Matematikai érdekességek a Mindennapokban
|
|
- Zsombor Juhász
- 8 évvel ezelőtt
- Látták:
Átírás
1 Matematikai érdekességek a Mindennapokban
2 Bűvös Négyzetek Mindenki rajzoljon egy 3 x 3-as négyzetrácsot! Írja bele a számokat 1-9-ig, hogy minden sorban és minden oszlopban a számok összege ugyanannyi legyen! Példa:
3 Bűvös Négyzetek A Lo Shu négyzet az ókori Kínából származó bűvös négyzet, melyet egy óriásteknős páncéljára festettek és a Feng Sui fontos részét képezi
4
5
6 Bűvös Négyzetek
7 Bűvös Négyzetek
8 Bűvös Négyzetek S A T O R A R E P O T E N E T O P E R A R O T A S Sator Arepo tenet opera rotas Arepo, a földműves tartja a világot forgásban.
9 Bűvös Négyzetek - Ördögkeret
10
11 Indiában van hét szent város. Ezek egyikében, a Gangesz partján fekvő Navaraszi városában / régebbi nevén Benáresz / a bráhmi papok az IDŐ tiszteletére épült templomban az Idő kezdete óta, amikor Brahma hindu főisten megteremtette a világot, Síva utasításáta egy szertartást végeznek. A szertartás a következő : a templomban 3 rúd van felállítva. Az egyik rúdra Brahma 64 aranykorongot helyezett el, amelyek közepe lyukas, hogy a rúdakra ráfűzhetők legyenek. Legalul a legnagyobb korong volt. Felfelé haladva a korondok átmérője egyre kisebb. A feledat az, hogy a 64 korongot átrakják valamelyik másik rúdra. Egyszerre csak egy korongot szabad mozgatni és kicsire nagyot tenni tilos. Naponta csak egy korongot tesznek át a brahmi papok
12 Feladat: 3 rúd, 3 pénzérme. Legkevesebb hány lépés? Megoldás: 7
13 A hindu hit szerint akkor lesz a Világvége, amikor a 64 korongot átrakják az eredeti rúdról egy másikra. A lépések számát tetszőleges számu n darab korongra a következő matematikai képlet adja meg : Esetünkben 64 darab korongot kell átrakni, így : = napra van sükség. Feltéve, hogyha nem tévesztik el a korongok átrakásának sorrendjét.
14 Egy év 365, napból áll. Ha ezzel a számmal elosztjuk az előző számot, akkor megkapjuk, hogy hány évre van szükség a korongok átrakásához évre van szükség. A Világegyetem ismereteink szerint : éves.
15 Egy év 365, napból áll. Ha ezzel a számmal elosztjuk az előző számot, akkor megkapjuk, hogy hány évre van szükség a korongok átrakásához évre van szükség. A Világegyetem ismereteink szerint : éves.
16 A sakk az egyik legősibb játék. Indiában született, és amikor Seram hindu uralkodót megtanították rá, el volt ragadtatva a játék szellemességétől és a benne előforduló helyzetek sokféleségétől. Amikor megtudta, hogy a játékot az egyik alattvalója találta ki, elrendelte, hogy hívassák hozzá, hogy személyesen jutalmazza meg. A felteláló, akit Szétának hívtak, megjelent a király trónusánál. Szerényen öltözött tudós volt, aki tanítványai adományából élt. Szeretnélek méltón megjutelmazni a játékért amit kitaláltál mondta az uralkodó. Nevezd meg a jutalmat, ami kielégít téged, és megkapod.
17 Széta így válaszolt : parancsold meg, hogy a sakktábla első mezőjéért adjanak nekem egy búzaszemet. A második mezőért 2 búzaszemet kérek, a harmadikért 4 et, a negyedikért 8 at, az ötödikért 16 ot, a hatodikért 32 t,... Elég vágott közbe a király. Megkapod a búzaszemeket mind a 64 mezőért. De halljad, a kérésed nem méltó a bőkezűségemhez. Szolgáim elviszik majd a zsákokat a búzaszemekkel.
18 Mennyi búzát kért valójában Széta? = A feltaláló búzastemet kért. Ez ugyan az a szám, mint amit a korongok átrakásánál láttunk
19 De mennyi is ez kilogrammban, vagy tonnában mérve? 1000 közepes méretű búzaszem súlya átlagosa 40 gramm. Így, 1 kg búza búzaszemet tartalmaz, 1 mázsa et, 1 tonna, pedig búzastemet tartalmaz. Most már csak el kell osztani a kért búzaszemek számát 25 millióval, és megkapjuk, hogy ez hány tonna.
20 : = tonna. Mennyi idő alatt termeli meg a világ ezt a több mint 737 milliárd tonnát? 2008-ban 656 világon. millió tonna volt a búzatermés a Kb 2945-re teljesíthető is a kérés
21 Feladat 8 x 8 sakk tábla két felső szélét levágjuk. Lefedhető-e dominóval? Ha két azonos színűt veszünk ki? Ha két különbözőt? Feladvány: Neumann János
22 Feladat: Rakj le úgy minél több bástyát, hogy egyik se üsse a másikat! Rakj le minél több királynőt úgy, hogy egyik se üsse a másikat! Egy lóval járd be a sakktáblát!
23 Megoldások:
24 A király hány különböző úton jut el az adott mezőre legrövidebb út alatt?
25 Megoldások:
26 És ha csak átlósan mehet? Mi ez? Pascal háromszög
27
A sakk feltalálója. A megfizethetetlen találmány. Számítsuk ki, mennyi is ez? Egy ötlet a számításhoz: az úgynevezett Teve szabály
A sakk feltalálója Kevés játéknak van olyan regényes története, mint a sakknak. A tudomány mindmáig nem volt képes hitelt érdemlően feltárni eredetét, a körülötte terjengő legendákból viszont már évszázadokkal
1. ISMERKEDÉS A SAKK VILÁGÁVAL
1. ISMERKEDÉS A SAKK VILÁGÁVAL Hogyha gyakran sakkozom, szupererôm megkapom. Táblajáték sakk Társasjáték Tornáztatjuk az agyunkat Tornáztatjuk a testünket Készítsd el a saját koronádat! 3 Sakkjáték 2 játékos
2. forduló. MEGOLDÁSOK Pontszerző Matematikaverseny 2014/2015 tanév. 1. Számkeresztrejtvény:
1. Számkeresztrejtvény: MEGOLDÁSOK Pontszerző Matematikaverseny 2014/2015 tanév 2. forduló Az alábbi keresztrejtvény ábra abban különbözik a hagyományos keresztrejtvényektől, hogy a négyzet alakú mezőkbe
GEOMATECH TANULMÁNYI VERSENYEK 2015. ÁPRILIS
GEOMATECH TANULMÁNYI VERSENYEK 2015. ÁPRILIS Eddig nehezebb típusú feladatokkal dolgoztunk. Most, hogy közeledik a tavaszi szünet, játékra hívunk benneteket! Kétszemélyes játékokat fogunk játszani és elemezni.
1. beadandó feladat: egyszerű grafikus felületű alkalmazás. Közös követelmények:
1. beadandó feladat: egyszerű grafikus felületű alkalmazás Közös követelmények: A megvalósításnak felhasználóbarátnak, és könnyen kezelhetőnek kell lennie. A szerkezetében törekedni kell az objektumorientált
44. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY. Megyei forduló április mal, így a számjegyeinek összege is osztható 3-mal.
44. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY Megyei forduló - 2015. április 11. HATODIK OSZTÁLY - Javítási útmutató 1. Melyik a legkisebb 3-mal osztható négyjegyű szám, amelynek minden számjegye különböző,
Állapottér reprezentáció/level1
Állapottér reprezentáció/level1 kecske káposzta A tutajosnak át kell szállítani a folyó másik partjára egy farkast, egy kecskét és egy káposztát. A csónakban egyszerre csak az egyiket viheti át a három
1. TÁJÉKOZÓDÁS A SAKKTÁBLÁN 1
TÁJÉKOZÓDÁS A SAKKTÁBLÁN Egy híres sakkozó nevét kapod, ha jó úton jársz. Írd át színessel a név betûit! P O V G P O L G J Á R D U J T U T D I I T 2. Moziba mentek a bábok. Nézz körül a nézôtéren, és válaszolj
FÖLDPRÖGETŐK TERMÉSZETTUDOMÁNYOS HÁZIVERSENY IV. FORDULÓ - Sakk 7 8. évfolyam
1. feladat A. Egy sakkozó 40 partit jatszott és 25 pontot szerzett (a győzelemért egy pont, a döntetlenért fél pont, a vereségért nulla pont jár). Mennyivel több partit nyert meg, mint amennyit elvesztett?
FOLYTATÁS A TÚLOLDALON!
Országos döntő Első nap ÖTÖDIK OSZTÁLY 1. Az összes háromjegyű számot felírtuk egy-egy kártyára, és ezeket mind beledobtuk egy zsákba. Hányat kell kihúznunk a zsákból bekötött szemmel, hogy a kihúzottak
VI. Vályi Gyula Emlékverseny november
VI. Vályi Gyula Emlékverseny 1999. november 19-1. VI. osztály 1. Ki a legidősebb, ha Attila 10 000 órás, Balázs 8 000 napos, Csanád 16 éves, Dániel 8000000 perces, Ede 00 hónapos. (A) Attila (B) Balázs
5 labda ára 5x. Ez 1000 Ft-tal kevesebb, mint a nyeremény 1p. 7 labda ára 7x. Ez 2200Ft-tal több, mint a nyeremény 1p 5 x x 2200
2014. november 28. 7. osztály Pontozási útmutató 1. Egy iskola kosárlabda csapata egy tornán sportszervásárlási utalványt nyert. A csapat edzője szeretne néhány kosárlabdát vásárolni az iskola számára.
45. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY HARMADIK OSZTÁLY
45. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY Országos döntő Második nap Javítási útmutató HARMADIK OSZTÁLY. Négy barát, András, Gábor, Dávid és Csaba egy négyemeletes ház négy különböző emeletén lakik.
Nyerni jó. 7.-8. évfolyam
Boronkay György Műszaki Középiskola és Gimnázium 2600 Vác, Németh László u. 4-6. : 27-317 - 077 /fax: 27-315 - 093 WEB: http://boronkay.vac.hu e-mail: boronkay@vac.hu Levelező Matematika Szakkör Nyerni
43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY MEGYEI FORDULÓ HARMADIK OSZTÁLY JAVÍTÁSI ÚTMUTATÓ. Minden feladat helyes megoldása 7 pontot ér.
43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY MEGYEI FORDULÓ HARMADIK OSZTÁLY JAVÍTÁSI ÚTMUTATÓ Minden feladat helyes megoldása 7 pontot ér. 1. Bence talált öt négyzetet, amelyek egyik oldalán az A,
MATEMATIKA C 9. évfolyam 9. modul SAKKMATEK
MATEMATIKA C 9. évfolyam 9. modul SAKKMATEK Készítette: Surányi Szabolcs MATEMATIKA C 9. ÉVFOLYAM 9. MODUL: SAKKMATEK TANÁRI ÚTMUTATÓ 2 MODULLEÍRÁS A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási
XV. évfolyam Megyei döntő február 20. MEGOLDÁSOK - 3. osztály
1. feladat: XV. évfolyam Megyei döntő - 2016. február 20. MEGOLDÁSOK - 3. osztály Jancsi és Juliska Matematikai Memory-t játszik. A játék lényege, hogy négyzet alakú kártyákra vagy műveletsorokat írnak
Mintafeladatsor Matematikaverseny ált. iskola 7-8.osztályosainak Bajza József Gimnázium és Szakközépiskola, Hatvan
Mintafeladatsor Matematikaverseny ált. iskola 7-8.osztályosainak Bajza József Gimnázium és Szakközépiskola, Hatvan TOLLAL DOLGOZZ, SZÁMOLÓGÉPET NEM HASZNÁLHATSZ, A LAPRA SZÁMOLJ! 1. A következő ábrán egy
Boronkay György Műszaki Középiskola és Gimnázium Vác, Németh László u : /fax:
5. OSZTÁLY 1.) Apám 20 lépésének a hossza 18 méter, az én 10 lépésemé pedig 8 méter. Hány centiméterrel rövidebb az én lépésem az édesapáménál? 18m = 1800cm, így apám egy lépésének hossza 1800:20 = 90cm.
A 5-ös szorzó- és bennfoglalótábla
A 5-ös szorzó- és bennfoglalótábla 1. Játsszátok el, amit a képen láttok! Hány ujj van a magasban, ha 1 kezet 3 kezet 4 kezet 0 kezet 6 kezet 8 kezet látsz? 1 @ 5 = 3 @ 5 = 4 @ 5 = 0 @ 5 = 0 2. Építsd
SZÁMTANI SOROZATOK. Egyszerű feladatok
SZÁMTANI SOROZATOK Egyszerű feladatok. Add meg az alábbi sorozatok következő három tagját! a) ; 7; ; b) 2; 5; 2; c) 25; 2; ; 2. Egészítsd ki a következő sorozatokat! a) 7; ; 9; ; b) 8; ; ; 9; c) ; ; ;
meteformes szabaly 2004/08/31 09:21 Page 1 szerzôk: Michel & Robert Lyons Játékleírás 2004 Huch&Friends D Günzburg licence: FoxMind Games, BV.
meteformes szabaly 2004/08/31 09:21 Page 1 szerzôk: Michel & Robert Lyons Játékleírás 2004 Huch&Friends D-89312 Günzburg licence: FoxMind Games, BV. meteformes szabaly 2004/08/31 09:21 Page 2 LOGEO Egy
Rugalmas állandók mérése (2-es számú mérés) mérési jegyzõkönyv
(-es számú mérés) mérési jegyzõkönyv Készítette:,... Beadás ideje:.. 9. /9 A mérés leírása: A mérés során különbözõ alakú és anyagú rudak Young-moduluszát, valamint egy torziós szál torziómoduluszát akarjuk
Számolási eljárások 12. feladatcsomag
Számolási eljárások 3.12 Alapfeladat Számolási eljárások 12. feladatcsomag számok bontásának gyakorlása 20-as számkörben összeadás, kivonás gyakorlása 20-as számkörben A feladatok listája 1. Mennyi van
ELEMI BÁZISTRANSZFORMÁCIÓ LÉPÉSEI 2.NEHEZÍTETT VÁLTOZAT 2.a) Paramétert nem tartalmazó eset
ELEMI BÁZISTRANSZFORMÁCIÓ LÉPÉSEI 2.NEHEZÍTETT VÁLTOZAT 2.a) Paramétert nem tartalmazó eset A bázistranszformáció nehezített változatában a bázison kívül elhelyezkedő vektorokból amennyit csak lehetséges
FOLYTATÁS A TÚLOLDALON!
Országos döntő 1. nap ÖTÖDIK OSZTÁLY 1. 4 testvér (akik között nincsenek ikrek) beszélget születésük sorrendjéről. Kettő közülük hazudik, kettő igazat mond. András: Dávid a legfiatalabb. Boldizsár: Dávid
X. PANGEA Matematika Verseny I. forduló 3. évfolyam. 1. Melyik az az alakzat az alábbiak közül, amelyiknek nincs tükörtengelye?
1. Melyik az az alakzat az alábbiak közül, amelyiknek nincs tükörtengelye? A) B) C) D) 2. A szorzat egyik számjegye hiányzik. Mennyi lehet az a számjegy? 27 33 33 27 = 3 0 A) 0 B) 3 C) 6 D) 9 3. Tapsifüles
FÖLDPRÖGETŐK TERMÉSZETTUDOMÁNYOS HÁZIVERSENY IV. FORDULÓ - Sakk 5 6. évfolyam
1. feladat FÖLDPRÖGETŐK Mielőtt elkezded a feladatok megoldását, tájékozódj a feladatokban szereplő figurák megengedett lépéseiről, illetve arról, hogy mit jelent az, ha egy bábu által a király sakkban
1. beadandó feladat: egyszerű grafikus felületű alkalmazás. Közös követelmények:
1. beadandó feladat: egyszerű grafikus felületű alkalmazás Közös követelmények: A megvalósításnak felhasználóbarátnak, és könnyen kezelhetőnek kell lennie. A szerkezetében törekedni kell az objektumorientált
Elemi feladatsorok; 2G
Elemi feladatsorok; 2G 1. Hányféle végeredménye lehet egy olyan futóversenynek, melyen 90-en vesznek részt és az első öt helyezést rögzítik? 2. Hányféle lottóhúzás lehetséges a 90-ből 5-öt lottón? 3. Ha
1. feladatsor Legyen ABCDEF egy szabályos hatszög. A hatszög AB és BC oldalára megrajzoljuk
1. feladatsor 2013.09.13. 1. Legyen ABCDEF egy szabályos hatszög. A hatszög AB és BC oldalára megrajzoljuk kifelé a BAXY és CBZT négyzeteket, illetve a CD és DE oldalára befelé a CDP Q és DERS négyzeteket.
1 = 1x1 1+3 = 2x2 1+3+5 = 3x3 1+3+5+7 = 4x4
. Orchidea Iskola VI. Matematika verseny 0/0 II. forduló = x + = x ++ = x +++ = x Ennek ismeretében mennyivel egyenlő ++++...+9+99=? A ) 0. D ) 0 000 6 C ) 0 D ) A Földközi-tengerben a só-víz aránya :
Megyei matematikaverseny évfolyam 2. forduló
Megyei matematikaverseny 0. 9. évfolyam. forduló. különbözı pozitív egész szám átlaga. Legfeljebb mekkora lehet ezen számok közül a legnagyobb? (A) (B) 8 (C) 9 (D) 78 (E) 44. 00 009 + 008 007 +... + 4
BOLYAI MATEMATIKA CSAPATVERSENY ORSZÁGOS DÖNTŐ SZÓBELI (2013. NOVEMBER 23.) 3. osztály
3. osztály Egy asztal körül 24-en ülnek, mindannyian mindig igazat mondanak. Minden lány azt mondja, hogy a közvetlen szomszédjaim közül pontosan az egyik fiú, és minden fiú azt mondja, hogy mindkét közvetlen
SZÁMTANI SOROZATOK. Egyszerű feladatok. 1. Egy számtani sorozatban:
SZÁMTANI SOROZATOK Egyszerű feladatok. Egy számtani sorozatban: a) a, a 29, a? 0 b) a, a, a?, a? 80 c) a, a 99, a?, a? 0 20 d) a 2, a2 29, a?, a90? 2 e) a, a, a?, a00? 2. Hány eleme van az alábbi sorozatoknak:
ő ľ ü ó ő ü ľ ü Ü Ü É ľ ü ľ ľ ü ľ ő Ĺ ó ę ľ ő ő ő ü ü ü ó Ĺ ó ľ ľ ü đ ü ľ ő ü üó ľ ľ ź ľ źú ź ľ ü ő ó ó ľó ó ü ó É ń ő ö ö ľ ę ľ ó ď öľ Ü Ü ľ ő ő ľ ę ő ń ý ó ó ő ź Í ú ó ü ľ ľ ő ű ű ö ö ľ ü ó ó ő ó ő ú
Kombinatorika A A B C A C A C B
. Egy ló, egy tehén, egy cica, egy nyúl és egy kakas megkéri a révészt, hogy vigye át őket a túlsó partra. Hányféle sorrendben szállíthatja át őket a révész, ha egyszerre vagy egy nagy testű állatot, vagy
TUDOMÁNYOS ISMERETTERJESZTŐ TÁRSULAT
88 Budapest, Bródy Sándor u. 6. ostacím: Budapest, f. 76 Telefon: 8-5, 7-89, Fax: 7-89 Nyilvántartásba vételi szám: E-6/ Javítókulcs. osztály megyei. Titkos üzenetet kaptál. Szerencsére a titkosírás kulcsa
III. osztály 1 Orchidea Iskola IV. Matematika verseny 2011/2012 II. forduló
III. osztály 1 Orchidea Iskola IV. Matematika verseny 2011/2012 II. forduló 1. Mennyi az eredmény 15+17 15+17 15+17=? A) 28 B) 35 C) 36 D)96 2. Melyik szám van a piramis csúcsán? 42 82 38 A) 168 B) 138
Kvízverseny. SimpleX Tehetségnap, 2015
Kvízverseny SimpleX Tehetségnap, 2015 GEOMETRI 1. mellékelt ábrán négyzet, F, E és [E] [F ]. Mekkora az α szög mértéke? E α F 2. α =? 3. mellékelt ábrán négyzet, F és [F ] []. Mekkora a ĈF szög mértéke?
;3 ; 0; 1 7; ;7 5; 3. pozitív: ; pozitív is, negatív is: ;
. A racion lis sz mok A tanult sz mok halmaza A) Ábrázold számegyenesen az alábbi számokat! 8 + + 0 + 7 0 7 7 0 0. 0 Válogasd szét a számokat aszerint, hogy pozitív: pozitív is, negatív is: negatív: sem
Isola (1-1 db sötét és világos király-bábu és max. 45 db blokk-bábu) A lépések két fázisból állnak: (1.) bármelyik oldalszomszédos mezőre áttoljuk a
Isola (1-1 db sötét és világos király-bábu és max. 45 db blokk-bábu) A lépések két fázisból állnak: (1.) bármelyik oldalszomszédos mezőre áttoljuk a saját királyunkat (egyszersmind mutatva, hogy még tudunk
Érdemes egy n*n-es táblázatban (sorok-lányok, oszlopok-fiúk) ábrázolni a két színnel, mely éleket húztuk be (pirossal, kékkel)
Kombi/2 Egy bizonyos bulin n lány és n fiú vesz részt. Minden fiú pontosan a darab lányt és minden lány pontosan b darab fiút kedvel. Milyen (a,b) számpárok esetén létezik biztosan olyan fiúlány pár, akik
4) Hány fecskének van ugyanannyi lába, mint 33 kecskének? 6) A hét törpe életkorának összege 484 év. Mennyi lesz az életkoruk összege 4 év múlva?
PANNONHALMA TKT RADNÓTI MIKLÓS ÁLTALÁNOS ISKOLA, ÓVODA ÉS ALAPFOKÚ MŐVÉSZETOKTATÁSI INTÉZMÉNY Akik vonzódnak a matematikához, azokat izgalomba hozza a feladat, akiknek nincs érzékük hozzá, azokat elriasztja.
KÉSZÍTSÜNK ÁBRÁT évfolyam
Boronkay György Műszaki Középiskola és Gimnázium 2600 Vác, Németh László u. 4-6. : 27-317 - 077 /fax: 27-315 - 093 WEB: http://boronkay.vac.hu e-mail: boronkay@vac.hu Levelező Matematika Szakkör 2018/2019.
MATEMATIKA FELADATGYŐJTEMÉNY 2. osztályos tanulásban akadályozott tanulók részére TÉMA: alapmőveletek - összeadás
Soós Luca és Szári Laura MATEMATIKA FELADATGYŐJTEMÉNY. osztályos tanulásban akadályozott tanulók részére TÉMA: alapmőveletek - összeadás 0. 0.. Ő. JÁTÉK A FORMÁKKAL Nézd meg jól a képet! Mit gondolsz,
Kedves Kolléga! Fejlesztési feladatok, fejlesztendő területek, képességek, készségek
Kedves Kolléga! Oszkár, a kistigris az óvodában című sorozatunk a cselekvő-felfedező tanulásszervezés támogatását vállalja fel, valamint a pedagógusok differenciáló, tervező munkáját is segíteni szeretnénk.
0653. MODUL TÖRTEK. Szorzás törttel, osztás törttel KÉSZÍTETTE: BENCZÉDY LACZKA KRISZTINA, MALMOS KATALIN
06. MODUL TÖRTEK Szorzás törttel, osztás törttel KÉSZÍTETTE: BENCZÉDY LACZKA KRISZTINA, MALMOS KATALIN 06. Törtek Szorzás törttel, osztás törttel Tanári útmutató MODULLEÍRÁS A modul célja Időkeret Ajánlott
Sakk, ostábla és dáma
Sakk, ostábla és dáma hu Játékleírás Tchibo GmbH D-22290 Hamburg 92630AB6X6VII 2017-07 Kedves Vásárlónk! Három klasszikus játék egy praktikus, dekoratív fadobozban. Ezek a játékok évszázadok óta lebilincselik
23. Kombinatorika, gráfok
I Elméleti összefoglaló Leszámlálási alapfeladatok 23 Kombinatorika, gráfok A kombinatorikai alapfeladatok esetek, lehetőségek összeszámlálásával foglalkoznak Általában n jelöli a rendelkezésre álló különbözőfajta
CHRISTOPH DRÖSSER CSÁBÍTÓ SZÁMOK, AVAGY A MINDENNAPOK MATEMATIKÁJA
CHRISTOPH DRÖSSER CSÁBÍTÓ SZÁMOK, AVAGY A MINDENNAPOK MATEMATIKÁJA MEGOLDÁSOK 16. oldal Ha négy emberrel számolunk négyzetméterenként, akkor mindenkire egy negyed négyzetméteres, azaz egy fél méterszer
Minden feladat teljes megoldása 7 pont
Postacím: 11 Budapest, Pf. 17. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY ORSZÁGOS DÖNTŐ 1. nap NEGYEDIK OSZTÁLY JAVÍTÁSI ÚTMUTATÓ Minden feladat teljes megoldása 7 pont 1. Hat futó: András, Bence, Csaba,
BOLYAI MATEMATIKA CSAPATVERSENY ORSZÁGOS DÖNTŐ SZÓBELI (2018. NOVEMBER 24.) 3. osztály
3. osztály Milyen számot írnátok az üres háromszögbe? Miért? Számpiramist kezdtünk építeni valamilyen szabály szerint (lásd az ábrán). Keressétek meg, mi lehet a szabály, és írjátok a betűk helyére a megfelelő
VERSENYKIÍRÁS HÉTPRÓBÁSOK BAJNOKSÁGA 2016 ORSZÁGOS EGYÉNI ÉS CSAPAT DIÁKVERSENY 2015/2016-OS TANÉV
VERSENYKIÍRÁS HÉTPRÓBÁSOK BAJNOKSÁGA 2016 ORSZÁGOS EGYÉNI ÉS CSAPAT DIÁKVERSENY 2015/2016-OS TANÉV A verseny helyszíne: Hejőkeresztúri IV. Béla Általános Iskola, 3597 Hejőkeresztúr, Petőfi Sándor út 111.
Kocsis Szilveszter: FPI tehetséggondozó szakkör 5. évf
5-es tehetséggondozó szakkör, 2011. február 21. HF 15.1.c Be lehet-e járni egy szabályos oktaéder, éleit egy-egy csúcsukból kiindulva úgy, hogy minden élen pontosan egyszer haladjunk végig és a végén visszatérjünk
Százalékszámítás gyakorlatok
Százalékszámítás gyakorlatok 1. Minden tanuló egy 10cm 10cm-es négyzetlapot kap, egy ollót, vonalzót, színes ceruzákat. Feladatuk, hogy az eszközök segítségével válaszoljanak a füzetbe az alábbi kérdésekre:
1. Pál kertje téglalap alakú, 15 méter hosszú és 7 méter széles. Hány métert tesz meg Pál, ha körbesétálja a kertjét?
1. Pál kertje téglalap alakú, 15 méter hosszú és 7 méter széles. Hány métert tesz meg Pál, ha körbesétálja a kertjét? A) 37 m B) 22 m C) 30 m D) 44 m E) 105 m 2. Ádám három barátjával közösen a kis kockákból
IV. Felkészítő feladatsor
IV. Felkészítő feladatsor 1. Az A halmaz elemei a (-7)-nél nagyobb, de 4-nél kisebb egész számok. B a nemnegatív egész számok halmaza. Elemeinek felsorolásával adja meg az A \ B halmazt! I. 2. Adott a
Máder Attila: Elemi matematika feladatok. Matematikai rejtvények
Máder Attila: Elemi matematika feladatok Matematikai rejtvények 1 1. Matematikai rejtvények 1. Feladat. Hová tünt a hiányzó törpe? 1 2. Feladat. Van egy falu, ahol 100 házaspár él és rajtuk kívül még egy
Mesterséges intelligencia feladatsor
Mesterséges intelligencia feladatsor állapottér reprezentációhoz Jeszenszky éter 2008. március 27. 1. Nem választható feladatok Az alábbi feladatokat nem lehet választani. Ezek mind olyan, többnyire klasszikus
CAYLUS. A játéktábla. Tartalom. Egyszer volt, hol nem volt. A játék célja. Előkészületek. Nyersanyagok élelmiszer. posztó. arany. Épületek.
CAYLUS William Attia játéka Illusztráció és grafika: Arnaud és Cyril Demaegd A játéktábla játéktábla Tartalom Nyersanyagok élelmiszer udvarnagy (fehér henger) és intéző (fehér korong) 30 egydénáros és
2. a) Adjatok meg egy olyan pozitív egész számot, amelynek számjegyeinek összege is 10 és a számjegyeinek szorzata is 10. b) Hány ilyen szám van?
ĜĒĦ ĜĒĦGĞĒ İĨÎİÎĶJĮĐČĨİÌJĨİWKJĮČẀKČİKİİĨẀJĹİĮ ŻKİKČĜÎĶİĨÎĶĪĮÎĐĐČĪĽĪĮÎĐČẀKČĞẀĨĪÎLİKKİJĹ ÉEEĚ 1. a) Szent György átlovagolt a hétfejű sárkányok földjén. Minden sárkánynak levágta egy vagy két fejét, így
Próbaérettségi 2004 MATEMATIKA. PRÓBAÉRETTSÉGI 2004. május EMELT SZINT. 240 perc
PRÓBAÉRETTSÉGI 2004. május MATEMATIKA EMELT SZINT 240 perc A feladatok megoldására 240 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A II. részben
1. Melyek azok a kétjegyű számok, amelyek oszthatók számjegyeik
1991. évi verseny, 1. nap 1. Számold össze, hány pozitív osztója van 16 200-nak! 2. Bontsd fel a 60-at két szám összegére úgy, hogy az egyik szám hetede egyenlő legyen a másik szám nyolcadával! 3. Van
Fordította: Uncleszotyi
Fordította: Uncleszotyi Kiegészítette: Adhemar EL GRANDE 1 Összetevők Egy játéktábla 5 Grande (vezetők - nagy kockák) öt különböző színben 155 Caballero (lovagok - kis kockák) 5 színben (31 db színenként)
Sün Simi. Iskolás Sün lettem Simi. 1. Hol lakhat Sün Simi? Színezd ki, és rajzold oda Simit! 2. Színezd ki Simi táplálékait!
Iskolás Sün lettem Simi Sün Simi. Hol lakhat Sün Simi? Színezd ki, és rajzold oda Simit! 2. Színezd ki Simi táplálékait!. Rajzold le, mi jelenthet veszélyt Simi számára! Óvodából az iskolába. Rajzold le,
Általános tudnivalók
Általános tudnivalók A versenyen tetszőleges íróeszköz használható. (Például ceruza, toll, filctoll, színes ceruza.) Az íróeszközökről a versenyzőknek maguknak kell gondoskodniuk. Pót feladatsorokkal nem
INFORMATIKA tétel 2018
INFORMATIKA tétel 2018 ELIGAZÍTÁS: 1 pont hivatalból; Az 1-4 feladatokban (a pszeudokód programrészletekben): (1) a kiír \n utasítás újsorba ugratja a képernyőn a kurzort; (2) a minden i = n,1,-1 végezd
MATEMATIKAI KOMPETENCIATERÜLET A
MATEMATIKAI KOMPETENCIATERÜLET A Matematika 3. évfolyam eszközök tánítók részére 1. félév 1. modul 1. melléklet 3. évfolyam tanító/1. DARABSZÁM tíz ház 2-3 kutya 4 regény 1. modul 1. melléklet 3. évfolyam
VI. Robotprogramozó Országos Csapatverseny évfolyam
VI. Robotprogramozó Országos Csapatverseny Országos döntőjének versenyfeladatai 7-8. évfolyam 2015. április 25. A robot portjainak kiosztása: Motorok: B és C Szenzorok: Ütközésérzékelő (Touch): 1-es port
Pitagorasz tételhez elıkészítı problémafelvetı, motiváló feladatok
Pitagorasz tételhez elıkészítı problémafelvetı, motiváló feladatok 1.Területre vonatkozó feladat: Egy négyzet alakú halastó négy sarkán egy-egy fa áll. Kétszer akkorára akarják növelni a halastó területét
Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363
1/6 Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 Az Előadások Témái 46/6 Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció stratégiák Szemantikus hálók
2015.03.03 03.23. Csapat neve: Iskola neve: Elérhető pontszám: 75 pont. Elért pontszám:
2015.03.03 03.23. Csapat neve: Iskola neve: Elérhető pontszám: 75 pont Elért pontszám: Beküldési határidő: 2015.03.23. Eredmények közzététele: 2015.04.01. Beküldési cím: Abacusan Stúdió, 1193 Budapest
TAKI! (Találd ki!) 2014. 10. 05. ÉVKÖZI 27. VASÁRNAP 2014.09.21. ÉVKÖZI 25. VASÁRNAP
TAKI! (Találd ki!) 2014.09.21. ÉVKÖZI 25. VASÁRNAP Keresd meg a megadott szavakat a táblázatban és húzd ki: ÁCSORGÓ, MUNKÁS, DÉNÁR, SZŐLŐ, PIAC, INTÉZŐ, BÉR, GAZDA, UTOLSÓ, ELSŐ, BARÁTOM, ROSSZ, SZEM A
Értékelési útmutató 1. oldal
Kérjük a tisztelt tanár kollégákat, hogy a dolgozatokat az egységes értékelés érdekében szigorúan az alábbi útmutató szerint pontozzák, a megadott részpontszámokat ne bontsák tovább! Vagyis ha egy részmegoldásra
Csordás Mihály Konfár László Kothencz Jánosné Kozmáné Jakab Ágnes Pintér Klára Vincze Istvánné. tankönyv. Mozaik Kiadó Szeged, 2013
Csordás Mihály Konfár László Kothencz Jánosné Kozmáné Jakab Ágnes Pintér Klára Vincze Istvánné tankönyv 5 Mozaik Kiadó Szeged, 2013 A TERMÉSZETES SZÁMOK 13. A szorzat változásai Az iskolai könyvtáros 10
PLUSZ ügyességi versenyeken használt akadály típusok.
PLUSZ ügyességi versenyeken használt akadály típusok. A bója akadályok építhetők kicsi vagy nagy bójából, a labirintusban és a beékező és kiérkező bójakapuk csak kis bójából építhetők. Minden bója tetején
2005_01/1 Leírtunk egymás mellé hét racionális számot úgy, hogy a két szélső kivételével mindegyik eggyel nagyobb a két szomszédja szorzatánál.
Számolásos feladatok, műveletek 2004_1/1 Töltsd ki az alábbi bűvös négyzet hiányzó mezőit úgy, hogy a négyzetben szereplő minden szám különböző legyen, és minden sorban, oszlopban és a két átlóban is ugyanannyi
A GOMBFOCI JÁTÉKSZABÁLYAI
A GOMBFOCI JÁTÉKSZABÁLYAI A gombfoci szabályai szinte megegyeznek a futball szabályaival. Les nincs. A játékban két ember vesz részt. A versenyzők tíz-tíz darab mező ny játékosgombbal, egy-egy darab kapusgombbal
Kedves Kolléga! Fejlesztési feladatok, fejlesztendő területek, képességek, készségek
Kedves Kolléga! Oszkár, a kistigris az óvodában című sorozatunk a cselekvő-felfedező tanulásszervezés támogatását vállalja fel, valamint a pedagógusok differenciáló, tervező munkáját is segíteni szeretnénk.
1. Feladat: beolvas két számot úgy, hogy a-ba kerüljön a nagyobb
1. Feladat: beolvas két számot úgy, hogy a-ba kerüljön a nagyobb #include main() { int a, b; printf( "a=" ); scanf( "%d", &a ); printf( "b=" ); scanf( "%d", &b ); if( a< b ) { inttmp = a; a =
Egy francia-sakk feladvány: Világos lép, és döntetlen az alsó sor az 1. sor!
Leüttetni az összes bábud! A játszmát a rendes sakkal ellentétben sötét kezdi. Döntetlen itt is lehetséges, például két különböző színű futó esetén. A királynak ebben a játékban nincsen kitüntetett szerepe
F 2000/2001. Iskolai (első) forduló november
F 2000/2001. Iskolai (első) forduló 2000. november 7. osztály 1. Legkevesebb hány gyermeke van a Kovács családnak, ha mindegyik gyereknek van legalább egy fiú és egy leány testvére? 2. Hány olyan téglalap
47. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY Megyei forduló NYOLCADIK OSZTÁLY JAVÍTÁSI ÚTMUTATÓ
7. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY Megyei forduló NYOLADIK OSZTÁLY JAVÍTÁSI ÚTMUTATÓ 1. Hány különböző módon lehet felírni az 102-et két pozitív négyzetszám összegeként? (Az összeadás sorrendje
Feladatok és megoldások. Kincsesláda: 10 pontos
Feladatok és megoldások Kincsesláda: Hogyan kell a térképen található hét aranypénz közül kettőt áthelyezni úgy, hogy mind Észak - Dél, mind pedig Kelet Nyugat irányban 5 pénzérme legyen? É K Ny Megoldás:
1. Mennyi a dobókockák nem látható lapjain levő pontok ( számok ) összege? A ) 14 B ) 20 C ) 21 D ) 24
. Mennyi a dobókockák nem látható lapjain levő pontok ( számok ) összege? A ) 4 B ) 20 C ) 2 D ) 24 2. Mennyi az alábbi művelet eredménye? 2 + 2 =? 5 6 A ) B ) C ) D ) 0. Egy könyvszekrénynek három polca
PYTAGORIÁDA Az országos forduló feladatai 35. évfolyam, 2013/2014-es tanév. Kategória P 6
Kategória P 6 1. Írjátok le azt a számot, amely a csillag alatt rejtőzik: *. 5 = 9,55 2. Babszem Jankó 25 ször kisebb, mint Kukorica Jancsi. Írjátok le, hogy hány centiméter Babszem Jankó, ha Kukorica
Számlálási feladatok
Számlálási feladatok Ezek olyan feladatok, amelyekben a kérdés az, hogy hány, vagy mennyi, de a választ nem tudjuk spontán módon megadni, csak számolással? ) Ha ma szombat van, milyen nap lesz 200 nap
XI. PANGEA Matematika Verseny I. forduló 8. évfolyam
1. A következő állítások közül hány igaz? Minden rombusz deltoid. A deltoidnak lehet 2 szimmetriatengelye. Minden rombusz szimmetrikus tengelyesen és középpontosan is. Van olyan paralelogramma, amelynek
Alkalmazott modul III 3. feladatcsoport. Közös követelmények:
Alkalmazott modul III 3. feladatcsoport Közös követelmények: A program játékfelületét dinamikusan kell létrehozni futási időben. Egyes feladatoknál különböző méretű játékmezők létrehozását kell megvalósítani,
A 2013/2014 tanévi Országos Középiskolai Tanulmányi Verseny második forduló javítási-értékelési útmutató. INFORMATIKA II. (programozás) kategória
Oktatási Hivatal A 2013/2014 tanévi Országos Középiskolai Tanulmányi Verseny második forduló javítási-értékelési útmutató INFORMATIKA II. (programozás) kategória Kérjük a tisztelt kollégákat, hogy az egységes
OKTV 2007/2008 Informatika II. kategória döntő forduló Feladatlap. Oktatási Hivatal
Feladatlap Kedves Versenyző! A megoldások értékelésénél csak a programok futási eredményeit vesszük tekintetbe. Ezért igen fontos a specifikáció pontos betartása. Ha például a feladat szövege adatok valamilyen
Machu Picchu hercegei: Játékszabályok A JÁTÉK ELEMEI
Machu Picchu hercegei: Játékszabályok A JÁTÉK ELEMEI 201 fa jelölő: 1 Időjelző (narancssárga) 8 Nyolcszögű templomkő (világosszürke) Árucikkek: 28 láma, 28 kokacserje, 28 agyagedény, 28 szövet Játékosbábuk
Szerb Köztársaság FELADATOK AZ ÁLTALÁNOS OKTATÁS ÉS NEVELÉS ZÁRÓVIZSGÁJÁRA. a 2017/2018-as tanévben TESZT MATEMATIKÁBÓL UTASÍTÁS A TESZT MEGÍRÁSÁHOZ
Szerb Köztársaság OKTATÁSI, TUDOMÁNYÜGYI ÉS TECHNOLÓGIAI FEJLESZTÉSI MINISZTÉRIUM OKTATÁSI ÉS NEVELÉSI MINŐSÉGELLENŐRZŐ INTÉZET VAJDASÁGI PEDAGÓGIAI INTÉZET FELADATOK AZ ÁLTALÁNOS OKTATÁS ÉS NEVELÉS ZÁRÓVIZSGÁJÁRA
2. Melyik kifejezés értéke a legnagyobb távolság?
1. Határozd meg, hogy az alábbi öt híres matematikus közül kinek volt a megélt éveinek száma prímszám? A) Rényi Alfréd (1921-1970) B) Kőnig Gyula (1849-1913) C) Kalmár László (1905-1976) D) Neumann János
POLIUNIVERZUM KÖR Ki lesz a HÉT gyűrű ura?
. POLIUNIVERZUM KÖR Ki lesz a HÉT gyűrű ura? Összeállította: SAXON Szász János képzőművész / feltaláló www.poly-universe.com Zsákos Frodó az EGY gyűrű ura! I. AZ ALAPELEMEK FELÉPÍTÉSE A Poliuniverzum kör
APOKRIF IRATOK Bel és a A KING JAMES Biblia 1611 sárkány. Bel- és a sárkány
www.scriptural-truth.com APOKRIF IRATOK Bel és a A KING JAMES Biblia 1611 sárkány Bel- és a sárkány A könyv a Bel és a sárkány [a Dániel] A történelem a megsemmisítése a Bel- és a sárkány, Levágta, a Daniel