ARM Cortex-M0+ mikrovezérlő programozása KEIL MDK 5 környezetben. 1. Az ARM Cortex-M0+ CPU jellemzői
|
|
- Ede Vörös
- 8 évvel ezelőtt
- Látták:
Átírás
1 ARM Cortex-M0+ mikrovezérlő programozása KEIL MDK 5 környezetben 1. Az ARM Cortex-M0+ CPU jellemzői Hobbielektronika csoport 2015/2016 1
2 Felhasznált anyagok, ajánlott irodalom Joseph Yiu: The Definitive Guide to ARM Cortex -M0 and Cortex-M0+ Processors (2nd Ed.) Joseph Yiu: The Anatomy of the ARM Cortex-M0+ Processor Trevor Martin: The Designer s Guide to the Cortex-M Processor Family Muhammad Ali Mazidi, Shujen Chen, Sarmad Naimi, Sepehr Naimi: Freescale ARM Cortex-M Embedded Programming ARM University Program: Course/Lab Material for Teaching Embedded Systems/MCUs (for the FRDM-KL25Z board) Freescale: MKL25Z128VLK4 MCU datasheet Freescale: KL25 Sub-Family Reference Manual Freescale: FRDM-KL25Z User Manual 2
3 ARM a CPU tervező cég Az Advanced RISC Machines Ltd. (ARM) céget 1990-ben alapította az Acorn, az Apple Computer és a VLSI Technology, az Acorn RISC processzor továbbfejlesztésére. Az ARM nem gyárt és nem forgalmaz mikrovezérlőt, hanem CPU-t tervez, s terveit a chipgyártók licenszelik, perifériákkal kiegészítik, majd legyártják. 3
4 Cortex A Cortex R Cortex M akár 8 10 CPU mag, 2.2 GHz, 64-bites alkalmazásprocesszor Real-time processzorok, biztonsági funkciókkal, kritikus alkalmazásokhoz 32-bites mikrovezérlők, nem kritikus alkalmazásokhoz 4
5 Az ARM Cortex-M CPU termékskála 2014-ben már több, mint 3000 féle Cortex-M alapú mikrovezérlő típus volt. Az ARM Cortex-M0/M0+ CPU család kifejezetten a 8/16 bites mikrovezérlők kiváltására készült. Nevesebb gyártók: Freescale, NXP, Nuvoton, ST Microelectronics, Infineon, Silicon Labs, Atmel, Nordic Semiconductor, Cypress Semiconductor, Sonix Semiconductor, stb. 5
6 ARM mikrovezérlők összehasonlítása 6
7 Összehasonlítás más mikrovezérlőkkel Az alábbi táblázatban az órajel frekvenciával beosztott CoreMarks eredményeket hasonlítjuk össze (1 MHz-re jutó teljesítmény). Az órajel és az utasításciklus frekvencia azonban nem mindegyik típusnál egyezik meg. Például: AT89C51 = 6 ciklus/utasítás, PIC18 = 4 ciklus/utasítás, PIC24 és dspic33 = 2 ciklus/utasítás 7
8 Miért olyan fontos a gyorsaság? Talán meglepő, hogy a gyorsaságot hajszoljuk olyan alkalmazásoknál is, amelyeknél a mikrovezérlő az idő nagy részében nem csinál semmit, vagyis energiatakarékos módban szundít. A helyzet az, hogy az energiafelhasználás szempontjából a bekapcsolt/kikapcsolt állapot aránya, az átlagfogyasztás számít. Gyorsabb CPU-val lejjebb szorítható a bekapcsolt állapotok aránya. Elemről/akkumulátorról történő táplálás esetén (hordozható készülékek) ez sokat számít 8
9 Alvó állapoti fogyasztás alakulása ma/mips-ben mindig is jobbak voltak a 32 bitesek a 8 bites mikrovezérlőknél Sleep (alvó állapot) áramfelvételben volt lemaradás, ez mostanra jelentősen csökkent. Csak a kifejezetten erre specializált 8 bites mikrovezérlők mondhatók kisebb fogyasztásúnak. 9
10 Mi a Cortex-M0+ processor? 2009 Az ARM Cortex -M0 CPU megjelenése Alacsony kapuszám (~ 12 k) Nagy teljesítmény Könnyen használható Nyomkövetési lehetőség 2012 A Cortex-M0+ CPU megjelenése Ugyanaz az utasításkészlet A Cortex-M0 minden jellemzőjét támogatja Új jellemzők Nagyobb energiahatékonyság Új alkalmazási lehetőségek 10
11 Miben hozott újat az M0+ CPU? A blokkvázlaton pirossal megjelöltük az ARM Cortex-M0-hoz képest új elemeket. 11
12 Miben hozott újat az M0+ CPU? Még nagyobb hatékonyság Kétfokozatú pipeline (a korábbi 3 helyett) Nagyobb teljesítmény azonos frekvencián Nem privilegizált végrehajtási szint 8 tartományú memóriavédelem (MPU) Gyorsabb I/O elérés Vektor tábla áthelyezés Olcsó nyomkövetési lehetőség (trace buffer) Bővített integrációs lehetőségek (pl.16 bites flash támogatása) 12
13 Az ARM Cortex-M0+ jellemzői Processzor: ARMv6-M architectúra Könnyen használható, C támogatású Cortex-M sorozattal kompatibilis Többszintű vektoros megszakításkezelő (NVIC) Flexibilis megszakításkezelés WIC (felébresztés) támogatása Memória védelmi egység (MPU) Nyomkövetés csupán két vezetékkel 13
14 Kompakt utasításkészlet Mindössze 56 utasítás: Thumb-2 utasításkészlet 100 %-ban kompatibilis az ARM Cortex M0 utasításkészletével Felfelé kompatibilis az ARM Cortex-M3/M4 utasításkészletével Az utasítások többsége 16 bites Minden utasítás 32 bites regiszterekkel dolgozik Opcionális lehetőség a 32 x 32 bites szorzó 14
15 Flash memória használat Program memória hozzáférés (flash kiolvasás) általában minden második ciklusban történik, szekvenciális kódvégrehajtás esetén. Egy 32 bites kiolvasás két 16 bites utasítást vesz elő. 15
16 Energiatakarékos megoldások Energiafelhasználás minimalizálása minden eszközzel Kis területő szilícium chip (kb. 12K kapu) Különféle energiatakarékos megoldások (órajel kapuzás, tápfeszültség lekapcsolás, állapotmegőrző mód, stb.) 2 fokozatú pipeline (futószalag) a maximális hatékonyságért A billenőkörök és kombinációs logikai áramkörök arányának csökkentése Alacsony CPI átlag (Cycles Per Instruction) 16
17 Kisebb ugrási veszteség Futószalagos (pipelined) processzoroknál az aktuális utasítás végrehajtásakor további utasításokat vesz elő és tárol a processzor ( prefetching ). Minél több fokozatú a futószalag, annál több beolvasott kód megy veszendőbe, ha egy ugróutasítás miatt eltérül a program (branch shadow). Az áttérés a kétfokozatú futószalagra csökkentette az ugrási veszteséget. 17
18 Alvási módok Az architekturában definiált alvási módok Normál alvás (sleep) Mélyalvás (deep sleep) Mélyalvás állapotmegőrző funkcióval (deep sleep with SRPG support using WIC) nw power profile with instant wakeup (processor power down with state retention) A lehetőségek sora bővíthető MCU specifikus fogyasztásvezérlő regiszterekkel Nem arányos a skála! 18
19 Energiatakarékossági eszközök Wakeup Interrupt Controller (WIC) A processzor alvó állapotában is detektálja a megszakítási kérelmeket. Támogatja az SRPG mélyalvás mód azonnali ébresztését. Sleep-on-exit Lehetővé teszi, hogy a CPU automatikusan alvó állapotba kerüljön, amikor a megszakítás kiszolgálása véget ér. Ideális a megszakításvezérelt alkalmazásokhoz. 19
20 Nagy kódsűrűség Azt hihetnénk, hogy a 32 bites felépítés pazarlással jár, nagyobb kódméretet eredményez A hatékony utasításkészletnek és a tömbösített utasításoknak köszönhetően ez pont fordítva van! Például a CoreMark (egy teljesítménymérő tesztprogram) megvalósítása a 8/16 bites mikroprocesszorokon terjedelmesebb kódot eredményez, mint a 32 bites Cortex-M0+ CPU esetén. 20
21 Egyciklusú I/O elérés 32 bites egyszerű busz protokol 32-/16-/8-bites átvitelt támogat A GPIO és periféria regiszterek Eléréséhez optimális Memory leképezésű címzés A címtartományt a gyártó dönti el Opcionális lehetőség Az I/O interfész gyorsabb, közvetlenebb elérést tesz lehetővé, mint az AHB-lite buszrendszeren keresztüli közvetett hozzáférés. 21
22 Gyorsabb I/O elérés Az egyciklusú I/O illesztő előnyei az alkalmazásokra nézve: Gyorsabb GPIO műveletek, értékes ciklusok megtakarítása Jobb energia hatásfok I/O intenzív alkalmazásoknál Gyorsabb reagálás eseményvezérelt alkalmazásoknál Példa: LCD modul vezérlése GPIO porton keresztül kiíratás, 1 karakter/iteráció 22
23 Memóriavédelmi egység (MPU) Ez az opcionális modul megakadályozza az alkalmazói taszkot, hogy hozzápiszkáljon az OS, vagy más taszkok adataihoz Növeli a rendszer megbízhatóságát Legfeljebb 8 tartomány konfigurálása Cím Méret Memória attribútum Hozzáférési engedélyek 23
24 A FRDM-KL25Z kártya Jellemzők MKL25Z128VLK4 MCU 48 MHz, 128 KB flash, 16 KB SRAM, USB OTG (FS), 80LQFP Érintésérzékelő csúszka, MMA8451Q gyorsulásmérő, RGB LED Könnyű hozzáférés az MCU I/O portokhoz (Arduino kompatibilis csatlakozók) Fejlett OpenSDA hibakereső és nyomkövető Tömegtároló típusó programozás nem kell telepíteni semmit a demókhoz. Gyárilag P&E Multilink típusú illesztés, amit célszerű mbed firmware-re cserélni. mbed fejlesztői környezet is támogatja 24
25 A FRDM-KL25Z kártya 25
26 OpenSDA - nyomkövető Hardveres programozó és nyomkövető Soros kommunikáció (USB virtuális soros port) RESET áramkör a target mikrovezérlő újraindításához Beépített bootloader az OpenSDA alkalmazás frissítéséhez Cél áramkör (PC) 26
27 Tápellátási lehetőségek További lehetőség: elemes táplálás (CR2032) a kártya hátoldalán. 27
28 NXP (Freescale) MKL25Z128VLK4 A Kinetis KL25 termékcsaládba tartozó mikrovezérlő az alábbi jellemzőkkel rendelkezik: Tokozás: 80 pin LQFP Adatlap: KL25P80M48SF0.pdf Referencia kézikönyv: KL25 Sub-Family Reference Manual 28
29 A mikrovezérlő blokkvázlata A CPU rendszerbusza a komplex AMBA AHB Lite, ehhez kapcsolódik a periféria busz (APB). A gyors perifériák egy speciális illesztőn keresztül a CPU-hoz csatlakoznak. 29
30 Működési módok és állapotok Két állapot: Kódfuttatás / nyomkövetés Két működési mód: Kezelői mód (megszakítás kiszolgálás) / Programszál mód Két privilégium szint: Privilegizált / Nem privilegizált 30
31 Általános és speciális regiszterek R0 R12: általános célú regiszterek (megszakításkor csak R0 R7 kerül elmentésre automatikusan, illetve számos utasítással csak ezek a regiszterek címezhetők közvetlenül). R13 a veremtár mutatója, R14 a visszatérési címet tartalmazza, R15 az utasítás számláló. 31
32 Megszakítási rendszer Többszintű vektoros megszakításkezelő (NVIC) Megszakítás priorizálás Megszakítások maszkolása Többszintű megszakítás Megszakítások láncolása (tail chaining & late arrival) Könnyű használat Megszakításkezelő C nyelven írható Automatikus hardveres adatmentés (veremtárba) CMSIS függvények az NVIC kezelés támogatására 32
33 Memória térkép KL25Z128VLK4 0x2000_2FFF SRAM_U (3/4) SRAM_L (1/4) 16 KB SRAM 0x2000_0000 0x1FFF_F000 0x0001_FFFF 128KB Flash 0x0000_
34 A programindítás folyamata A vektortábla első két eleme a veremtár és a futtatandó program kezdőcímét tartalmazza. RESET után ezek automatikusan betöltődnek a megfelelő regiszterekbe (R13 és R15). 34
35 Hobbielektronika csoport 2015/
36 Hobbielektronika csoport 2015/
ARM Cortex magú mikrovezérlők
ARM Cortex magú mikrovezérlők 3. Cortex-M0, M4, M7 Scherer Balázs Budapest University of Technology and Economics Department of Measurement and Information Systems BME-MIT 2018 32 bites trendek 2003-2017
ARM Cortex magú mikrovezérlők
ARM Cortex magú mikrovezérlők Tárgykövetelmények, tematika Scherer Balázs Budapest University of Technology and Economics Department of Measurement and Information Systems BME-MIT 2016 Lehetőségek: o Hardware
Nagyteljesítményű mikrovezérlők
Nagyteljesítményű mikrovezérlők Tárgykövetelmények, tematika Scherer Balázs Budapest University of Technology and Economics Department of Measurement and Information Systems BME-MIT 2015 Lehetőségek: o
Scherer Balázs: Mikrovezérlık fejlıdési trendjei
Budapesti Mőszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék Scherer Balázs: Mikrovezérlık fejlıdési trendjei 2009. Budapesti Mőszaki és Gazdaságtudományi Egyetem, Méréstechnika
ARM processzorok felépítése
ARM processzorok felépítése Az ARM processzorok több családra bontható közösséget alkotnak. Az Cortex-A sorozatú processzorok, ill. az azokból felépülő mikrokontrollerek a high-end kategóriájú, nagy teljesítményű
Nagyteljesítményű mikrovezérlők
Nagyteljesítményű mikrovezérlők 4. Cortex M0, M4, M7 Scherer Balázs Budapest University of Technology and Economics Department of Measurement and Information Systems BME-MIT 2015 ARM Cortex M (Mikrovezérlő)
ARM Cortex-M0+ mikrovezérlő programozása KEIL MDK 5 környezetben. 5. Időzítők, számlálók 1. rész
ARM Cortex-M0+ mikrovezérlő programozása KEIL MDK 5 környezetben 5. Időzítők, számlálók 1. rész 1 Felhasznált anyagok, ajánlott irodalom Joseph Yiu: The Definitive Guide to ARM Cortex -M0 and Cortex-M0+
ARM (Advanced RISC Machine)
POWERED ARM ARM (Advanced RISC Machine) 1983 kisérleti projekt Acorn Computers Ltd., 1985 ARM1 fejlesztői minták, 1985 ARM2 32 bites adatbusz 64MB memória címezhető, 1989 ARM3 4K cache, 1990 ARM név változtatás
ARM Cortex magú mikrovezérlők
ARM Cortex magú mikrovezérlők Tárgykövetelmények, tematika Scherer Balázs Budapest University of Technology and Economics Department of Measurement and Information Systems BME-MIT 2018 Házi feladat: kötelező
MSP430 programozás Energia környezetben. Kitekintés, további lehetőségek
MSP430 programozás Energia környezetben Kitekintés, további lehetőségek 1 Még nem merítettünk ki minden lehetőséget Kapacitív érzékelés (nyomógombok vagy csúszka) Az Energia egyelőre nem támogatja, csak
Nagy Gergely április 4.
Mikrovezérlők Nagy Gergely BME EET 2012. április 4. ebook ready 1 Bevezetés Áttekintés Az elektronikai tervezés eszközei Mikroprocesszorok 2 A mikrovezérlők 3 Főbb gyártók Áttekintés A mikrovezérlők az
ARM Cortex-M0+ mikrovezérlő programozása KEIL MDK 5 környezetben. 11. Impulzus-szélesség moduláció (PWM)
ARM Cortex-M0+ mikrovezérlő programozása KEIL MDK 5 környezetben 11. Impulzus-szélesség moduláció (PWM) 1 Felhasznált anyagok, ajánlott irodalom Muhammad Ali Mazidi, Shujen Chen, Sarmad Naimi, Sepehr Naimi:
Jelfeldolgozás a közlekedésben
Jelfeldolgozás a közlekedésben 2015/2016 II. félév 8051 és C8051F020 mikrovezérlők Fontos tudnivalók Elérhetőség: ST. 108 E-mail: lovetei.istvan@mail.bme.hu Fontos tudnivalók: kjit.bme.hu Aláírás feltétele:
Laboratóriumi műszerek megvalósítása ARM alapú mikrovezérlővel és Linux-szal
Laboratóriumi műszerek megvalósítása ARM alapú mikrovezérlővel és Linux-szal Fuszenecker Róbert Budapesti Műszaki Főiskola Kandó Kálmán Műszaki Főiskolai Kar 2007. október 17. Laboratóriumi berendezések
A Texas Instruments MSP430 mikrovezérlőcsalád
1.4.1. A Texas Instruments MSP430 mikrovezérlőcsalád A Texas Instruments MSP430-as mikrovezérlői 16 bites RISC alapú, kevert jelű (mixed signal) processzorok, melyeket ultra kis fogyasztásra tervezték.
ARM Cortex-M0+ mikrovezérlő programozása KEIL MDK 5 környezetben. 5. Időzítők, számlálók 2. rész
ARM Cortex-M0+ mikrovezérlő programozása KEIL MDK 5 környezetben 5. Időzítők, számlálók 2. rész 1 Felhasznált anyagok, ajánlott irodalom Joseph Yiu: The Definitive Guide to ARM Cortex -M0 and Cortex-M0+
Az interrupt Benesóczky Zoltán 2004
Az interrupt Benesóczky Zoltán 2004 1 Az interrupt (program megszakítás) órajel generátor cím busz környezet RESET áramkör CPU ROM RAM PERIF. adat busz vezérlõ busz A periféria kezelés során információt
3. A DIGILENT BASYS 2 FEJLESZTŐLAP LEÍRÁSA
3. A DIGILENT BASYS 2 FEJLESZTŐLAP LEÍRÁSA Az FPGA tervezésben való jártasság megszerzésének célszerű módja, hogy gyári fejlesztőlapot alkalmazzunk. Ezek kiválóan alkalmasak tanulásra, de egyes ipari tervezésekhez
ARM Cortex magú mikrovezérlők
ARM Cortex magú mikrovezérlők 6. NVIC Scherer Balázs Budapest University of Technology and Economics Department of Measurement and Information Systems BME-MIT 2017 ARM7, ARM9 megszakítás kezelés ARM7,
Leírás. Készítette: EMKE Kft. 2009. február 11.
Leírás Alkalmas: Jármővek mozgásának valós idejő nyomkövetését biztosító kommunikációra. A mozgás koordinátáinak eltárolására, utólagos visszaellenırzésére (pl. sebesség túllépés, vagy bejárt útvonal).
Ismerkedés az MSP430 mikrovezérlőkkel
Ismerkedés az MSP430 mikrovezérlőkkel 1 Mikrovezérlők fogalma Mikroprocesszor: Egy tokba integrált számítógép központi egység (CPU). A működés érdekében körbe kell építeni külső elemekkel (memória, perifériák,
Mikrorendszerek tervezése
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Mikrorendszerek tervezése MicroBlaze processzor Fehér Béla Raikovich Tamás
ARM Cortex magú mikrovezérlők. mbed
ARM Cortex magú mikrovezérlők mbed Scherer Balázs Budapest University of Technology and Economics Department of Measurement and Information Systems BME-MIT 2016 MBED webes fejlesztőkörnyezet 2009-ben megjelent
Érzékelők és beavatkozók I.
Érzékelők és beavatkozók I. Mikrovezérlők, mikroszámítógépek: 32-bites ARM Cortex architektúra c. egyetemi tanár - 1 - ARM ARM architektúrájú processzorok ARM Advanced RISC Machine RISC Reduced Instruction
ARM Cortex-M0+ mikrovezérlő programozása KEIL MDK 5 környezetben. 7. Analóg perifériák
ARM Cortex-M0+ mikrovezérlő programozása KEIL MDK 5 környezetben 7. Analóg perifériák 1 Felhasznált anyagok, ajánlott irodalom Joseph Yiu: The Definitive Guide to ARM Cortex -M0 and Cortex-M0+ Processors
Újrakonfigurálható eszközök
Újrakonfigurálható eszközök 15. Cypress PSOC 5LP DMA adatátvitel Hobbielektronika csoport 2017/2018 1 Debreceni Megtestesülés Plébánia Felhasznált irodalom és segédanyagok Cypress: CY8C58LP FamilyDatasheet
1.1. Általános áttekintés
1.1. Általános áttekintés A mesterséges intelligencia megjelenésének az alapja a számítógép első működő eszköz az ENIAC számítógép volt amit a Manhattan-terv keretében fejlesztették ki 1946-ban. A memóriakezelő
OPERÁCIÓS RENDSZEREK. Elmélet
1. OPERÁCIÓS RENDSZEREK Elmélet BEVEZETÉS 2 Az operációs rendszer fogalma Az operációs rendszerek feladatai Csoportosítás BEVEZETÉS 1. A tantárgy tananyag tartalma 2. Operációs rendszerek régen és most
Programmable Chip. System on a Chip. Lazányi János. Tartalom. A hagyományos technológia SoC / PSoC SoPC Fejlesztés menete Mi van az FPGA-ban?
System on a Chip Programmable Chip Lazányi János 2010 Tartalom A hagyományos technológia SoC / PSoC SoPC Fejlesztés menete Mi van az FPGA-ban? Page 2 1 A hagyományos technológia Elmosódó határvonalak ASIC
6. óra Mi van a számítógépházban? A számítógép: elektronikus berendezés. Tárolja az adatokat, feldolgozza és az adatok ki és bevitelére is képes.
6. óra Mi van a számítógépházban? A számítógép: elektronikus berendezés. Tárolja az adatokat, feldolgozza és az adatok ki és bevitelére is képes. Neumann elv: Külön vezérlő és végrehajtó egység van Kettes
Arduino bevezető Szenzorhálózatok és alkalmazásaik
Arduino bevezető Szenzorhálózatok és alkalmazásaik VITMMA09 Okos város MSc mellékspecializáció Mi az Arduino? Nyílt hardver és szoftver platform 8 bites Atmel mikrokontroller köré építve Ökoszisztéma:
ARM Cortex magú mikrovezérlők
ARM Cortex magú mikrovezérlők 2. Cortex-M3 mag Scherer Balázs Budapest University of Technology and Economics Department of Measurement and Information Systems BME-MIT 2016 A Cortex-M3 mag BME-MIT 2016
Mikrorendszerek tervezése
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Mikrorendszerek tervezése Beágyazott rendszerek Fehér Béla Raikovich Tamás
Multi-20 modul. Felhasználói dokumentáció 1.1. Készítette: Parrag László. Jóváhagyta: Rubin Informatikai Zrt.
Multi-20 modul Felhasználói dokumentáció. Készítette: Parrag László Jóváhagyta: Rubin Informatikai Zrt. 49 Budapest, Egressy út 7-2. telefon: +36 469 4020; fax: +36 469 4029 e-mail: info@rubin.hu; web:
Számítógépek felépítése, alapfogalmak
2. előadás Számítógépek felépítése, alapfogalmak Lovas Szilárd, Krankovits Melinda SZE MTK MSZT kmelinda@sze.hu B607 szoba Nem reprezentatív felmérés kinek van ilyen számítógépe? 2 Nem reprezentatív felmérés
Scherer Balázs: Mikrovezérlők fejlődési trendjei
Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék Scherer Balázs: Mikrovezérlők fejlődési trendjei 2009. Budapesti Műszaki és Gazdaságtudományi Egyetem, Méréstechnika
Processzor (CPU - Central Processing Unit)
Készíts saját kódolású WEBOLDALT az alábbi ismeretanyag felhasználásával! A lap alján lábjegyzetben hivatkozz a fenti oldalra! Processzor (CPU - Central Processing Unit) A központi feldolgozó egység a
Járműfedélzeti rendszerek I. 3. előadás Dr. Bécsi Tamás
Járműfedélzeti rendszerek I. 3. előadás Dr. Bécsi Tamás ATmega128 CPU Single-level pipelining Egyciklusú ALU működés Reg. reg., reg. konst. közötti műveletek 32 x 8 bit általános célú regiszter Egyciklusú
A mikroprocesszor felépítése és működése
A mikroprocesszor felépítése és működése + az egyes részegységek feladata! Információtartalom vázlata A mikroprocesszor feladatai A mikroprocesszor részegységei A mikroprocesszor működése A mikroprocesszor
Autóipari beágyazott rendszerek CAN hardver
Scherer Balázs, Tóth Csaba: Autóipari beágyazott rendszerek CAN hardver Előadásvázlat Kézirat Csak belső használatra! 2012.02.19. SchB, TCs BME MIT 2012. Csak belső használatra! Autóipari beágyazott rendszerek
Labor gyakorlat Mikrovezérlők
Labor gyakorlat Mikrovezérlők ATMEL AVR ARDUINO 1. ELŐADÁS BUDAI TAMÁS Tartalom Labor 2 mikrovezérlők modul 2 alkalom 1 mikrovezérlők felépítése, elmélet 2 programozás, mintaprogramok Értékelés: a 2. alkalom
5.1. fejezet - Általános 32 bites mikrovezérlő/processzor alkalmazástechnikája A Freescale
5.1. fejezet - Általános 32 bites mikrovezérlő/processzor alkalmazástechnikája Jelenleg a piacon több általános jellegű processzor-architektúra van a beágyazott eszköz piacon, ezek közül a legismertebbek:
Labor gyakorlat Mikrovezérlők
Labor gyakorlat Mikrovezérlők ATMEL AVR ARDUINO 1. ELŐADÁS BUDAI TAMÁS 2015. 09. 06. Tartalom Labor 2 mikrovezérlők modul 2 alkalom 1 mikrovezérlők felépítése, elmélet 2 programozás, mintaprogramok Értékelés:
I. C8051Fxxx mikrovezérlők hardverfelépítése, működése. II. C8051Fxxx mikrovezérlők programozása. III. Digitális perifériák
I. C8051Fxxx mikrovezérlők hardverfelépítése, működése 1. Adja meg a belső RAM felépítését! 2. Miben különbözik a belső RAM alsó és felső felének elérhetősége? 3. Hogyan érhetők el az SFR regiszterek?
A Számítógépek hardver elemei
Mechatronika, Optika és Gépészeti Informatika Tanszék Kovács Endre tud. Mts. A Számítógépek hardver elemei Korszerű perifériák és rendszercsatolásuk A µ processzoros rendszer regiszter modellje A µp gépi
ATMEL ATMEGA MIKROVEZÉRLŐ-CSALÁD
Misák Sándor ATMEL ATMEGA MIKROVEZÉRLŐ-CSALÁD Nanoelektronikai és Nanotechnológiai Részleg DE TTK v.0.1 (2007.02.13.) 1. előadás 1. Általános ismeretek. 2. Sajátos tulajdonságok. 3. A processzor jellemzői.
Hobbi Elektronika. 1. Témakörök, célkitűzés, hozzávalók
Hobbi Elektronika 1. Témakörök, célkitűzés, hozzávalók Hobbielektronika csoport 2014/2015 1 Javasolt témakörök Bevezetés az elektronikába (nyomógombok vagy csúszka) Alapfogalmak és összefüggések, áramkörök
Az operációs rendszer szerkezete, szolgáltatásai
Az operációs rendszer szerkezete, szolgáltatásai Felhasználói programok Rendszerhívások Válaszok Kernel Eszközkezelők Megszakításvezérlés Perifériák Az operációs rendszer szerkezete, szolgáltatásai Felhasználói
Programozási segédlet DS89C450 Fejlesztőpanelhez
Programozási segédlet DS89C450 Fejlesztőpanelhez Készítette: Fekete Dávid Processzor felépítése 2 Perifériák csatlakozása a processzorhoz A perifériák adatlapjai megtalálhatók a programozasi_segedlet.zip-ben.
Silabs STK3700, Simplicity Studio laborgyakorlat
Silabs STK3700, Simplicity Studio laborgyakorlat Scherer Balázs Budapest University of Technology and Economics Department of Measurement and Information Systems BME-MIT 2016 Saját Firmware library Saját
Nyíregyházi Egyetem Matematika és Informatika Intézete. Input/Output
1 Input/Output 1. I/O műveletek hardveres háttere 2. I/O műveletek szoftveres háttere 3. Diszkek (lemezek) ------------------------------------------------ 4. Órák, Szöveges terminálok 5. GUI - Graphical
Architektúra, megszakítási rendszerek
Architektúra, megszakítási ek Mirıl lesz szó? Megszakítás fogalma Megszakítás folyamata Többszintű megszakítási ek Koschek Vilmos Példa: Intel Pentium vkoschek@vonalkodhu Koschek Vilmos Fogalom A számítógép
Nagyteljesítményű mikrovezérlők
Nagyteljesítményű mikrovezérlők 7. NVIC Scherer Balázs Budapest University of Technology and Economics Department of Measurement and Information Systems BME-MIT 2015 ARM7, ARM9 megszakítás kezelés ARM7,
ÖNÁLLÓ LABOR Mérésadatgyűjtő rendszer tervezése és implementációja
ÖNÁLLÓ LABOR Mérésadatgyűjtő rendszer tervezése és implementációja Nagy Mihály Péter 1 Feladat ismertetése Általános célú (univerzális) digitális mérőműszer elkészítése Egy- vagy többcsatornás feszültségmérés
Mérő- és vezérlőberendezés megvalósítása ARM alapú mikrovezérlővel és Linux-szal
Mérő- és vezérlőberendezés megvalósítása ARM alapú mikrovezérlővel és Linux-szal Fuszenecker Róbert Budapesti Műszaki Főiskola Kandó Kálmán Műszaki Főiskolai Kar 2007. július 18. A mérőberendezés felhasználási
Mikrorendszerek tervezése
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Mikrorendszerek tervezése Megszakítás- és kivételkezelés Fehér Béla Raikovich
Bevezetés a számítástechnikába
Bevezetés a számítástechnikába Megszakítások Fodor Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék foa@almos.vein.hu 2010. november 9. Bevezetés Megszakítások
Szenzorhálózatok programfejlesztési kérdései. Orosz György
Szenzorhálózatok programfejlesztési kérdései Orosz György 2011. 09. 30. Szoftverfejlesztési alternatívák Erőforráskorlátok! (CPU, MEM, Energia) PC-től eltérő felfogás: HW közeli programozás Eszközök közvetlen
T Bird 2. AVR fejlesztőpanel. Használati utasítás. Gyártja: BioDigit Kft. Forgalmazza: HEStore.hu webáruház. BioDigit Kft, 2012. Minden jog fenntartva
T Bird 2 AVR fejlesztőpanel Használati utasítás Gyártja: BioDigit Kft Forgalmazza: HEStore.hu webáruház BioDigit Kft, 2012 Minden jog fenntartva Főbb tulajdonságok ATMEL AVR Atmega128 típusú mikrovezérlő
Bevezetés a mikrovezérlők programozásába: Ismerkedés az Arduino fejlesztői környezettel
Bevezetés a mikrovezérlők programozásába: Ismerkedés az Arduino fejlesztői környezettel 1 Ajánlott irodalom Aduino LLC.: Arduino Language Reference ATMEL: ATmega328p mikrovezérlő adatlapja Brian W. Kernighan,
Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD)
Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD) Multiplexer (MPX) A multiplexer egy olyan áramkör, amely több bemeneti adat közül a megcímzett bemeneti adatot továbbítja a kimenetére.
1. Témakörök, célkitűzés, hozzávalók. Hobbielektronika csoport 2015/2016
Hobbi Elektronika 2015/2016 1. Témakörök, célkitűzés, hozzávalók 1 Választható témakörök Bevezetés az elektronikába Alapfogalmak és összefüggések, tranzisztoros áramkörök építése dugaszolós próbapanelon,
FPGA áramkörök alkalmazásainak vizsgálata
FPGA áramkörök alkalmazásainak vizsgálata Kutatási beszámoló a Pro Progressio alapítvány számára Raikovich Tamás, 2012. 1 Bevezetés A programozható logikai áramkörökön (FPGA) alapuló hardver gyorsítók
Számítógép felépítése
Alaplap, processzor Számítógép felépítése Az alaplap A számítógép teljesítményét alapvetően a CPU és belső busz sebessége (a belső kommunikáció sebessége), a memória mérete és típusa, a merevlemez sebessége
Számítógépek felépítése
Számítógépek felépítése Emil Vatai 2014-2015 Emil Vatai Számítógépek felépítése 2014-2015 1 / 14 Outline 1 Alap fogalmak Bit, Byte, Word 2 Számítógép részei A processzor részei Processzor architektúrák
Labor 2 Mikrovezérlők
Labor 2 Mikrovezérlők ATMEL AVR - ARDUINO BUDAI TAMÁS 2015. 09. 06. Tartalom Mikrovezérlők Mikrovezérlők felépítése, működése Mikrovezérlő típusok, gyártók Mikrovezérlők perifériái Mikrovezérlők programozása
Számítógép architektúra
Budapesti Műszaki Főiskola Regionális Oktatási és Innovációs Központ Székesfehérvár Számítógép architektúra Dr. Seebauer Márta főiskolai tanár seebauer.marta@roik.bmf.hu Irodalmi források Cserny L.: Számítógépek
Digitális rendszerek. Digitális logika szintje
Digitális rendszerek Digitális logika szintje CPU lapkák Mai modern CPU-k egy lapkán helyezkednek el Kapcsolat a külvilággal: kivezetéseken (lábak) keresztül Cím, adat és vezérlőjelek, ill. sínek (buszok)
Labor gyakorlat Mikrovezérlők
Labor gyakorlat Mikrovezérlők ATMEL AVR ARDUINO 1. ELŐADÁS BUDAI TAMÁS Tartalom Mikrovezérlők Mikrovezérlők felépítése, működése Mikrovezérlő típusok, gyártók Mikrovezérlők perifériái Mikrovezérlők programozása
Programozás és Digitális technika I. Pógár István eng.unideb.hu/pogari
Programozás és Digitális technika I. Pógár István pogari@eng.unideb.hu eng.unideb.hu/pogari Ajánlott irodalom Massimo Banzi Getting Started with Arduino Michael Margolis Make an Android Controlled Robot
A számítógép fő részei
Hardver ismeretek 1 A számítógép fő részei 1. A számítógéppel végzett munka folyamata: bevitel ==> tárolás ==> feldolgozás ==> kivitel 2. A számítógépet 3 fő részre bonthatjuk: központi egységre; perifériákra;
8. Fejezet Processzor (CPU) és memória: tervezés, implementáció, modern megoldások
8. Fejezet Processzor (CPU) és memória: The Architecture of Computer Hardware and Systems Software: An Information Technology Approach 3rd Edition, Irv Englander John Wiley and Sons 2003 Wilson Wong, Bentley
T Bird 2. AVR fejlesztőpanel. Használati utasítás. Gyártja: BioDigit Kft. Forgalmazza: HEStore.hu webáruház. BioDigit Kft, 2012. Minden jog fenntartva
T Bird 2 AVR fejlesztőpanel Használati utasítás Gyártja: BioDigit Kft Forgalmazza: HEStore.hu webáruház BioDigit Kft, 2012 Minden jog fenntartva Főbb tulajdonságok ATMEL AVR Atmega128 típusú mikrovezérlő
Nagyteljesítményű mikrovezérlők Energiatakarékos üzemmódok
Nagyteljesítményű mikrovezérlők Energiatakarékos üzemmódok Scherer Balázs Budapest University of Technology and Economics Department of Measurement and Information Systems BME-MIT 2015 Fogyasztás és energiatakarékos
ÉRZÉKELŐK ÉS BEAVATKOZÓK I. GY1. 32-BITES MIKROSZÁMÍTÓGÉPEK
ÉRZÉKELŐK ÉS BEAVATKOZÓK I. GY1. 32-BITES MIKROSZÁMÍTÓGÉPEK Dr. Soumelidis Alexandros 2018.09.06. BME KÖZLEKEDÉSMÉRNÖKI ÉS JÁRMŰMÉRNÖKI KAR 32708-2/2017/INTFIN SZÁMÚ EMMI ÁLTAL TÁMOGATOTT TANANYAG Mivel
A LEGO Mindstorms EV3 programozása
A LEGO Mindstorms EV3 programozása 1. A fejlesztői környezet bemutatása 12. Az MPU6050 gyorsulás- és szögsebességmérő szenzor Orosz Péter 1 Felhasznált irodalom LEGO MINDSTORMS EV3: Felhasználói útmutató
Új kompakt X20 vezérlő integrált I/O pontokkal
Új kompakt X20 vezérlő integrált I/O pontokkal Integrált flash 4GB belső 16 kb nem felejtő RAM B&R tovább bővíti a nagy sikerű X20 vezérlő családot, egy kompakt vezérlővel, mely integrált be és kimeneti
2. Számítógépek működési elve. Bevezetés az informatikába. Vezérlés elve. Külső programvezérlés... Memória. Belső programvezérlés
. Számítógépek működési elve Bevezetés az informatikába. előadás Dudásné Nagy Marianna Az általánosan használt számítógépek a belső programvezérlés elvén működnek Külső programvezérlés... Vezérlés elve
Érzékelők és beavatkozók I.
Érzékelők és beavatkozók I. Mikrovezérlők, mikroszámítógépek (hardver) c. egyetemi tanár - 1 - Mikrovezérlők (Microcontrollers) Teljes számítógép architektúra megvalósítása egy áramköri lapkán Egyszerű
RUBICON Serial IO kártya
RUBICON Serial IO kártya Műszaki leírás 1.0 Készítette: Forrai Attila Jóváhagyta: Rubin Informatikai Zrt. 1149 Budapest, Egressy út 17-21. telefon: +361 469 4020; fax: +361 469 4029 e-mail: info@rubin.hu;
PMU Kezdı lépések. 6-0 Csatlakozás LG GLOFA-GM és SAMSUNG PLC-hez. 6-1 Kommunikáció LG PMU és LG GLOFA-GM7 / GM6 / GM4 között
-0 Csatlakozás LG GLOFA-GM és SAMSUNG PLC-hez -1 Kommunikáció LG PMU és LG GLOFA-GM / GM között -1-1 PLC programozó csatlakozója ( CPU loader port ) -1- PLC beépített C-NET csatlakozója (CPU C-net) -1-
8. Fejezet Processzor (CPU) és memória: tervezés, implementáció, modern megoldások
8. Fejezet Processzor (CPU) és memória: The Architecture of Computer Hardware and Systems Software: An Information Technology Approach 3rd Edition, Irv Englander John Wiley and Sons 2003 Wilson Wong, Bentley
Intelligens biztonsági megoldások. Távfelügyelet
Intelligens biztonsági megoldások A riasztást fogadó távfelügyeleti központok felelősek a felügyelt helyszínekről érkező információ hatékony feldolgozásáért, és a bejövő eseményekhez tartozó azonnali intézkedésekért.
Intelligens épületfelügyeleti rendszer tervezése mikrokontrollerrel
Intelligens épületfelügyeleti rendszer tervezése mikrokontrollerrel BME-AAIT Informatikai technológiák szakirány Szoftverfejlesztés ágazat Szedenik Ádám A központi modul ATmega644PA nrf24l01+ vezeték nélküli
Mintavételes szabályozás mikrovezérlő segítségével
Automatizálási Tanszék Mintavételes szabályozás mikrovezérlő segítségével Budai Tamás budai.tamas@sze.hu http://maxwell.sze.hu/~budait Tartalom Mikrovezérlőkről röviden Programozási alapismeretek ismétlés
Operációs rendszerek. Folyamatok kezelése a UNIX-ban
Operációs rendszerek Folyamatok kezelése a UNIX-ban Folyamatok a UNIX-ban A folyamat: multiprogramozott operációs rendszer alapfogalma - absztrakt fogalom. A gyakorlati kép: egy program végrehajtása és
MSP430 programozás Energia környezetben. Szervó motorok vezérlése
MSP430 programozás Energia környezetben Szervó motorok vezérlése 1 Szervo motorok Felépítés Jelalak 2 Servo programkönyvtár A gyári Servo programkönyvtár max. 8 db szervót kezel, s ezekhez felhasználja
TARTALOMJEGYZÉK. 1. BEVEZETÉS A logikai hálózatok csoportosítása Logikai rendszerek... 6
TARTALOMJEGYZÉK ELŐSZÓ... 3 1. BEVEZETÉS... 4 1.1. A logikai hálózatok csoportosítása... 5 1.2. Logikai rendszerek... 6 2. SZÁMRENDSZEREK ÉS KÓDRENDSZEREK... 7 2.1. Számrendszerek... 7 2.1.1. Számok felírása
A Netburner fejlesztőeszköz alkalmazástechnikája
5.2.1. A Netburner fejlesztőeszköz alkalmazástechnikája A NetBurner vállalatról A NetBurner vállalatot ##LINK: http://netburner.com ## 1998-ban alapították. A kezdetekben hálózati eszközökhöz programozó
Bepillantás a gépházba
Bepillantás a gépházba Neumann-elvű számítógépek főbb egységei A részek feladatai: Központi egység: Feladata a számítógép vezérlése, és a számítások elvégzése. Operatív memória: A számítógép bekapcsolt
MPLAB IDE - SIM - - Rövid ismertető a használathoz - Kincses Levente 3E22 89/ November 14. Szabadka
MPLAB IDE - SIM - - Rövid ismertető a használathoz - 3E22 89/2004 2006. November 14 Szabadka - 2 - Tartalomjegyzék TARTALOMJEGYZÉK 3 SIMULATOR I/O 4 SIMULATOR STIMULUS 4 STIMULUS VEZÉRLŐ (CONTROLLER) 5
GIGADEVICE 32 BITES ARM CORTEX MIKRO- KONTROLLEREK AZ ENDRICH KÍNÁLATÁBAN A GPIO ÉS AZ ADC PROGRAMOZÁSA
GIGADEVICE 32 BITES ARM CORTEX MIKRO- KONTROLLEREK AZ ENDRICH KÍNÁLATÁBAN A GPIO ÉS AZ ADC PROGRAMOZÁSA A cikksorozat elsô részében áttekintettük a GigaDevice GD32 ARM Cortex RISC MCU-sorozat architektúráját,
Mechatronika és mikroszámítógépek
Mechatronika és mikroszámítógépek 2018/2019 I. félév 8051, C8051F020 mikro vezérlők és programozásuk Fontos tudnivalók Elérhetőség: ST. 108 E-mail: lovetei.istvan@mail.bme.hu Fontos tudnivalók: kjit.bme.hu
KINCO árlista. Viszonteladói árlista. K2 PLC család K5 PLC család MT,GL univerzális kijelzők CV frekvenciaváltók PS tápegységek
K2 PLC család K5 PLC család MT,GL univerzális kijelzők CV frekvenciaváltók PS tápegységek Viszonteladói árlista Érvényes: 2018. novembertől KINCO árlista +36 1 236 0427 +36 1 236 0428 Fax: +36 1 236 0430
Fizikai mérések Arduino-val
Fizikai mérések Arduino-val Csajkos Bence, Veres József Csatári László Sándor mentor Megvalósult az Emberi Erőforrások Minisztériuma megbízásából az Emberi Erőforrás Támogatáskezelő a 2015/2016. tanévre
Tartalomjegyzék. Előszó... xi. 1. Bevezetés... 1. 2. Mechanikai, elektromos és logikai jellemzők... 13
Előszó... xi 1. Bevezetés... 1 1.1. Fogalmak, definíciók... 1 1.1.1. Mintapéldák... 2 1.1.1.1. Mechanikus kapcsoló illesztése... 2 1.1.1.2. Nyomtató illesztése... 3 1.1.1.3. Katódsugárcsöves kijelző (CRT)
VI. SZOFTVERES PROGRAMOZÁSÚ VLSI ÁRAMKÖRÖK
VI. SZOFTVERES PROGRAMOZÁSÚ VLSI ÁRAMKÖRÖK 1 Az adatok feldolgozását végezhetjük olyan általános rendeltetésű digitális eszközökkel, amelyeket megfelelő szoftverrel (programmal) vezérelünk. A mai digitális
ARM Cortex-M0+ mikrovezérlő programozása KEIL MDK 5 környezetben. 13. DMA közvetlen memória hozzáférés
ARM Cortex-M0+ mikrovezérlő programozása KEIL MDK 5 környezetben 13. DMA közvetlen memória hozzáférés 1 Felhasznált anyagok, ajánlott irodalom ARM University Program: Course/Lab Material for Teaching Embedded