β-ón, fémes ón, fehér ón, 13,2 C fölött α-ón, szürke ón, 13,2 C alatt lapon centrált köbös rács
|
|
- Andrea Zsófia Székely
- 8 évvel ezelőtt
- Látták:
Átírás
1 11. előadás A széncsoport elemeinek előfordulása és körforgása a természetben, elektronszerkezetük, lehetséges oxidációs számaik. A szén elektronszerkezete, lehetséges kötésviszonyai, a szén sztereokémiájának tárgyalása a hibridizációs lehetőségek alapján. A szén és a szilícium szerkezetének és kötésviszonyainak az összehasonlítása, az eltérések magyarázata atomszerkezeti alapon. A szén előfordulása, az allotropok előállításának ipari és laboratóriumi módszerei, fizikai tulajdonságai, allotrop módosulatai, legfontosabb izotópjai, a radiokarbon kormeghatározás alapjai. A szilícium és a germánium előfordulása, fizikai és kémiai tulajdonságaik, reaktivitásuk, előállításukra használható módszerek, gyakorlati felhasználásaik. Az ón és az ólom előfordulása, fizikai és kémiai tulajdonságaik, reaktivitásuk, előállításukra használható módszerek, gyakorlati felhasználásaik. A szén, szilicium és a germánium hidridjeinek összetétele, szerkezete, termikus, redoxi és oxidatív stabilitásuk, hidrolízisük. A hidridek előállítására szolgáló módszerek, ipari és laboratóriumi felhasználásaik. Az ón és az ólom hidridjeinek összetétele, stabilitásuk, előállításuk. A szén és a szilícium halogenidjeinek összetétele, szerkezete, fizikai tulajdonságaik. A szén és a szilícium halogenidjei hidrolítikus és redoxi tulajdonságai, az eltérések magyarázata. A germánium, ón és ólom halogenidjeinek összetétele, fizikai és kémiai tulajdonságaik, reaktivitásuk, oldékonyságuk, hidrolítikus és redoxi tulajdonságaik.
2
3 Az elemek előfordulása, allotrop módosulatai Szén: elemi állapotban, valamint vegyületeiben is előfordul allotropok: grafit gyémánt (fullerit) fullerén, szén nanocső, grafén Szilícium: csak vegyületekben allotrop: csak szürke Germánium: csak vegyületekben allotrop: csak szürke Ón: csak vegyületekben allotropok: Ólom: csak vegyületekben allotrop: Si β-ón, fémes ón, fehér ón, 13,2 C fölött α-ón, szürke ón, 13,2 C alatt csak fémes ólom, lapon centrált köbös rács Ge Sn Pb
4 A szén allotrop módosulatai Grafit A természetben leggyakoribb, réteges atomrácsos módosulat. A hőt és az elektromos áramot jól vezeti. A szénatomok sp 2 hibridállapotban vannak, az atomi pályán maradt elektronok egy delokalizált elektronfelhőt alkotnak. A rácssíkok könnyen elcsúszhatnak egymáson, ezért lehet a grafit ceruzával a papíron nyomot hagyni. Csak nagyon nagy nyomás alatt olvasztható meg, op C, és fp C. Atomrácsos szerkezet miatt egyetlen oldószerben sem oldódik. Jól megmunkálható, anizotrop fizikai tulajdonságok, a rácssíkokirányában a hőt, hangot, elektromosságot jobban vezeti, mint arra merőlegesen. A szén elméleti fázisdiagramja. A vonalkázott területek metastabilis tartományokat jelentenek, ahol egyszerre két fázis is létezhet.
5 Gyémánt A szén magas hőmérsékleten stabilis módosulata. Tetraéderes atomrácsot alkot, a világon a legkeményebb természetes anyag (keménysége a Mohs-féle skálán 10). Semmilyen oldószerben nem oldódik, kémiailag teljesen inert. A természetes gyémánt mélyen a földkéregben keletkezett, onnan került kis mennyiségben a felszín közelébe. A gyémánt törésmutatója nagyon nagy, ezért lehet belőle szépen csillogó, sziporkázó fénytörésű ékszereket készíteni. Különleges tulajdonsága, hogy a hőt a fémeknél is jobban vezeti, ugyanakkor az elektromosságot egyáltalán nem, a gyémánt az ismert legjobb elektromos szigetelő. Természetes gyémánt oktaéder A gyémánt rácsszerkezete Csiszolt gyémánt
6 Fullerének: labdára vagy léggömbre emlékeztető alakú, egyetlen szénrétegből álló, molekularácsos módosulatok. Az első képviselőjüket, a C 60 -at 1985-ben állították elő. A nevüket Buckminster Fuller építészről kapták, aki hasonló kinézetű kupolákat épített. Öttagú és hattagú gyűrűket tartalmaznak, szerves oldószerekben jól oldódnak. Különösen stabilisak a C 60 és C 70, de nem inertek és nem szuperaromás rendszerek. Jellemzően elektrofil addíciós reakciókban vesznek részt. A szénatomok sztérikusan feszült sp 2 hibridállapotban vannak. Aromás oldószerbe merített elektromos ívben állíthatók elő. Kristályos C 60 C 70 és C 60 toluolos oldata Eden Project, Buckminster Fuller tervezte
7 Szén nanocsövek A fullerének szerkezetéből származtatható, egy- vagy többfalú, falanként egyetlen grafit rétegből álló módosulatok. Az átmérőjük csupán néhány nm, a hosszúságuk azonban elérheti a több száz mikront is. CVD eljárással növeszthetők grafitfelületen. A nanocsövek vékony fonallá sodorhatók, amelynek a szakítószilárdsága sokszorosa az azonos vastagságú acélszálénak.
8 Grafének (Nobel díj, 2010) Egyetlen, szoros illeszkedésű szénatom rétegből álló rács, amelyek hengerré hajtásával szén nanocsövek, egymásra rétegzésével pedig grafit állítható elő. A szerkezetük alapján a graféneket végtelenül nagy kiterjedésű, policiklusos aromás szénhidrogéneknek is tekinthetjük. Egyetlen grafén réteget úgy lehet legegyszerűbben létrehozni, hogy egy grafitkristály felületéről pl. ragasztószalaggal lehúzunk egy réteget, vagy grafitot vízben intenzív ultrahanggal kezelünk. A grafénrétegek erősek, önhordók, átlátszók, ezért az elektronmikroszkópiától a kompozitokig már sok helyen használják azokat. Először 1962-ben írták le a szerkezetüket, de csak 2005-ben keltettek nagyobb érdeklődést, amikor felfigyeltek arra, hogy a 2D elektronfelhő úgy viselkedik, mintha a helyén képzeletbeli, egymással gyengén kölcsönható, de tömeg nélküli elemi részecskék (kvázirészecskék) lennének a térben. Grafén réteg transzmissziós elektronmikroszkópos felvétele.
9 Szén allotropok vezetőképessége Szilícium, germánium, ólom: Egyetlen stabilis allotropjuk van. Si, Ge: magas op, fp., rideg, kristályos anyagok, atomrácsos szerkezetűek, a szilícium kémiailag ellenálló, kevés anyag oldja Pb: oxidációnak ellenáll, savakban oldhatatlan, de oxidáló savak, agresszív szénsavat tartalmazó vizek oldják. Viszonylag kicsi az olvadáspontja, fémrácsos, könnyen alakítható, de a szilárdsága kicsi, könnyen deformálódik.
10 Ón allotropok Régóta ismert elemek, alacsony olvadáspont, de magas forráspont, nehezen oxidálódik, nem toxikus, jól megmunkálható, hengerelhető, rézzel ötvözve bronzot ad. Egyszerűen, oxidjából szenes redukcióval előállítható. A bronzkorszak óta jelentős felhasználás, szerszámok, edények, evőeszközök, épületborítások, stb. Bal oldalon: fehér (β) ón; jobb oldalon: szürke (α) ón β-ón, fehér v. fémes ón: jó mechanikai tulajdonságok, tetragonális rácsban krist. 13,2 C alatt spontán, ill. szennyezés hatására α-ónná alakul (ónpestis) α-ón, szürke ón: rossz mechanikai tulajdonságok, porlékony, törékeny. Tetraéderes gyémánt rácsban krist. Ónpestis
11 Széncsoport elemei Elektronszerkezet: ns 2 np 2 A szén esetén nincs, a Si-tól lefele van üres d pálya Maximális oxidációs számok: C 4(2) Pb 2(4) (inert elektronpár képzési hajlam) C, Si, Ge, Sn: kovalens vegyületek, Pb: kovalens és ionos vegyületek A vegyületek térszerkezet, kötésviszonyai, hibridizáció Szén: csak sp, sp 2, sp 3, nincs d pálya sp 3-4б sp 2-3б, 1π - ⅓ grafit, CO 32ˉ sp - 2б, 2π CO 2, CS 2 HC CH - ½ benzol 1n, 1б, 2π : CO, CNˉ, C 22ˉ - H 2 CO 3, COCl 2, stb. H 2 C=CH 2
12 Szilícium, germánium: (sp 2 ), sp 3, sp 3 d 2 sp 3 : [SiO 2 (OH) 2 ] 2ˉ HO O - Si OH O - Kvarc, SiO 2, tetraéderes 3D atomrács Míg a szénvegyületekben létezik az sp hibridizáció, az azonos összegképletű szilíciumvegyületeknél nem, helyette sp 3 hibridizáció következik be. például: CO 2 sp SiO 2 sp 3 sp 3 d 2 : SiF 62ˉ oktaéder Legújabban előállítottak olyan vegyületeket, amelyekben a Si sp 2 hibridállapotban van. Ar Ar Si Si Ar Ar Ón, ólom: jellemzően sp 3, ritkábban sp 3 d 2 Az ón esetén ritka koordinációs szám is megjelenik: [Sn(OH) 3 ]
13 A szén izotópjai 12 C 98,9%, stabilis 13 C 1,1%, stabilis, nem radioaktív (gyomorfekély vizsgálatánál használják) 14 C nagyon kevés, radioaktív, felezési ideje t ½ = 5730 év Bomlékonysága ellenére a légkörben a 14 C izotóp mennyisége állandó szinten van. Ennek az a magyarázata, hogy a bomlással egyidőben a kozmikus sugárzásban lévő, nagy energiájú neutronok hatására a légkör felső rétegében nitrogénből folyamatosan keletkezik ez az izotóp N + 1 0n 14 6C + 1 1H Radiokarbon kormeghatározás Valamikor élt szervezetekből visszamaradt maradványok korának meghatározására lehet felhasználni. Ameddig az élőlény él, a táplálék közvetítésével a szervezetében a külvilággal egyensúlyban van a 14 C izotóp koncentrációja. Amikor az élőlény elpusztul, nem táplálkozik, nem lélgzik tovább, a szervezetében lévő 14 C a radioaktív bomlás törvényszerűségeinek megfelelően folytonosan bomlik. A maradványokban a 14 C mennyiségét tömegspektrometriásan meghatározva megadható annak a kora.
14 Grafit előállítása Miért van szükség a grafit előállítására, mikor bányászni is lehet? A bányászott grafit tisztasága, tulajdonságai nem megfelelők a mai elektronikai és ipari alkalmazásokhoz. Acheson eljárás (1899) Elektromos kemencében történik, koksz és kvarchomok felhasználásával. Kisebb hőmérsékleten hevítve a kemencét szilícium-karbid keletkezik, amit magasabb hőmérsékleten termikusan elbontanak, a kemencében pedig átkristályosodott grafit marad vissza. SiO 2 + 3C (koksz) = SiC + 2CO SiC = C (grafit) + Si (2600 C) Modern mesterséges grafit előállítás Kiindulási anyag az olajfinomítókban és krakkolókban nagy mennyiségben keletkező, szivacsos szerkezetű, petrolkoksz. Finom porrá őrlik, kátránnyal keverve tetszőleges alakra préselik, majd levegő kizárása mellett, nagyon magas hőmérsékleten grafitosítják (legalább 1600 C szükséges). Az ilyen módon gyártott grafit kiválóan használható fémolvasztó tégelyként, elektródként, nagy tisztaságú formában pedig akár atomreaktor burkolatként is. 3 m hosszúságú grafit elektródok
15 Szintetikus gyémántok HPHT (high pressure, high temperature) eljárás: ipari vagy ékszer minőségű gyémántok előállítására, valamint természetes gyémántok színhibáinak javítására használható. A gyártás során kis gyémánt oltókristályt helyeznek egy növesztőkamrába, ahol nagy nyomáson (5-10 GPa = kbar) és hőmérsékleten ( C) egy speciális fémötvözetben oldott grafitból újabb és újabb gyémánt rétegek kristályosodnak, az esetleges színhibát okozó nitrogén zárványok pedig eloszlanak a rácsban. Ma már több, mint 5 g-os (25 karátos) ékszergyémántot is tudnak készíteni, de gazdaságossági okokból általában 1-1,5 karátosakat gyártanak. A növesztés 1-6 hetet vesz igénybe. A szintetikus gyémántok sokféle színben készíthetők. BARS (1990) berendezés gyémánt előállítására. A szükséges hőmérsékletet az ábrán nem látható, beépített grafit fűtőszál biztosítja. БАРС = Беспрессовая Аппаратура высокого давления "Разрезная Сфера" (press-free high-pressure setup "split sphere")
16 CVD (chemical vapour deposition, kémiai gőzfázisú rétegleválasztás) eljárás: az elektronikai ipar igényeinek megfelelő vékonyabb rétegek, valamint ékszergyémántok előállítására egyaránt alkalmas. Vékony gyémántlapot vákuumban 800 C hőmérsékletre hevítenek, majd hidrogén és metán elegyét vezetik a felületére plazma állapotban. A plazmában atomos hidrogén, majd abból metánnal reagálva CH 3 gyökök keletkeznek, amik hozzákapcsolódnak a gyémánt forró felületéhez, ahol aztán elveszítik a maradék hidrogénjeiket is és beépülnek a rácsba. Kb. két hét alatt ékszer minőségű darabok keletkeznek. Az eljárással szilícium vagy alumínium felületére is le lehet választani szigetelő gyémánt réteget. H 2 = 2H H + CH 4 = CH 3 + H 2 C + CH 3 = C-CH 3 C-CH 3 = C-C + 3/2H 2 CVD eljárással készült gyémánt.
17 Szilícium előállítása A szilícium a legelterjedtebb félvezető anyag, amin a jelenlegi elektronikai ipar jelentős hányada alapszik. Technikai, kohászati célokra Si előállítása SiO 2 szenes redukciójával történik 1900 C fölött, a folyamatban folyékony Si keletkezik (kis SiO 2 fölösleg mellett, hogy a SiC képződést elkerüljék) : SiO 2 + 2C = Si + 2CO Előállítható SiC hőbontásával, vagy SiO 2 -dal történő reakciójával: 2SiC + SiO 2 = 3Si + 2CO Tiszta Si-ot szilán hőbontásával, vagy SiI 4 hidrogénes redukciójával lehet előállítani: SiH 4 Si + 2H 2 SiI 4 + H 2 Si + 4HI Nagy tisztaságú Si előállítása Vékony, nagy tisztaságú, hevített Si rúd felületére HSiCl 3 gőzt fúvatnak, ahol az termikusan bomlik, a keletkező Si lerakódik a rúd felületére. 2HSiCl 3 Si + 2HCl + SiCl 4 (1150 C) Polikristályos szilícium
18 Zónaolvasztás Czochralski eljárás (CZ-Si) Polikristályos Si megolvasztása Oltókristály beleérintése Kristályosodás megindulása Lassú kristályhúzás Tiszta kristályrúd kiemelése, a szennyeződés az ömledékben marad. Amorf szilícium előállítása Az amorf szilícium kristályrácsa nem szabályos tetraéderes atomrács, hanem rendezetlen, benne sok rácshiba fordul elő, nem minden szilícium négyes koordinációs számú, ez anomális elektromos tulajdonságokat eredményez.
19 Nagy tömegben a műtrágyagyártás melléktermékeként keletkező nátriumhexafluoro-szilikátból állítják elő nátriumos redukcióval. Na 2 SiF 6 + 4Na Si + 6NaF A modern technikában az amorf szilíciumot vékony, hajlékony rétegben viszik fel gyakorlatilag bármilyen tárgy, így akár a műanyagok felületére is úgy, hogy SiH 4 szilánt Pa nyomáson (azaz vákuumban) rádiófrekvenciás sugárzással gerjesztenek, aminek hatására elemeire bomlik. Így készítenek olyan ablaküvegeket, amelyek átlátszóak, és amellett napelemként is működnek. A p- típusú szennyezést diborán, az n-típusút foszfin adagolásával hozzák létre. RF gerjesztés SiH 4 Si + 2H 2 vákuum amorf szilíciummal készült napelem tábla
20 Germánium: szintén félvezető tulajdonságú Előállítása oxidjának szenes redukciójával történik. Félvezető technikához tisztítása zónaolvasztásos technikával lehetséges. GeO 2 + 2C Ge + 2CO Ón, ólom Ősidők óta ismert elemek, oxidjaik szenes redukciójával állítják elő. A szulfidos érceket először levegőn történő hevítéssel (pörköléssel) oxidokká alakítják, majd az oxidokat redukálják. SnO 2 + 2C = Sn + 2CO 2PbS + 3O 2 = 2PbO + 2SO 2 PbO + C = Pb + CO Zónaolvasztás
21 Széncsoport hidridjei E n H 2n+2 C: n max >150 Si: n max 15 Ge:n max 9 Sn: n max 2 Pb: 1 Szilánok: Termikus Oxidatív Hidrolitikus Stabilitás kicsi Katenációs készség: C C C Min. 150 Si O Si O Si C O C O C Max. 4-5 Si Si Si Si Max Si n H 2n+2 25 C nsi+(n+1)h 2 (n>2) Oxidatív: levegőn meggyulladnak, égéstermék: SiO 2 +H 2 O Hidrolízis (már vízzel is lejátszódik): SiH 4 + (2+n)H 2 O = SiO 2 nh 2 O + 4H 2 A hidrolízishez bázis katalízis szükséges, kvarcedényben, ultratiszta vízzel még nem játszódik le.
22 Szilícium-hidridek előállítása: technikai: Mg 2 Si + 4HCl = SiH 4 + 2MgCl nagy tisztaságú: SiCl 4 + LiAlH 4 = SiH 4 + LiCl + AlCl 3 Ge-, Sn-, Pb-hidridek: SnH 4, GeH 4, PbH 4 (germán, sztannán, plumbán) Nagyon bomlékonyak, előállításukra egy olyan általános eljárás használható, amely szinte minden elem hidridjének előállítására alkalmas: E X + LiAlH 4 vagy NaBH 4 E LiX+AlX 3 H + vagy x=halogén, E=fém v. nemfém NaX+BX 3 Alkil- és aril- származékok: R n EH 4-n, az n növekedésével a termikus stabilitás nő. pl. SiH 4 Si(Me) 4 bomlékony Stabilis PbH 4 Pb(Et) 4 nagyon stabilis, benzin adalék volt
23 A szén halogenidjei n max C n X 2n+2 F: 5 Cl, Br: 2 I: 1 Hidrolitikus stabilitás: Stabilitás csökken F (Cl) stabilis (Cl), Br, I hidrolizál, magasabb hőmérsékleten, lúgos közegben a hidrolízis sokkal gyorsabb F C F n CBr 4 + 2H 2 O = CO 2 + 4HBr Poli-tetrafluor-etilén Teflon,PTFE 300 C-ig ellenálló (termikusan, cc. H 2 SO 4, NaOH)
24 Vegyes halogenidek Freonok CF 2 Cl 2 Freon 12 Kémiailag ellenállók, UV fotolízis, jelentős szerepük van az ózon bomlásában Előállítás: CH 4 + Cl 2 = CCl 4 + 4HCl CCl 4 + 2SbF 3 = CF 2 Cl 2 + 2SbClF 2 Szilicium halogenidjei Si n X 2n+2 F: n max 14 Cl: 6 Br, I: 1 Halogeno-komplex képzésére lehetőség van a d alhéj jelenléte miatt: pl. [SiF 6 ] 2ˉ Halogenidek hidrolitikus stabilitása: kicsi (ismét a d miatt), a hidrolízis lépésenként egy vízmolekula koordinációjával indul, majd HX kihasadásával folytatódik: SiX 4 +H 2 O X 3 Si-OH + HX SiO 2 nh 2 O
25 A fluorid esetén részleges hidrolízis játszódik le: 3SiF 4 + (2+n)H 2 O = SiO 2 nh 2 O + 2H 2 SiF 6 Legfontosabb Si-halogenidek: SiF 4, SiCl 4, SiH n X 4-n Halogenoszilánok előállítása: SiF 4 : SiO 2 + 2CaF 2 + 2H 2 SO 4 + 2H 2 O = SiF 4 + 2CaSO 4 2H 2 O SiCl 4 : SiO 2 + 2C + 2Cl 2 hev. SiCl 4 + 2CO SiH 2 Cl 2, SiHCl 3, SiR y HX n, stb: Si + 3HCl 350 C SiHCl 3 + H 2 Si + 2MeCl Cu kat. MeSiHCl 2 + H 2 + C 300 C A szilánok nagyobb reakcióképességének oka: A Si nagyobb mérete (gyakoribb ütközés) Si-X kötés nagyobb polaritása kis energiájú, üres d pályák jelenléte (adduktképződés, csökkentik a reakciók aktiválási energiáját)
26 Halogenoszilánok hidrolízise SiH 3 Cl + H 2 O SiH 3 OH + HCl SiH 3 -OH szilanol nem stabilis A további lépésekben a szilanol csoportokból spontán, szobahőmérsékleten is végbemenő, intermolekuláris vízkilépés játszódik le: 2SiH 3 OH H 3 Si-O-SiH 3 -H 2 O disziloxán H H nsih 2 Cl 2 +2nH 2 O -2nHCl n SiH 2 (OH) 2 szilán-diol -nh 2 O Si O Si H H O n 2 Polisziloxán láncpolimer Hidrogén helyett alkil- vagy arilcsoportokkal szubsztituált halogenoszilánok hidrolitikusan és termikusan stabilisabbak, értékes ipari anyagok, a szilikongyártás alapanyagai.
27 Ge, Sn, Pb-halogenidek EX 2 stabilisabb, a stabilitás az oszlopban lefele nő EX 4 csak akkor létezik, ha a halogenidiont nem tudja oxidálni a +4 ox. számú fém Ge Ge: minden halogenid létezik, komplex halogenidek is léteznek [GeX 6 ] 2ˉ (X=F,Cl) Előállítás: Ge+3HCl 300 C hev. 70 C Cl 2 GeHCl 3 GeCl 2 GeCl 4 -H 2 -HCl Halvány sárga színtelen A GeCl 2 könnyen hidrolizál, a keletkező hidroxidból melegítés hatására oxid keletkezik. GeCl 2 + 2H 2 O = Ge(OH) 2 + 2HCl Ge(OH) 2 = GeO + H 2 O
28 Sn SnX 2 - az Sn(II) miatt redukáló tulajdonságú, az SnX 4 nem oxidáló Vízmentes SnCl 2 : Lewis sav és bázis egyidejűleg: sav: SnCl 2 + NH 3 NH 3 SnCl 2 bázis: SnCl 2 + BF 3 Cl 2 Sn BF 3 Fontos származékok: SnCl 2 (szilárd): reagens az analitikában, laboratóriumi redukálószer. SnF 2 : fluoros fogpasztákban használják fluoridinok lassú leadására Pb PbX 2 mind létezik PbF 2 oldódik PbCl 2 PbBr 2 csapadékok PbI 2 fehér aranysárga PbX 4 csak X=F, Cl létezik, mert az Pb(IV) oxidáló tulajdonságú Halogenokomplexek nem jellemzők. PbI 2
Kémiai kötések és kristályrácsok ISMÉTLÉS, GYAKORLÁS
Kémiai kötések és kristályrácsok ISMÉTLÉS, GYAKORLÁS Milyen képlet adódik a következő atomok kapcsolódásából? Fe - Fe H - O P - H O - O Na O Al - O Ca - S Cl - Cl C - O Ne N - N C - H Li - Br Pb - Pb N
Kémiai alapismeretek 11. hét
Kémiai alapismeretek 11. hét Horváth Attila Pécsi Tudományegyetem, Természettudományi Kar, Kémia Intézet, Szervetlen Kémiai Tanszék 2010. november 22-25. 1/17 2011/2012 I. félév, Horváth Attila c SZÉN
IV.főcsoport. Széncsoport
IV.főcsoport Széncsoport Sorold fel a főcsoport elemeit! Szén C szilárd nemfém Szilícium Si szilárd félfém Germánium Ge szilárd félfém Ón Sn szilárd fém Ólom Pb szilárd fém Ásványi szén: A szén (C) Keverék,
Szervetlen kémia I. kollokvium, (DEMO) , , K/2. Írják fel a nevüket, a Neptun kódjukat és a dátumot minden lapra!
Szervetlen kémia I. kollokvium, (DEMO) 16. 05. 17., 00-12 00, K/2 Írják fel a nevüket, a Neptun kódjukat és a dátumot minden lapra! TESZT KÉRDÉSEK Kérdésenként 60 s áll rendelkezésre a válaszadásra. Csak
A 14. csoport elemei. anglezit(pbso 4 ), ceruzit(pbco 3 ) Si: 1823 Jons Berzelius (név: a latin silex : kovakő szóból) Ge: 1886 Clemens Winkler
A 14. csoport elemei anglezit(pbso 4 ), ceruzit(pbc ) Felfedezésük: Si: 1823 Jons Berzelius (név: a latin silex : kovakő szóból) Ge: 1886 Clemens Winkler A szén allotróp módosulatai gyémánt legnagyobb:
Elektrokémia. A nemesfém elemek és egymással képzett vegyületeik
Elektrokémia Redoxireakciók: Minden olyan reakciót, amelyben elektron leadás és elektronfelvétel történik, redoxi reakciónak nevezünk. Az elektronleadás és -felvétel egyidejűleg játszódik le. Oxidálószer
A SZÉN ÉS VEGYÜLETEI
A SZÉN ÉS VEGYÜLETEI 1. A IV. FŐCSOPORT ELEMEI A periódusos rendszer IV. főcsoportját az első eleméről széncsoportnak is nevezzük. A széncsoport elemei: a szén (C), a szilícium (Si), a germánium (Ge),
KÉMIA FELVÉTELI DOLGOZAT
KÉMIA FELVÉTELI DOLGOZAT I. Egyszerű választásos teszt Karikázza be az egyetlen helyes, vagy egyetlen helytelen választ! 1. Hány neutront tartalmaz a 127-es tömegszámú, 53-as rendszámú jód izotóp? A) 74
... Dátum:... (olvasható név)
... Dátum:... (olvasható név) (szak) Szervetlen kémia írásbeli vizsga A hallgató aláírása:. Pontok összesítése: I.. (10 pont) II/A. (10 pont) II/B. (5 pont) III.. (20 pont) IV.. (20 pont) V.. (5 pont)
6. változat. 3. Jelöld meg a nem molekuláris szerkezetű anyagot! A SO 2 ; Б C 6 H 12 O 6 ; В NaBr; Г CO 2.
6. változat Az 1-től 16-ig terjedő feladatokban négy válaszlehetőség van, amelyek közül csak egy helyes. Válaszd ki a helyes választ és jelöld be a válaszlapon! 1. Jelöld meg azt a sort, amely helyesen
SZERVETLEN KÉMIAI REAKCIÓEGYENLETEK
SZERVETLEN KÉMIAI REAKCIÓEGYENLETEK Budapesti Reáltanoda Fontos! Sok reakcióegyenlet több témakörhöz is hozzátartozik. Zárójel jelzi a reakciót, ami más témakörnél található meg. REAKCIÓK FÉMEKKEL fém
+oxigén +víz +lúg Elemek Oxidok Savak Sók
Összefoglalás2. +oxigén +víz +lúg Elemek Oxidok Savak Sók Nitrogén Foszfor Szén Gyémánt, grafit szilícium Szén-dioxid, Nitrogéndioxid Foszforpentaoxid Szénmonoxid Szilíciumdioxid Salétromsav Nitrátok foszforsav
Szénszálak és szén nanocsövek
Szénszálak és szén nanocsövek Hernádi Klára Szegedi Tudományegyetem Alkalmazott Kémiai Tanszék 1 Rendszám: 6 IV. főcsoport Nemfémek Négy vegyértékű Legjelentősebb allotróp módosulatok: SZÉN Kötéserősség:
1. változat. 4. Jelöld meg azt az oxidot, melynek megfelelője a vas(iii)-hidroxid! A FeO; Б Fe 2 O 3 ; В OF 2 ; Г Fe 3 O 4.
1. változat z 1-től 16-ig terjedő feladatokban négy válaszlehetőség van, amelyek közül csak egy helyes. Válaszd ki a helyes választ és jelöld be a válaszlapon! 1. Melyik sor fejezi be helyesen az állítást:
Kémiai alapismeretek 14. hét
Kémiai alapismeretek 14. hét Horváth Attila Pécsi Tudományegyetem, Természettudományi Kar, Kémia Intézet, Szervetlen Kémiai Tanszék 2011. december 6. 1/9 2010/2011 I. félév, Horváth Attila c 1785 Cavendish:
Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei
Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Gazdálkodási modul Gazdaságtudományi ismeretek I. Közgazdasá Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei KÖRNYEZETGAZDÁLKODÁSI
Szénhidrogének III: Alkinok. 3. előadás
Szénhidrogének III: Alkinok 3. előadás Általános jellemzők Általános képlet C n H 2n 2 Kevesebb C H kötés van bennük, mint a megfelelő tagszámú alkánokban : telítetlen vegyületek Legalább egy C C kötést
5. előadás AZ ÁSVÁNYOK RENDSZEREZÉSE TERMÉSELEMEK, SZULFIDOK, HALOGENIDEK
5. előadás AZ ÁSVÁNYOK RENDSZEREZÉSE TERMÉSELEMEK, SZULFIDOK, HALOGENIDEK AZ ÁSVÁNYOK RENDSZEREZÉSE A mai ásványrendszerezés alapja a kristálykémia. A rendszer vázát az egyszerű és összetett anionok által
3. A kémiai kötés. Kémiai kölcsönhatás
3. A kémiai kötés Kémiai kölcsönhatás ELSŐDLEGES MÁSODLAGOS OVALENS IONOS FÉMES HIDROGÉN- KÖTÉS DIPÓL- DIPÓL, ION- DIPÓL, VAN DER WAALS v. DISZPERZIÓS Kémiai kötések Na Ionos kötés Kovalens kötés Fémes
T I T - M T T. Hevesy György Kémiaverseny. A megyei forduló feladatlapja. 8. osztály. A versenyző jeligéje:... Megye:...
T I T - M T T Hevesy György Kémiaverseny A megyei forduló feladatlapja 8. osztály A versenyző jeligéje:... Megye:... Elért pontszám: 1. feladat:... pont 2. feladat:... pont 3. feladat:... pont 4. feladat:...
I. Atomszerkezeti ismeretek (9. Mozaik Tankönyv:10-30. oldal) 1. Részletezze az atom felépítését!
I. Atomszerkezeti ismeretek (9. Mozaik Tankönyv:10-30. oldal) 1. Részletezze az atom felépítését! Az atom az anyagok legkisebb, kémiai módszerekkel tovább már nem bontható része. Az atomok atommagból és
Kristályos szilárd anyagok
Általános és szervetlen kémia 4. hét Elızı héten elsajátítottuk, hogy a kovalens kötés hogyan jön létre, milyen elméletekkel lehet leírni milyen a molekulák alakja melyek a másodlagos kötések Mai témakörök
Fémorganikus vegyületek
Fémorganikus vegyületek A fémorganikus vegyületek fém-szén kötést tartalmaznak. Ennek polaritása a fém elektropozitivitásának mértékétől függ: az alkálifém-szén kötések erősen polárosak, jelentős százalékban
1. feladat Összesen: 8 pont. 2. feladat Összesen: 11 pont. 3. feladat Összesen: 7 pont. 4. feladat Összesen: 14 pont
1. feladat Összesen: 8 pont 150 gramm vízmentes nátrium-karbonátból 30 dm 3 standard nyomású, és 25 C hőmérsékletű szén-dioxid gáz fejlődött 1800 cm 3 sósav hatására. A) Írja fel a lejátszódó folyamat
Kémiai kötések. Kémiai kötések. A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011
Kémiai kötések A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011 1 Cl + Na Az ionos kötés 1. Cl + - + Na Klór: 1s 2 2s 2 2p 6 3s 2 3p 5 Kloridion: 1s2 2s2 2p6 3s2 3p6 Nátrium: 1s 2 2s
Nem gyémánt, nem grafit, fullerén
GYÉMÁNT Szén módosulatok Nem gyémánt, nem grafit, fullerén Felépítésük Típus 1 Típus 2. Szupravezető fullerén Gyémánt tulajdonságok Ékszer: optikai átlátszóság, nagy törésmutató, ritkasága miatt drága
4. változat. 2. Jelöld meg azt a részecskét, amely megőrzi az anyag összes kémiai tulajdonságait! A molekula; Б atom; В gyök; Г ion.
4. változat z 1-től 16-ig terjedő feladatokban négy válaszlehetőség van, amelyek közül csak egy helyes. Válaszd ki a helyes választ és jelöld be a válaszlapon! 1. Melyik sor fejezi be helyesen az állítást:
Molekulák alakja és polaritása, a molekulák között működő legerősebb kölcsönhatás
Molekulák alakja és polaritása, a molekulák között működő legerősebb kölcsönhatás I. Egyatomos molekulák He, Ne, Ar, Kr, Xe, Rn - a molekula alakja: pontszerű - a kovalens kötés polaritása: NINCS kötés
Sillabusz orvosi kémia szemináriumokhoz 1. Kémiai kötések
Sillabusz orvosi kémia szemináriumokhoz 1. Kémiai kötések Pécsi Tudományegyetem Általános Orvostudományi Kar 2010-2011. 1 A vegyületekben az atomokat kémiai kötésnek nevezett erők tartják össze. Az elektronok
Bevezetés a lézeres anyagmegmunkálásba
Bevezetés a lézeres anyagmegmunkálásba FBN332E-1 Dr. Geretovszky Zsolt 2010. október 6. Anyagcsaládok Fémek Kerámiák, üvegek Műanyagok Kompozitok A családok közti különbségek tárgyalhatóak: atomi szinten
Műanyagok tulajdonságai. Horák György 2011-03-17
Műanyagok tulajdonságai Horák György 2011-03-17 Hőre lágyuló műanyagok: Lineáris vagy elágazott molekulákból álló anyagok. Üvegesedési (kristályosodási) hőmérséklet szobahőmérséklet felett Hőmérséklet
Sav bázis egyensúlyok vizes oldatban
Sav bázis egyensúlyok vizes oldatban Disszociációs egyensúlyi állandó HAc H + + Ac - ecetsav disszociációja [H + ] [Ac - ] K sav = [HAc] NH 4 OH NH 4 + + OH - [NH + 4 ] [OH - ] K bázis = [ NH 4 OH] Ammóniumhidroxid
1. feladat Összesen: 10 pont. 2. feladat Összesen: 14 pont
1. feladat Összesen: 10 pont Az AsH 3 hevítés hatására arzénre és hidrogénre bomlik. Hány dm 3 18 ºC hőmérsékletű és 1,01 10 5 Pa nyomású AsH 3 -ből nyerhetünk 10 dm 3 40 ºC hőmérsékletű és 2,02 10 5 Pa
5. elıadás KRISTÁLYKÉMIAI ALAPOK
5. elıadás KRISTÁLYKÉMIAI ALAPOK KRISTÁLYKÉMIAI ALAPFOGALMAK Atomok: az anyag legkisebb olyan részei, amelyek még hordozzák a kémiai elem jellegzetességeit. Részei: atommag (mely protonokból és neutronokból
3. változat. 2. Melyik megállapítás helyes: Az egyik gáz másikhoz viszonyított sűrűsége nem más,
3. változat z 1-től 16-ig terjedő feladatokban négy válaszlehetőség van, amelyek közül csak egy helyes. Válaszd ki a helyes választ és jelöld be a válaszlapon! 1. Jelöld meg az egyszerű anyagok számát
Minőségi kémiai analízis
Minőségi kémiai analízis Szalai István ELTE Kémiai Intézet 2016 Szalai István (ELTE Kémiai Intézet) Minőségi kémiai analízis 2016 1 / 32 Lewis-Pearson elmélet Bázisok Kemény Lágy Határestek H 2 O, OH,
A képzés 2. féléve. magyarul: Szervetlen kémia I. TTKBE0201 TTKBE0201_L. A tantárgy neve: Kódja: angolul: Inorganic Chemistry I.
A tantárgy neve: magyarul: Szervetlen kémia I. angolul: Inorganic Chemistry I. Kódja: TTKBE0201 TTKBE0201_L A képzés 2. féléve Felelős oktatási egység: DE, TTK, Szervetlen és Analitikai Kémiaia Tanszék
American Society of Materials. Szilárdtestek. Fullerének (C atomok, sokszögek) zárt gömb, tojás cső (egy és többrétegű)
Szilárdtestek Fullerének (C atomok, sokszögek) zárt gömb, tojás cső (egy és többrétegű) csavart alakzatok (spirál, tórusz, stb.) egyatomos vastagságú sík, grafén (0001) Amorf (atomok geometriai rend nélkül)
SZAKÁLL SÁNDOR, ÁsVÁNY- És kőzettan ALAPJAI
SZAKÁLL SÁNDOR, ÁsVÁNY- És kőzettan ALAPJAI 30 Műszeres ÁSVÁNYHATÁROZÁS XXX. Műszeres ÁsVÁNYHATÁROZÁs 1. BEVEZETÉs Az ásványok természetes úton, a kémiai elemek kombinálódásával keletkezett (és ma is keletkező),
Periódusosság. Általános Kémia, Periódikus tulajdonságok. Slide 1 of 35
Periódusosság 3-1 Az elemek csoportosítása: a periódusos táblázat 3-2 Fémek, nemfémek és ionjaik 3-3 Az atomok és ionok mérete 3-4 Ionizációs energia 3-5 Elektron affinitás 3-6 Mágneses 3-7 Az elemek periodikus
Minta feladatsor. Az ion neve. Az ion képlete O 4. Szulfátion O 3. Alumíniumion S 2 CHH 3 COO. Króm(III)ion
Minta feladatsor A feladatok megoldására 90 perc áll rendelkezésére. A megoldáshoz zsebszámológépet használhat. 1. Adja meg a következő ionok nevét, illetve képletét! (8 pont) Az ion neve.. Szulfátion
SZERVES KÉMIAI REAKCIÓEGYENLETEK
SZERVES KÉMIAI REAKCIÓEGYENLETEK Budapesti Reáltanoda Fontos! Sok reakcióegyenlet több témakörhöz is hozzátartozik. Szögletes zárójel jelzi a reakciót, ami más témakörnél található meg. Alkánok, cikloalkánok
Kémiai reakciók. Közös elektronpár létrehozása. Általános és szervetlen kémia 10. hét. Elızı héten elsajátítottuk, hogy.
Általános és szervetlen kémia 10. hét Elızı héten elsajátítottuk, hogy a kémiai reakciókat hogyan lehet csoportosítani milyen kinetikai összefüggések érvényesek Mai témakörök a közös elektronpár létrehozásával
A 27/2012. (VIII. 27.) NGM rendelet (29/2016. (VIII. 26.) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján.
A 27/2012. (VIII. 27.) NGM rendelet (29/2016. (VIII. 26.) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. Szakképesítés azonosítószáma és megnevezése 54 524 03 Vegyész technikus Tájékoztató
Javítóvizsga. Kalász László ÁMK - Izsó Miklós Általános Iskola Elérhető pont: 235 p
Név: Elérhető pont: 5 p Dátum: Elért pont: Javítóvizsga A teszthez tollat használj! Figyelmesen olvasd el a feladatokat! Jó munkát.. Mi a neve az anyag alkotórészeinek? A. részecskék B. összetevők C. picurkák
A tételek: Elméleti témakörök. Általános kémia
A tételek: Elméleti témakörök Általános kémia 1. Az atomok szerkezete az atom alkotórészei, az elemi részecskék és jellemzésük a rendszám és a tömegszám, az izotópok, példával az elektronszerkezet kiépülésének
MÉRNÖKI ANYAGISMERET AJ002_1 Közlekedésmérnöki BSc szak Csizmazia Ferencné dr. főiskolai docens B 403. Dr. Dogossy Gábor Egyetemi adjunktus B 408
MÉRNÖKI ANYAGISMERET AJ002_1 Közlekedésmérnöki BSc szak Csizmazia Ferencné dr. főiskolai docens B 403 Dr. Dogossy Gábor Egyetemi adjunktus B 408 Az anyag Az anyagot az ember nyeri ki a természetből és
1. feladat. Versenyző rajtszáma:
1. feladat / 4 pont Válassza ki, hogy az 1 és 2 anyagok közül melyik az 1,3,4,6-tetra-O-acetil-α-D-glükózamin hidroklorid! Rajzolja fel a kérdésben szereplő molekula szerkezetét, és értelmezze részletesen
Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei
GazdálkodásimodulGazdaságtudományismeretekI.Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSIMÉRNÖKIMScTERMÉSZETVÉDELMIMÉRNÖKIMSc Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Adatgyőjtés, mérési
KÉMIA ÍRÁSBELI ÉRETTSÉGI- FELVÉTELI FELADATOK 1997
1. oldal KÉMIA ÍRÁSBELI ÉRETTSÉGI- FELVÉTELI FELADATOK 1997 JAVÍTÁSI ÚTMUTATÓ I. A HIDROGÉN, A HIDRIDEK 1s 1, EN=2,1; izotópok:,, deutérium,, trícium. Kétatomos molekula, H 2, apoláris. Szobahőmérsékleten
Országos Középiskolai Tanulmányi Verseny 2010/2011. tanév Kémia I. kategória 2. forduló Megoldások
Oktatási Hivatal Országos Középiskolai Tanulmányi Verseny 2010/2011. tanév Kémia I. kategória 2. forduló Megoldások I. FELADATSOR 1. C 6. C 11. E 16. C 2. D 7. B 12. E 17. C 3. B 8. C 13. D 18. C 4. D
Az elektronpályák feltöltődési sorrendje
3. előadás 12-09-17 2 12-09-17 Az elektronpályák feltöltődési sorrendje 3 Az elemek rendszerezése, a periódusos rendszer Elsőként Dimitrij Ivanovics Mengyelejev és Lothar Meyer vette észre az elemek halmazában
Újabb eredmények a grafén kutatásában
Újabb eredmények a grafén kutatásában Magda Gábor Zsolt Atomoktól a csillagokig 2014. március 13. Új anyag, új kor A kőkortól kezdve egy új anyag felfedezésekor új lehetőségek nyíltak meg, amik akár teljesen
Indikátorok. brómtimolkék
Indikátorok brómtimolkék A vöröskáposzta kivonat, mint indikátor Antociánok 12 40 mg/100 g ph Bodzában, ribizliben is! A szupersavak Szupersav: a kénsavnál erősebb sav Hammett savassági függvény: a savak
5. elıadás AZ ÁSVÁNYOK RENDSZEREZÉSE TERMÉSELEMEK, SZULFIDOK, HALOGENIDEK
5. elıadás AZ ÁSVÁNYOK RENDSZEREZÉSE TERMÉSELEMEK, SZULFIDOK, HALOGENIDEK AZ ÁSVÁNYOK RENDSZEREZÉSE A mai ásványrendszerezés alapja a kristálykémia. A rendszer vázát az egyszerő és összetett anionok által
A feladatok megoldásához csak a kiadott periódusos rendszer és számológép használható!
1 MŰVELTSÉGI VERSENY KÉMIA TERMÉSZETTUDOMÁNYI KATEGÓRIA Kedves Versenyző! A versenyen szereplő kérdések egy része általad már tanult tananyaghoz kapcsolódik, ugyanakkor a kérdések másik része olyan ismereteket
9-1 A KÉMIAI ELEMEK ÁLTALÁNOS JELLEMZÉSE
Általános kémia 9-1 A KÉMIAI ELEMEK ÁLTALÁNOS JELLEMZÉSE 1. Izotópok: ugyanazon elem izotópjainak fizikai és kémiai tulajdonságai csak kismértékben különböznek. 2. Allotróp módosulatok: csak atomjaik kapcsolódási
1. feladat Maximális pontszám: 5. 2. feladat Maximális pontszám: 8. 3. feladat Maximális pontszám: 7. 4. feladat Maximális pontszám: 9
1. feladat Maximális pontszám: 5 Mennyi az egyes komponensek parciális nyomása a földből feltörő 202 000 Pa össznyomású földgázban, ha annak térfogatszázalékos összetétele a következő: φ(ch 4 ) = 94,7;
7. osztály Hevesy verseny, megyei forduló, 2003.
Figyelem! A feladatokat ezen a feladatlapon oldd meg! Megoldásod olvasható és áttekinthető legyen! A feladatok megoldásában a gondolatmeneted követhető legyen! A feladatok megoldásához használhatod a periódusos
Anyagszerkezet és vizsgálat Fémtan, anyagvizsgálat
SZÉCHENYI ISTVÁN EGYETEM Anyagtudományi és Technológiai Tanszék Anyagszerkezet és vizsgálat Fémtan, anyagvizsgálat Dr. Hargitai Hajnalka hargitai@sze.hu www.sze.hu/~hargitai B 403. (L316) (Csizmazia Ferencné
Hevesy György Országos Kémiaverseny Kerületi forduló február évfolyam
Hevesy György Országos Kémiaverseny Kerületi forduló 2013. február 20. 8. évfolyam A feladatlap megoldásához kizárólag periódusos rendszert és elektronikus adatok tárolására nem alkalmas zsebszámológép
A kémiatanári zárószigorlat tételsora
1. A. tétel A kémiatanári zárószigorlat tételsora Kémiai alapfogalmak: Atom- és molekulatömeg, anyagmennyiség, elemek és vegyületek elnevezése, jelölése. Kémiai egyenlet, sztöchiometria. A víz jelentősége
Minta vizsgalap I. Karikázza be az egyetlen megfelelő válasz betűjelét! (10x1 pont) 1. Melyik sorban szerepel csak só?
Minta vizsgalap I. Karikázza be az egyetlen megfelelő válasz betűjelét! (10x) 1. Melyik sorban szerepel csak só? A) CH 3 COONa, K 2 SO 4, Na 3 PO 4, NH 4 Cl B) H 2 SO 4, Na 3 PO 4, NH 4 Cl, NaCl C) Fe(NO
KÉMIA Kiss Árpád Országos Közoktatási Szolgáltató Intézmény Vizsgafejlesztő Központ 2003
KÉMIA Kiss Árpád Országos Közoktatási Szolgáltató Intézmény Vizsgafejlesztő Központ 2003 I. RÉSZLETES ÉRETTSÉGI VIZSGAKÖVETELMÉNY A) KOMPETENCIÁK A vizsgázónak a követelményrendszerben és a vizsgaleírásban
Közös elektronpár létrehozása
Kémiai reakciók 10. hét a reagáló részecskék között közös elektronpár létrehozása valósul meg sav-bázis reakciók komplexképződés elektronátadás és átvétel történik redoxi reakciók Közös elektronpár létrehozása
KÉMIA ÍRÁSBELI ÉRETTSÉGI-FELVÉTELI FELADAT (1996)
KÉMIA ÍRÁSBELI ÉRETTSÉGI-FELVÉTELI FELADAT (1996) I. Az alábbiakban megadott vázlatpontok alapján írjon 1-1 2 1 oldalas dolgozatot! Címe: ALKÉNEK Alkének fogalma. Elnevezésük elve példával. Geometriai
Redoxi reakciók Elektrokémiai alapok Műszaki kémia, Anyagtan I. 12-13. előadás
Redoxi reakciók Elektrokémiai alapok Műszaki kémia, Anyagtan I. 12-13. előadás Dolgosné dr. Kovács Anita egy.doc. PTE MIK Környezetmérnöki Tanszék Redoxi reakciók Például: 2Mg + O 2 = 2MgO Részfolyamatok:
a réz(ii)-ion klorokomplexének előállítása...
Általános és szervetlen kémia Laborelőkészítő előadás IX-X. (2008. október 18.) A réz(i)-oxid és a lecsapott kén előállítása Metallurgia, a fém mangán előállítása Megfordítható redoxreakciók Szervetlen
Curie Kémia Emlékverseny 2018/2019. Országos Döntő 7. évfolyam
A feladatokat írta: Kódszám: Harkai Jánosné, Szeged... Lektorálta: Kovács Lászlóné, Szolnok 2019. május 11. Curie Kémia Emlékverseny 2018/2019. Országos Döntő 7. évfolyam A feladatok megoldásához csak
Kémiai reakciók Műszaki kémia, Anyagtan I. 11. előadás
Kémiai reakciók Műszaki kémia, Anyagtan I. 11. előadás Dolgosné dr. Kovács Anita egy.doc. PTE MIK Környezetmérnöki Tanszék Kémiai reakció Kémiai reakció: különböző anyagok kémiai összetételének, ill. szerkezetének
Fémorganikus kémia 1
Fémorganikus kémia 1 A fémorganikus kémia tárgya a szerves fémvegyületek előállítása, szerkezetvizsgálata és kémiai reakcióik tanulmányozása A fémorganikus kémia fejlődése 1760 Cadet bisz(dimetil-arzén(iii))-oxid
KÉMIA ÍRÁSBELI ÉRETTSÉGI-FELVÉTELI FELADATOK (1997)
KÉMIA ÍRÁSBELI ÉRETTSÉGI-FELVÉTELI FELADATOK (1997) MEGOLDÁSOK I. 1. A hidrogén, a hidridek 1s 1 EN=2,1 izotópok: 1 1 H, 2 1 H deutérium 1 H trícium, sajátosságai eltérőek A trícium,- atommagja nagy neutrontartalma
A kémiai kötés magasabb szinten
A kémiai kötés magasabb szinten 11-1 Mit kell tudnia a kötéselméletnek? 11- Vegyérték kötés elmélet 11-3 Atompályák hibridizációja 11-4 Többszörös kovalens kötések 11-5 Molekulapálya elmélet 11-6 Delokalizált
Palládium-organikus vegyületek
Palládium-organikus vegyületek 1894 Phillips: C 2 H 4 + PdCl 2 + H 2 O CH 3 CHO + Pd + 2 HCl 1938 Karasch: (C 6 H 5 CN) 2 PdCl 2 + RCH=CHR [(π-rhc=chr)pdcl 2 ] 2 Cl - Cl Pd 2+ Pd 2+ Cl - - Cl - H O 2 2
feladatmegoldásai K É M I Á B Ó L
A 2006/2007. tanévi ORSZÁGOS KÖZÉPISKOLAI TANULMÁNYI VERSENY első (iskolai) fordulójának Az értékelés szempontjai feladatmegoldásai K É M I Á B Ó L Egy-egy feladat összes pontszáma a részpontokból tevődik
Fogorvosi anyagtan fizikai alapjai 5. Általános anyagszerkezeti ismeretek Fémek, ötvözetek
Fémek törékeny/képlékeny nemesémek magas/alacsony o.p. Fogorvosi anyagtan izikai alapjai 5. Általános anyagszerkezeti ismeretek Fémek, ötvözetek ρ < 5 g cm 3 könnyűémek 5 g cm3 < ρ nehézémek 2 Fémek tulajdonságai
KÉMIA. Kiss Árpád Országos Közoktatási Szolgáltató Intézmény Vizsgafejlesztő Központ 2003
KÉMIA Kiss Árpád Országos Közoktatási Szolgáltató Intézmény Vizsgafejlesztő Központ 2003 ű érettségire felkészítő tananyag tanterve /11-12. ill. 12-13. évfolyam/ Elérendő célok: a természettudományos gondolkodás
KÉMIA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Kémia középszint 0612 ÉRETTSÉGI VIZSGA 2007. május 15. KÉMIA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Az írásbeli feladatok értékelésének alapelvei
Anyagszerkezet és vizsgálat
SZÉCHENYI ISTVÁN EGYETEM Anyagtudományi és Technológiai Tanszék Anyagszerkezet és vizsgálat NGB_AJ021_1 Dr. Hargitai Hajnalka hargitai@sze.hu www.sze.hu/~hargitai B 403. (L316) (Csizmazia Ferencné dr.
1. feladat Összesen: 8 pont. 2. feladat Összesen: 12 pont. 3. feladat Összesen: 14 pont. 4. feladat Összesen: 15 pont
1. feladat Összesen: 8 pont Az autók légzsákját ütközéskor a nátrium-azid bomlásakor keletkező nitrogéngáz tölti fel. A folyamat a következő reakcióegyenlet szerint játszódik le: 2 NaN 3(s) 2 Na (s) +
Országos Középiskolai Tanulmányi Verseny 2010/2011. tanév Kémia II. kategória 2. forduló Megoldások
ktatási Hivatal rszágos Középiskolai Tanulmányi Verseny 2010/2011. tanév Kémia II. kategória 2. forduló Megoldások I. FELADATSR 1. C 6. C 11. E 16. C 2. D 7. B 12. E 17. C 3. B 8. C 13. D 18. C 4. D 9.
Minta vizsgalap (2007/08. I. félév)
Minta vizsgalap (2007/08. I. félév) I. Karikázza be az egyetlen megfelelő válasz betűjelét! (10x) 1. Melyik sorban szerepel csak só? A) CH 3 COONa, K 2 SO 4, Na 3 PO 4, NH 4 Cl B) H 2 SO 4, Na 3 PO 4,
KÉMIAI ALAPISMERETEK (Teszt) Összesen: 150 pont. HCl (1 pont) HCO 3 - (1 pont) Ca 2+ (1 pont) Al 3+ (1 pont) Fe 3+ (1 pont) H 2 O (1 pont)
KÉMIAI ALAPISMERETEK (Teszt) Összesen: 150 pont 1. Adja meg a következő ionok nevét, illetve képletét! (12 pont) Az ion neve Kloridion Az ion képlete Cl - (1 pont) Hidroxidion (1 pont) OH - Nitrátion NO
Osztályozó vizsgatételek. Kémia - 9. évfolyam - I. félév
Kémia - 9. évfolyam - I. félév 1. Atom felépítése (elemi részecskék), alaptörvények (elektronszerkezet kiépülésének szabályai). 2. A periódusos rendszer felépítése, periódusok és csoportok jellemzése.
szabad bázis a szerves fázisban oldódik
1. feladat Oldhatóság 1 2 vízben tel. Na 2 CO 3 oldatban EtOAc/víz elegyben O-védett protonált sóként oldódik a sóból felszabadult a nem oldódó O-védett szabad bázis a felszabadult O-védett szabad bázis
Facultatea de Chimie și Inginerie Chimică, Universitatea Babeș-Bolyai Admitere 2015
1. Az energiaszintek elektronokkal való feltöltésére vonatkozó kijelentések közül melyik igaz? A. A 3. héj maximum 8 elektront tartalmazhat. B. A 3d alhéj elektronokkal való feltöltése a 4s alhéj előtt
A tudós neve: Mit tudsz róla:
8. osztály Kedves Versenyző! A jobb felső sarokban található mezőbe a verseny lebonyolításáért felelős személy írja be a kódot a feladatlap minden oldalára a verseny végén. A feladatokat lehetőleg a feladatlapon
Kémia OKTV 2006/2007. II. forduló. A feladatok megoldása
Kémia OKTV 2006/2007. II. forduló A feladatok megoldása Az értékelés szempontjai Csak a hibátlan megoldásokért adható a teljes pontszám. Részlegesen jó megoldásokat a részpontok alapján kell pontozni.
Kormeghatározás gyorsítóval
Beadás határideje 2012. január 31. A megoldásokat a kémia tanárodnak add oda! 1. ESETTANULMÁNY 9. évfolyam Olvassa el figyelmesen az alábbi szöveget és válaszoljon a kérdésekre! Kormeghatározás gyorsítóval
8. Osztály. Kód. Szent-Györgyi Albert kémiavetélkedő
8. Osztály Kedves Versenyző! A jobb felső sarokban található mezőbe írd fel a verseny lebonyolításáért felelős személytől kapott kódot a feladatlap minden oldalára. A feladatokat lehetőleg a feladatlapon
Név: Pontszám: 1. feladat (3 pont) Írjon példát olyan aminosav-párokra, amelyek részt vehetnek a következő kölcsönhatásokban
1. feladat (3 pont) Írjon példát olyan aminosav-párokra, amelyek részt vehetnek a következő kölcsönhatásokban a, diszulfidhíd (1 példa), b, hidrogénkötés (2 példa), c, töltés-töltés kölcsönhatás (2 példa)!
Atomszerkezet. Atommag protonok, neutronok + elektronok. atompályák, alhéjak, héjak, atomtörzs ---- vegyérték elektronok
Atomszerkezet Atommag protonok, neutronok + elektronok izotópok atompályák, alhéjak, héjak, atomtörzs ---- vegyérték elektronok periódusos rendszer csoportjai Periódusos rendszer energia szintek atomokban
KÉMIA I. RÉSZLETES ÉRETTSÉGIVIZSGA-KÖVETELMÉNY A) KOMPETENCIÁK
KÉMIA I. RÉSZLETES ÉRETTSÉGIVIZSGA-KÖVETELMÉNY A) KOMPETENCIÁK A vizsgázónak a követelményrendszerben és a vizsgaleírásban meghatározott módon, az alábbi kompetenciák meglétét kell bizonyítania: - a természettudományos
Név: Dátum: Oktató: 1.)
1.) Jelölje meg az egyetlen helyes választ (minden helyes válasz 1 pontot ér)! i). Redős szűrőpapírt akkor célszerű használni, ha a). növelni akarjuk a szűrés hatékonyságát; b). a csapadékra van szükségünk;
ISMÉTLÉS, RENDSZEREZÉS
ISMÉTLÉS, RENDSZEREZÉS A) változat 1. Egészítsd ki az ábrát a hiányzó anyagcsoportokkal és példákkal! ANYAGOK (összetétel szerint) egyszerű anyagok összetett anyagok......... oldat pl.... pl.... pl. levegő
1. feladat Összesen: 15 pont. 2. feladat Összesen: 10 pont
1. feladat Összesen: 15 pont Vizsgálja meg a hidrogén-klorid (vagy vizes oldata) reakciót különböző szervetlen és szerves anyagokkal! Ha nem játszódik le reakció, akkor ezt írja be! protonátmenettel járó
Periódusosság. Általános Kémia, Periódikus tulajdonságok. Slide 1 of 35
Periódusosság 11-1 Az elemek csoportosítása: a periódusos táblázat 11-2 Fémek, nemfémek és ionjaik 11-3 Az atomok és ionok mérete 11-4 Ionizációs energia 11-5 Elektron affinitás 11-6 Mágneses 11-7 Az elemek
JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Kémia középszint 0513 ÉRETTSÉGI VIZSGA 2005. május 18. KÉMIA KÖZÉPSZINTŰ ÉRETTSÉGI VIZSGA Az írásbeli vizsga időtartama: 120 perc JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Az írásbeli feladatok
Heterociklusos vegyületek
Szerves kémia A gyűrű felépítésében más atom (szénatomon kívül!), ún. HETEROATOM is részt vesz. A gyűrűt alkotó heteroatomként leggyakrabban a nitrogén, oxigén, kén szerepel, (de ismerünk arzént, szilíciumot,
KÉMIA ÍRÁSBELI ÉRETTSÉGI- FELVÉTELI FELADATOK 2000
Megoldás 000. oldal KÉMIA ÍRÁSBELI ÉRETTSÉGI- FELVÉTELI FELADATOK 000 JAVÍTÁSI ÚTMUTATÓ I. A NITROGÉN ÉS SZERVES VEGYÜLETEI s s p 3 molekulák között gyenge kölcsönhatás van, ezért alacsony olvadás- és