítás. Apoláris vegyületek kioldása: apoláris oldószerekkel (CCl 4, petroléter, CCl 3, stb.) Poláris vegyületek extrakciója: vízzel elegyedő oldószerekkel eredményes (Me, Et, aceton) ill. ezek és víz 3:1 arányú elegye II. Izolálás Extrakció után a tisztítás, izolálás menete vegyülettípusonként eltérő. II.1. Apoláris vegyületek esetében legtöbbször oszlopkromatográfiás módszerek, pl.: adszorpciós oszlopkromatográfia szilikagél oszlopon A módszer kiválasztásához előkísérletek: rétegkromatográfia Frakciók ellenőrzése: rétegkromatográfia, PLC, gázkromatográfia (preparatív PLC esetében ellenőrzés szintén PLC-vel) II.2. Alkaloidok izolálása a) Előkészítés: Aprítás, feltárás (bázissá alakítás) Az alkaloidok a növényekben só formájában (növényi savakkal képzett sók) fordulnak elő, ezért ált. vizes ammóniával, vagy más bázissal (a kivételével, miután a legtöbb alkaloid királis) felszabadítják, bázissá alakítják őket extrakció előtt.
II.2. Alkaloidok izolálása (folyt.) b) Extrakció Így a vízoldékony alkaloidsók helyett alkaloidbázisokat exrahálnak kevésbé poláris oldószerrel (pl.: toluol, kloroform, 1,2-diklóretán). A poláris kísérőkomponensek (szacharidok,csersavak, glikozidos vegyületek, stb.) nem oldódnak ki a növényi mintából. A következő lépések előtt a szerves oldószer(ek) gyors, vákuum-desztillációs eltávolítása szükséges. c) A nemkívánt apoláris kísérőkomponensek (pl. klorofill, zsírok) eltávolítása c1) előextrakcióval (az extrahálószer apoláris oldószer, pl. petroléter) A következő lépések előtt a vizes fázis víztartalmának gyors, vákuum-desztillációs eltávolítása szükséges. Alternatívaként félmikro kísérletekhez, amennyiben az alkaloid-bázis oldékonysága vízben rossz, a szuszpenzió vákuumszűrése eliminálja a petroléteres fázist, majd a szűrőn fennmaradt anyag tisztítását folytatjuk. c2) az extraktum további tisztítása fáziscserével : A vízzel nem elegyedő oldószerrel készült oldatból híg, vizes kénsav vagy sósav-oldattal extrahálják az alkaloidokat, amelyek ismét sóvá alakulnak át, és így vízoldékonnyá válnak. A szerves oldószerben visszamarad a klorofill és a zsiradékok. A vizes oldatból ammóniás lúgosítás után ismét kirázzák szerves oldószerrel az alkaloidbázisok elegyét.
II.2. Alkaloidok izolálása (folyt.) d) amelyek egymástól való elválasztását többszörös oldószeres megosztásokkal, oszlopkromatografálással szokás megvalósítani. d1) Többszörös oldószeres megosztások Az alkaloidkeverék egyes komponenseinek megoszlási hányadosai (k=c felsőf. /c alsóf. ) közötti különbséget a vizes fázis p-értékének változtatásával és a szerves fázis minőségének változtatásával lehet befolyásolni. d2) szlopkromatográfia Az alumínium-oxidon és szilikagélen végzett adszorpciós oszlopkromatografálások a leggyakrabban használatos módszerek. A megfelelő oldószerelegy kiválasztásához legalkalmasabb módszer a rétegkromatográfiás előkísérlet. Frakciók ellenőrzése: ld.: apoláris vegyületek Bonyolultabb keverékek elválasztása esetén az oldószeres megosztásokat, oszlopkromatografálásokat (Al 2 3, szilikagél) kombinálják egymással.
II.3. Poláris vegyületek izolálása különös tekintettel glikozidos vegyületekre Monoterpén glikozidok, iridoidok izolálása Előkészítés: Aprítás (friss növényanyag esetén turmixgépben, oldószerrel) Extrakció: Vízzel elegyedő szerves oldószer és víz elegyével, nagyon ritkán vízzel történik az extrakció. Általában az izolálás logikai menete a következő: A) A szerves oldószer-mentességig bepárolt oldatból az apoláris komponenseket általában kétféle módszerrel távolítják el: a) Extrahálják apoláris oldószerrel (petroléter, CCl 4, esetleg éter, CCl 3, stb) b) Kovaföldön átszűrve megkötődnek a kovaföldön a zsíradékok, a klorofill és az apoláris terpenoid jellegű vegyületek. B) Flavonoidok eltávolítása, izolálása a) Alumínium-oxidon átengedve a tömény vizes oldatot, megkötődnek a flavonoidok az alumínium-oxid felületén, és a többi vízoldékony vegyület kimosható mellőlük vízzel. A flavonoidok egy része irreverzibilisen kötődik az alumínium-oxidon, ezért a flavonoidok izolálására nem alkalmas módszer. b) Szabad karboxilcsoportokat tartalmazó ioncserélő gyantán reverzibilisen kötődnek meg a flavonoidok, szerves oldószerrel leoldhatók.
II.3. Poláris vegyületek izolálása különös tekintettel a glikozidos vegyületekre (folyt.) C) Szacharidok és egyéb erősen poláris kísérőanyagok eltávolítása Két módszer: a) Tömény vizes oldatból vízzel elegyedő szerves oldószerrel történő hígítással kicsaphatók a szerves oldószerben kevésbé oldódó mono- és diszacharidok. b) Aktív szenes módszer: Iridoidok izolálásánál gyakran használják, de ilyenkor A és B tisztítási folyamatok nem előzik meg. Extrakció után a betöményített vizes oldatból aktív szén felületére adszorbeáltatják a glikozidokat. A mono- és diszacharidokat vízzel és 10% etanol tartalmú vízzel leoldják, a glikozidokat 30%, 50% ill. 70% etanol tartalmú vízzel oldják le.
II.3. Poláris vegyületek izolálása különös tekintettel a glikozidos vegyületekre (folyt.) D) Izolálás Az előbbi módszerekkel előtisztított un. glikozidfrakciók komponenseit a továbbiakban 1) többszörös oldószeres megosztásokkal és leggyakrabban 2) szilikagél oszlopon kromatografálással tisztítják, választják el egymástól. Ritkábban 3) cellulózt, poliamidot is használnak különösen flavonoidok izolálására.
III. Az alkaloidok tisztításának munkavédelmi szempontjai: Az alkaloidminták többsége, továbbá a növényi őrlemények, illetve a tisztítási lépések során kinyert bármelyik frakció biológiailag rendkívül aktív főkomponenst tartalmazhat. Sok alkaloidnak 1 mg/kg-nál jóval kisebb az LD 50 -értéke. Emiatt a tisztításokat jól működő vegyi fülkében szabad csak kivitelezni, miközben magunkat kesztyűvel, védőszemüveggel és védőköpennyel védjük. A környezet védelme szempontjából minden, a tisztítás során kinyert frakciót félreteszünk, és a főkomponenst nem tartalmazó frakciókat a tisztítás befejeztével összeöntjük, a gyűjtőedényt lezárjuk, feliratozzuk, és biztonságosan elszállíttatjuk a legközelebbi hulladék-égetőműbe. A tisztítás során nemcsak a kémiai vagy fizikai műveleteket kell vegyi fülke alatt végrehajtani, hanem a beméréseket, és a termékek szárítását is. Szobahőmérsékletű szárítást követően, amint lehet, azonnal rakjuk be az alkaloid-mintát mintatartóba, a fiolát zárjuk le, feliratozzuk, és lehetőleg hűtőszekrényben tároljuk. A légköri oxigén hatására sok alkaloid oxidálódhat, különösen bázisformában. Ezért ha a mintát pl. éjszakára vagy hosszabb időre a laboratóriumban kell hagynunk, mielőtt folytatnánk a tisztítást, a tárolás előtt a lombikot vagy a mintatartót töltsük föl argonnal (ez jobb, mint a nitrogéngáz). Sok alkaloid hőérzékeny, ezért tisztításuknál az alacsony forráspontú szerves oldószereket részesítsük előnyben, mert egyébként az oldószerek vákuum-desztillációs eltávolítása szobahőmérsékleten csak részleges lesz. A tisztított alkaloid-frakciót lehetőleg hűtőszekrényben tároljuk.