Számítógép Architektúrák

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Számítógép Architektúrák"

Átírás

1 A virtuális memória Horváth Gábor március 30. Budapest docens BME Hálózati Rendszerek és Szolgáltatások Tanszék

2 Virtuális tárkezelés Motiváció: Multitaszking környezet Taszkok jönnek-mennek A programunknak jutó memóriaméret változó Olcsó 64 bites processzorok Ebből pl. az AMD64 48 bitet használ: 256 TB Ennyi memóriát nem tudunk hozzáilleszteni A CPU minden programnak a teljes címtartományt felajánlja 0-tól a címtartomány tetejéig Ne legyen gond a memóriaméret Ezt a virtuális memóriát kell leképezni a fizikaiba Virtuális tárkezelés 2

3 Virtuális tárkezelés Programok: Virtuális címeket használnak CPU lábain/buszon: Fizikai címek jelennek meg Virtuális fizikai cím leképzés: Címfordítás Aki csinálja: MMU Amikor csinálja: minden memóriahivatkozáskor Egysége: Lap (fix) vagy szegmens (változó méretű) Ha nem fér mindenki a fizikai memóriába háttértárra kerül (swap-elés) 3

4 Virtuális tárkezelés 4

5 Címfordítás A virtuális címtartományt fix méretű lapokra particionáljuk A fizikai címtartományt ugyanekkora keretekre osztjuk Méretek: Lapok mérete = 2 L Alsó L bit: lapon belüli eltolás Felső bitek: virt. címeknél lapsorszám, fiz. címeknél keretsorszám Lap keret összerendeléseket tárolja: laptábla Összerendeléshez kell: Lap sorszáma Keret sorszáma Védelmi információ (írható/olvasható) Vezérlő bitek: Valid Dirty 5

6 Címfordítás 6

7 TLB Memória-hozzáférés menete: Címfordítás: Fizikai cím előállítása a virtuálisból Tényleges adat olvasás/írás a fizikai címről/címre A laptábla is a fizikai memóriában van! 1 memóriaművelet a programban 2 memóriaművelet a valóságban!! Nem elég lassú a memória e nélkül is? De. Reménység: lokalitás TLB: translation lookaside buffer A gyakran használt virtuális fizikai összerendelések cache-e Címfordításkor először a TLB-ben keres 7

8 Címfordítás TLB-vel 8

9 TLB jellemzői TLB lefedettség: a TLB bejegyzések által lefedett címtartomány Minél nagyobb, annál ritkábban kell a lassú laptáblához nyúlni TLB megvalósítása: tartalom szerint címezhető memória Nagy a felülete és sokat fogyaszt Szűkös a tárolási kapacitása :( TLB méret: bejegyzés Találat ideje: órajel TLB hiba esetén címfordítási idő: órajel TLB hibaarány: 0.01% 1% 9

10 Laptábla implementációk Cél: Címfordítás legyen minél gyorsabb virtuális cím szerinti keresés legyen gyors minél kevesebbszer kelljen a memóriához nyúlni Laptábla legyen a lehető legkisebb Eszköz: Speciális adatszerkezetek Egyszintű laptábla Többszintű (hierarchikus) laptábla Inverz laptábla (Virtualizált laptábla) 10

11 Egyszintű laptábla Laptáblabejegyzések tömbje i. bejegyzés: i. laphoz tartozó keret 11

12 Egyszintű laptábla Keresés: gyors! Bejegyzés megtalálása: pontosan 1 memóriaművelet! 12

13 Egyszintű laptábla Bejegyzés mérete: kicsi Nem kell tárolni a virtuális címet az pont az index Nem kell külön tárolni a háttértáron való elhelyezkedést 13

14 Egyszintű laptábla Gyors, kevés memória-hozzáférés kell, kicsi a bejegyzés......miért nem használ mindenki ilyet? A teljes laptáblának bent kell lennie a memóriában! Gyors kalkuláció: 32 bites esetben, 4 kb lapokkal: Lapméret: 12 bit, lapok száma: = 20 bit, 1 mega-lap 1 bejegyzés: 4 bájt elég, laptábla mérete: 4 MB 64 bites esetben, 4 kb lapokkal: Lapméret: 12 bit, lapok száma: = 52 bit, 2 52 db lap 1 bejegyzés: 8 bájt, laptábla mérete: 8 * 2 52 = 32 PB 14

15 Hierarchikus laptábla Ötlet: magát a laptáblát is lapokra bontjuk A laptábla lapok elhelyezkedését egy másik laptáblában tároljuk, azokét egy harmadikban, stb. 15

16 Hierarchikus laptábla Csak azt tartjuk a memóriában, ami tényleg kell Több memóriaművelet kell a címfordításhoz lassú! 16

17 Kétszintű laptábla, példa 17

18 Hierarchikus laptábla Gyors kalkuláció: 32 bites esetben, 4 kb lapokkal: Lapméret: 12 bit, 1 bejegyzés: 4 bájt elég Egy lapra 1024 bejegyzés fér 10 bittel indexelhető Kell 1024 laptábla lap, és még egy lap, ami ezekre mutat 32 bites cím = bites részek 2 szintű laptábla kell 64 bites esetben, 4 kb lapokkal: Lapméret: 12 bit, 1 bejegyzés: 8 bájt Egy lapra 512 bejegyzés fér 9 bittel indexelhető 64 bites cím = bites részek 6 szintű laptábla kell! 6 memóriaművelet / címfordítás!!! X86, ARM 18

19 Inverz laptábla Miért is voltak nagyok az eddigi laptáblák? Összerendelés: i. bejegyzés = i. laphoz tartozó keret Elemszám = lapok száma Fordított gondolkodás: Összerendelés: i. bejegyzés = i. keretben lévő lap száma Elemszám = keretek száma Inverz laptábla Mit nyerünk? Kicsi lesz a laptábla (fizikai memória méretével arányos) Mit vesztünk? Adott lapsorszámhoz tartozó keretet keressük A tömbünk indexei keretsorszámok, a bejegyzés tartalma a lap száma Tartalom szerint kell keresnünk! Tartalom szerinti kereséshez: hash függvény 21

20 Inverz laptábla Pl. jó hash függvény: Lapsorszám alsó bitjei 22

21 Inverz laptábla Hash mutató táblában: Pointer: Hol lehetnek az ilyen lapok a laptáblában? Laptáblában: Ebbe a bejegyzésbe én vagyok írva? Nem? Pech. Hol vannak még hozzám hasonló lapok? Követem a pointert Ebbe a bejegyzésbe már én vagyok írva? Nem. Nem baj, megyek tovább. Talán itt? Igen? Szuper. Hányadik bejegyzésen állok? 329? Akkor a fizikai memória 329-es keretében vagyok elhelyezve! 23

22 Inverz laptábla Mitől függ a memóriaműveletek száma? Először a hash mutató táblát kell kiolvasni + ahány lépést kell tenni a laptábla láncolt listájában És az mitől függ? Attól, hogy mennyire van tele a memória Normál terhelés (nincs tele a memória) 1 memóriaművelet / címfordítás (+1: hash mutató tábla) Nagy terhelés (megtelt a memória) >1 memóriaművelet / címfordítás (+1: hash mutató tábla) De akkor már úgyis mindegy (swap-eléstől lassú a rendszer) PA-RISC, PowerPC 24

23 Szoftver menedzselt TLB Eddig: laptábla bejárás hardver Csinálhatja a szoftver is! Szoftver menedzselt TLB Címfordítás: CPU a TLB-ből próbálkozik, TLB hiba: op. rendszerre bízza a címfordítást! A lap keret összerendelést az op. rendszer írja a TLB-be Op. rendszer kezeli: A TLB tartalmát A laptábla bejárást (tetszőleges adatszerkezet lehet) pl. SPARC Solaris Unix: Inverz laptáblát használ pl. SPARC Linux: Hierarchikus laptáblát használ Előnye: Nincs hardver megkötés, op. rendszer frissítéssel jöhet hatékonyabb laptábla Bonyolultabb adatszerkezetek is használhatók Hátránya: Sokkal lassabb címfordítás Példa: SPARC, Alpha, MIPS, félig a PA-RISC 25

24 Méretezési kérdések Mekkora lapokat használjunk? Nagyot, mert Nagyobb a TLB lefedettség, kevesebb a laphiba Diszk háttértár nagyot és kicsit kb. egyforma ideig tölt be Akkor már vigyünk be minél nagyobb darabot Kicsit, mert A lapon csak az van, ami kell. És ami nem kell, ne foglalja már a drága, kicsi memóriát Gyakorlatban: 4 8 kb 26

25 Címtér elkülönítés Cél: minden taszk kapja meg a teljes címtartományt (pl. 0 4 GB) Előnyök: Állandó futási környezet könnyebb szoftverfejlesztés Fordításkor ismert» a belépési pont» a globális változók címe» a függvények címe» stb. Védelmet ad Nem tudja elérni más taszkok címterét! Megoldások: Kizárólag laptáblával trükközve is lehet Vagy hardver támogatással 27

26 Címtér elkülönítés a laptáblára alapozva Megoldás: Taszkonként külön laptábla Taszkváltáskor: Laptábla kezdőpointer lecserélése TLB invalidálás! Lehetnek osztott címtartományok, ugyanazokkal a keretekkel Szükséges az op. rendszer meghívásához! 28

27 Címtér elkülönítés a laptáblára alapozva Gond: TLB ürítés taszkváltáskor Míg fel nem telik újra, lassúak a memóriaműveletek Megoldás: Címtér azonosító (ASID) taszk azonosító TLB bejegyzés mezői: lap, keret, ASID Működés: Op. rendszer taszk váltáskor egy spec. regiszterbe írja az aktuális ASID-ot A CPU csak az erre vonatkozó TLB bejegyzéseket használja A TLB több taszk laptábla bejegyzéseit is tudja tárolni! nem kell TLB invalidálás taszkváltáskor! 29

28 Címtér elkülönítés szegmentálással Logikailag egybetartozó objektumok külön szegmensbe A virtuális memóriában Bárhol kezdődhetnek Folytonosak Tetszőleges (sőt, változó) hosszúak Saját címterük van (0-tól címezhető)! Kétlépcsős címfordítás Szegmens virtuális memória (szegmensleíró tábla) Virtuális memória fizikai memória (laptábla) 30

29 Címtér elkülönítés szegmentálással Szegmensen belül: közeli címzés / ugrás Szegmenseken át: távoli címzés / ugrás X86 / 32 bites mód: taszkonként 3 szegmens: Kód / adat / stack Windows/linux nem használja X86 / 64 biten: gyakorlatilag megszünt 31

30 Fizikai címkiterjesztés Általában: virtuális memória > fizikai memória De mi van, ha nem? 32 bites CPU tud-e > 4GB memóriát? Alapesetben nem tud pointerek 32 bitesek! 1. megoldás: váltás 64 bitre inkompatibilitás Milliárdnyi lefordított 32 bites program van Nem mindig oldható meg az újrafordítás 2. megoldás: fizikai címkiterjesztés (PAE) Hack: szélesítsük ki a laptáblában a keret azonosítót! Minden program továbbra is 0 4 GB De több program együttvéve > 4GB is lehet! Viszont Szélesebb laptábla bejegyzés nő a laptábla szintek száma Más laptábla formátum op. rendszer támogatás szükséges Gyakorlatban: x86: 36 bites fizikai cím (64 GB) ARM: 40 bites fizikai cím (1 TB) 32

31 Virtuális tárkezelés a gyakorlatban 33

32 Virtuális tárkezelés a gyakorlatban x86 Szegmentálás + lapozás, gyakorlatban inkább csak lapozás Hierarchikus laptábla. Alap: 4 kb-os lapok Módok: 32 bit, PAE nélkül: 12 bit eltolás, 10 bit másodszintű, 10 bit első szintű laptábla index 32 bit, PAE: 36 bites fizikai címek támogatása (64 GB, de csak 4 GB / program!) 8 bájtos laptábla bejegyzések: 512/lap, 3 szint kell! 12 bit eltolás, 9 bit harmad, 9 bit másod, 2 bit első szintű laptábla index 64 bit: 48 bites virtuális, 40 bites fizikai címek (bővíthetők 64-ig) 8 bájtos laptábla bejegyzések: 512/lap, 4 szint kell! 12 bit eltolás, 9 bit negyed, 9 bit harmad, 9 bit másod, 9 bit első szintű laptábla index Nagy lapok: 1 szint megspórolható 34

33 Virtuális tárkezelés a gyakorlatban ARM Hierarchikus laptábla Vegyesen használható lapméretek: 4 kb (small page) 64 kb (large page) 1 MB (section) 16 MB (super section) Section / supersection: 1 szintű címfordítás Small page / large page: 2 szintű címfordítás Az ARM is tud PAE-t (Cortex A15, 40 bites fizikai címek, 1 TB RAM) Ára: egy szinttel mélyebb laptáblák ARMv8: 48 bites virtuális és fizikai címek, 4 szintű laptáblák 35

34 Virtuális tárkezelés a gyakorlatban PowerPC Inverz laptábla, de láncolt lista nélkül 2 tömböt használ: (Inverz) laptábla: lap keret összerendelések Hash tábla: Hash függvény: minden laphoz 2 hash tábla bejegyzés 1 hash tábla bejegyzés: 8 lapszám laptábla index összerendelés A lapszám a 16 laptábla bejegyzés egyikében kell legyen Ha nincs laphiba (op. rendszer kezeli) 37

Problémák. Lehet hogy a program nem fér be a memóriába Mozgatás diszkre és vissza A programok lokalitásának elve

Problémák. Lehet hogy a program nem fér be a memóriába Mozgatás diszkre és vissza A programok lokalitásának elve Virtuális memória 1 Problémák Lehet hogy a program nem fér be a memóriába Mozgatás diszkre és vissza A programok lokalitásának elve A program rövid idő alatt csak kis részét használja a memóriának Biztonság

Részletesebben

Dr. Illés Zoltán zoltan.illes@elte.hu

Dr. Illés Zoltán zoltan.illes@elte.hu Dr. Illés Zoltán zoltan.illes@elte.hu Operációs rendszerek kialakulása Op. Rendszer fogalmak, struktúrák Fájlok, könyvtárak, fájlrendszerek Folyamatok Folyamatok kommunikációja Kritikus szekciók, szemaforok.

Részletesebben

Operációs rendszerek III.

Operációs rendszerek III. A WINDOWS NT memóriakezelése Az NT memóriakezelése Memóriakezelő feladatai: Logikai-fizikai címtranszformáció: A folyamatok virtuális címterének címeit megfelelteti fizikai címeknek. A virtuális memóriakezelés

Részletesebben

Számítógép architektúrák

Számítógép architektúrák Számítógép architektúrák Számítógépek felépítése Digitális adatábrázolás Digitális logikai szint Mikroarchitektúra szint Gépi utasítás szint Operációs rendszer szint Assembly nyelvi szint Probléma orientált

Részletesebben

Operációs rendszerek. Az NT memóriakezelése

Operációs rendszerek. Az NT memóriakezelése Operációs rendszerek MS Windows NT (2000) memóriakezelés Az NT memóriakezelése 32-bites virtuális memóriakezelés: 4 GB-os címtartomány, alapesetben: a fels! 2 GB az alkalmazásoké, az alsó 2 GB az OPR-é.

Részletesebben

Programozás alapjai. 10. előadás

Programozás alapjai. 10. előadás 10. előadás Wagner György Általános Informatikai Tanszék Pointerek, dinamikus memóriakezelés A PC-s Pascal (is) az IBM PC memóriáját 4 fő részre osztja: kódszegmens adatszegmens stackszegmens heap Alapja:

Részletesebben

Processzus. Operációs rendszerek MINB240. Memória gazdálkodás. Operációs rendszer néhány célja. 5-6-7. előadás Memóriakezelés

Processzus. Operációs rendszerek MINB240. Memória gazdálkodás. Operációs rendszer néhány célja. 5-6-7. előadás Memóriakezelés Processzus Operációs rendszerek MINB40 5-6-7. előadás Memóriakezelés Egy vagy több futtatható szál Futáshoz szükséges erőforrások Memória (RAM) Program kód (text) Adat (data) Különböző bufferek Egyéb Fájlok,

Részletesebben

Fábián Zoltán Hálózatok elmélet

Fábián Zoltán Hálózatok elmélet Fábián Zoltán Hálózatok elmélet Fizikai memória Félvezetőkből előállított memóriamodulok RAM - (Random Access Memory) -R/W írható, olvasható, pldram, SDRAM, A dinamikusan frissítendők : Nagyon rövid időnként

Részletesebben

Utolsó módosítás:

Utolsó módosítás: Utolsó módosítás:2011. 09. 29. 1 2 4 5 MMU!= fizikai memóriaillesztő áramkör. Az utóbbinak a feladata a memória modulok elektromos alacsonyszintű vezérlése, ez sokáig a CPU-n kívül a chipset északi hídban

Részletesebben

Számítógép Architektúrák

Számítógép Architektúrák Cache memória Horváth Gábor 2016. március 30. Budapest docens BME Hálózati Rendszerek és Szolgáltatások Tanszék ghorvath@hit.bme.hu Már megint a memória... Mindenről a memória tehet. Mert lassú. A virtuális

Részletesebben

SZÁMÍTÓGÉP ARCHITEKTÚRÁK

SZÁMÍTÓGÉP ARCHITEKTÚRÁK SZÁMÍTÓGÉP ARCHITEKTÚRÁK Cache memória Horváth Gábor, Belső Zoltán BME Hálózati Rendszerek és Szolgáltatások Tanszék ghorvath@hit.bme.hu, belso@hit.bme.hu Budapest, 2018-03-27 1 MÁR MEGINT A MEMÓRIA...

Részletesebben

Máté: Számítógép architektúrák 2010.12.01.

Máté: Számítógép architektúrák 2010.12.01. Máté: Számítógép architektúrák... A feltételes ugró utasítások eldugaszolják a csővezetéket Feltételes végrehajtás (5.5 5. ábra): Feltételes végrehajtás Predikáció ió C pr. rész Általános assembly Feltételes

Részletesebben

8. Memória management

8. Memória management 8. Memória management Háttér Logikai és fizikai címtér Swapping Folytonos allokálás Lapozás Szegmentáció Szegmentáció lapozással 101 Háttér Az számítógép (processzor) kapacitásának jobb kihasználása megköveteli,

Részletesebben

Mutatók és mutató-aritmetika C-ben március 19.

Mutatók és mutató-aritmetika C-ben március 19. Mutatók és mutató-aritmetika C-ben 2018 március 19 Memória a Neumann-architektúrában Neumann-architektúra: a memória egységes a címzéshez a természetes számokat használjuk Ugyanabban a memóriában van:

Részletesebben

Nyíregyházi Egyetem Matematika és Informatika Intézete. Fájl rendszer

Nyíregyházi Egyetem Matematika és Informatika Intézete. Fájl rendszer 1 Fájl rendszer Terminológia Fájl és könyvtár (mappa) koncepció Elérési módok Fájlattribútumok Fájlműveletek ----------------------------------------- Könyvtár szerkezet -----------------------------------------

Részletesebben

Programozás alapjai II. (7. ea) C++ Speciális adatszerkezetek. Tömbök. Kiegészítő anyag: speciális adatszerkezetek

Programozás alapjai II. (7. ea) C++ Speciális adatszerkezetek. Tömbök. Kiegészítő anyag: speciális adatszerkezetek Programozás alapjai II. (7. ea) C++ Kiegészítő anyag: speciális adatszerkezetek Szeberényi Imre BME IIT M Ű E G Y E T E M 1 7 8 2 C++ programozási nyelv BME-IIT Sz.I. 2016.04.05. - 1

Részletesebben

Speciális adatszerkezetek. Programozás alapjai II. (8. ea) C++ Tömbök. Tömbök/2. N dimenziós tömb. Nagyméretű ritka tömbök

Speciális adatszerkezetek. Programozás alapjai II. (8. ea) C++ Tömbök. Tömbök/2. N dimenziós tömb. Nagyméretű ritka tömbök Programozás alapjai II. (8. ea) C++ Kiegészítő anyag: speciális adatszerkezetek Szeberényi Imre BME IIT Speciális adatszerkezetek A helyes adatábrázolás választása, a helyes adatszerkezet

Részletesebben

Programozás alapjai II. (7. ea) C++

Programozás alapjai II. (7. ea) C++ Programozás alapjai II. (7. ea) C++ Kiegészítő anyag: speciális adatszerkezetek Szeberényi Imre BME IIT M Ű E G Y E T E M 1 7 8 2 C++ programozási nyelv BME-IIT Sz.I. 2016.04.05. - 1

Részletesebben

Algoritmusok és adatszerkezetek gyakorlat 06 Adatszerkezetek

Algoritmusok és adatszerkezetek gyakorlat 06 Adatszerkezetek Algoritmusok és adatszerkezetek gyakorlat 06 Adatszerkezetek Tömb Ugyanolyan típusú elemeket tárol A mérete előre definiált kell legyen és nem lehet megváltoztatni futás során Legyen n a tömb mérete. Ekkor:

Részletesebben

Operációs Rendszerek II. 5. előadás

Operációs Rendszerek II. 5. előadás Operációs Rendszerek II. 5. előadás Virtuális memóriakezelés Megjelenésekor komoly viták zajlottak a megoldás hatékonyságáról A (nem túl jelentős) teljesítmény csökkenésért cserébe jelentős előnyök: a

Részletesebben

Adatszerkezetek Tömb, sor, verem. Dr. Iványi Péter

Adatszerkezetek Tömb, sor, verem. Dr. Iványi Péter Adatszerkezetek Tömb, sor, verem Dr. Iványi Péter 1 Adat Adat minden, amit a számítógépünkben tárolunk és a külvilágból jön Az adatnak két fontos tulajdonsága van: Értéke Típusa 2 Adat típusa Az adatot

Részletesebben

Számítógép felépítése

Számítógép felépítése Alaplap, processzor Számítógép felépítése Az alaplap A számítógép teljesítményét alapvetően a CPU és belső busz sebessége (a belső kommunikáció sebessége), a memória mérete és típusa, a merevlemez sebessége

Részletesebben

Adatszerkezetek 2. Dr. Iványi Péter

Adatszerkezetek 2. Dr. Iványi Péter Adatszerkezetek 2. Dr. Iványi Péter 1 Hash tábla A bináris fáknál O(log n) a legjobb eset a keresésre. Ha valamilyen közvetlen címzést használunk, akkor akár O(1) is elérhető. A hash tábla a tömb általánosításaként

Részletesebben

SZÁMÍTÓGÉP ARCHITEKTÚRÁK

SZÁMÍTÓGÉP ARCHITEKTÚRÁK SZÁMÍTÓGÉP ARCHITEKTÚRÁK Az utasítás-pipeline szélesítése Horváth Gábor, Belső Zoltán BME Hálózati Rendszerek és Szolgáltatások Tanszék ghorvath@hit.bme.hu, belso@hit.bme.hu Budapest, 2018-05-19 1 UTASÍTÁSFELDOLGOZÁS

Részletesebben

Memóriakezelés (Memory management) folytatás Virtuális memória és kezelése

Memóriakezelés (Memory management) folytatás Virtuális memória és kezelése 1 Memóriakezelés (Memory management) folytatás Virtuális memória és kezelése Alapok (lapok, csere, hibák, címszámítás) Lapkiosztási elvek Lapcsere stratégiák A programozó szerepe a laphibák számának csökkenésében

Részletesebben

Számítógép Architektúrák

Számítógép Architektúrák Multiprocesszoros rendszerek Horváth Gábor 2015. május 19. Budapest docens BME Híradástechnikai Tanszék ghorvath@hit.bme.hu Párhuzamosság formái A párhuzamosság milyen formáit ismerjük? Bit szintű párhuzamosság

Részletesebben

Egyirányban láncolt lista

Egyirányban láncolt lista Egyirányban láncolt lista A tárhely (listaelem) az adatelem értékén kívül egy mutatót tartalmaz, amely a következő listaelem címét tartalmazza. A láncolt lista első elemének címét egy, a láncszerkezeten

Részletesebben

Máté: Számítógép architektúrák

Máté: Számítógép architektúrák Rekurzív eljárások megvalósításához veremre van szükség. Minden hívás esetén az eljárás paramétereit a verembe kell tenni, és ott kell elhelyezni a lokális változókat is! Eljárás prológus: a régi verem

Részletesebben

Számítógépek felépítése

Számítógépek felépítése Számítógépek felépítése Emil Vatai 2014-2015 Emil Vatai Számítógépek felépítése 2014-2015 1 / 14 Outline 1 Alap fogalmak Bit, Byte, Word 2 Számítógép részei A processzor részei Processzor architektúrák

Részletesebben

Adatszerkezetek Hasító táblák. Dr. Iványi Péter

Adatszerkezetek Hasító táblák. Dr. Iványi Péter Adatszerkezetek Hasító táblák Dr. Iványi Péter 1 Hash tábla A bináris fáknál O(log n) a legjobb eset a keresésre. Ha valamilyen közvetlen címzést használunk, akkor akár O(1) is elérhető. A hash tábla a

Részletesebben

Az interrupt Benesóczky Zoltán 2004

Az interrupt Benesóczky Zoltán 2004 Az interrupt Benesóczky Zoltán 2004 1 Az interrupt (program megszakítás) órajel generátor cím busz környezet RESET áramkör CPU ROM RAM PERIF. adat busz vezérlõ busz A periféria kezelés során információt

Részletesebben

Digitális rendszerek. Utasításarchitektúra szintje

Digitális rendszerek. Utasításarchitektúra szintje Digitális rendszerek Utasításarchitektúra szintje Utasításarchitektúra Jellemzők Mikroarchitektúra és az operációs rendszer közötti réteg Eredetileg ez jelent meg először Sokszor az assembly nyelvvel keverik

Részletesebben

11. Gyakorlat. Az operációs rendszer szintje

11. Gyakorlat. Az operációs rendszer szintje 11. Gyakorlat Az operációs rendszer szintje Az operációs rendszer szintű utasítások az alkalmazói programozók rendelkezésére álló teljes utasításkészletet jelentik. Tartalmazzák majdnem az összes ISA-szintű

Részletesebben

Operációs rendszerek. UNIX fájlrendszer

Operációs rendszerek. UNIX fájlrendszer Operációs rendszerek UNIX fájlrendszer UNIX fájlrendszer Alapegység: a file, amelyet byte-folyamként kezel. Soros (szekvenciális) elérés. Transzparens (átlátszó) file-szerkezet. Link-ek (kapcsolatok) létrehozásának

Részletesebben

7. Virtuális tárkezelés. Operációs rendszerek. Bevezetés. Motiváció 2. Motiváció 1. 7.1. A virtuális tárkezelés általános elvei

7. Virtuális tárkezelés. Operációs rendszerek. Bevezetés. Motiváció 2. Motiváció 1. 7.1. A virtuális tárkezelés általános elvei 7. Virtuális tárkezelés Operációs rendszerek 7. Virtuális tárkezelés Simon Gyula Bevezetés A virtuális tárkezelés általános elvei Lapcsere stratégiák Folyamatok lapigénye, lapok allokációja Egyéb tervezési

Részletesebben

Operációs rendszerek Memóriakezelés 1.1

Operációs rendszerek Memóriakezelés 1.1 Operációs rendszerek Memóriakezelés 1.1 Pere László (pipas@linux.pte.hu) PÉCSI TUDOMÁNYEGYETEM TERMÉSZETTUDOMÁNYI KAR INFORMATIKA ÉS ÁLTALÁNOS TECHNIKA TANSZÉK Operációs rendszerek p. A memóriakezelő A

Részletesebben

Készítette: Trosztel Mátyás Konzulens: Hajós Gergely

Készítette: Trosztel Mátyás Konzulens: Hajós Gergely Készítette: Trosztel Mátyás Konzulens: Hajós Gergely Monte Carlo Markov Chain MCMC során egy megfelelően konstruált Markov-lánc segítségével mintákat generálunk. Ezek eloszlása követi a céleloszlást. A

Részletesebben

Adatszerkezetek 1. előadás

Adatszerkezetek 1. előadás Adatszerkezetek 1. előadás Irodalom: Lipschutz: Adatszerkezetek Morvay, Sebők: Számítógépes adatkezelés Cormen, Leiserson, Rives, Stein: Új algoritmusok http://it.inf.unideb.hu/~halasz http://it.inf.unideb.hu/adatszerk

Részletesebben

SZÁMÍTÓGÉP ARCHITEKTÚRÁK

SZÁMÍTÓGÉP ARCHITEKTÚRÁK SZÁMÍTÓGÉP ARCHITEKTÚRÁK Kártyás ajtónyitó tervezése Horváth Gábor BME Hálózati Rendszerek és Szolgáltatások Tanszék ghorvath@hit.bme.hu, belso@hit.bme.hu Budapest, 2018-02-19 Hálózati Rendszerek és Szolgáltatások

Részletesebben

6. Tárkezelés. Operációs rendszerek. Bevezetés. 6.1. A program címeinek kötése. A címleképzés. A címek kötésének lehetőségei

6. Tárkezelés. Operációs rendszerek. Bevezetés. 6.1. A program címeinek kötése. A címleképzés. A címek kötésének lehetőségei 6. Tárkezelés Oerációs rendszerek 6. Tárkezelés Simon Gyul Bevezetés A rogrm címeinek kötése Társzervezési elvek Egy- és többrtíciós rendszerek Szegmens- és lszervezés Felhsznált irodlom: Kóczy-Kondorosi

Részletesebben

Számítógép architektúrák

Számítógép architektúrák Számítógép architektúrák Kártyás ajtónyitó tervezése 2016. március 7. Budapest Horváth Gábor docens BME Hálózati Rendszerek és Szolgáltatások Tanszék ghorvath@hit.bme.hu Számítógép Architektúrák Horváth

Részletesebben

A verem (stack) A verem egy olyan struktúra, aminek a tetejéről kivehetünk egy (vagy sorban több) elemet. A verem felhasználása

A verem (stack) A verem egy olyan struktúra, aminek a tetejéről kivehetünk egy (vagy sorban több) elemet. A verem felhasználása A verem (stack) A verem egy olyan struktúra, aminek a tetejére betehetünk egy új (vagy sorban több) elemet a tetejéről kivehetünk egy (vagy sorban több) elemet A verem felhasználása Függvény visszatérési

Részletesebben

Adatszerkezetek 1. Dr. Iványi Péter

Adatszerkezetek 1. Dr. Iványi Péter Adatszerkezetek 1. Dr. Iványi Péter 1 Adat Adat minden, amit a számítógépünkben tárolunk és a külvilágból jön Az adatnak két fontos tulajdonsága van: Értéke Típusa 2 Adat típusa Az adatot kódoltan tároljuk

Részletesebben

Memória és perifériák virtualizációja. Kovács Ákos Forrás, BME-VIK Virtualizációs technológiák https://www.vik.bme.hu/kepzes/targyak/vimiav89/

Memória és perifériák virtualizációja. Kovács Ákos Forrás, BME-VIK Virtualizációs technológiák https://www.vik.bme.hu/kepzes/targyak/vimiav89/ Memória és perifériák virtualizációja Kovács Ákos Forrás, BME-VIK Virtualizációs technológiák https://www.vik.bme.hu/kepzes/targyak/vimiav89/ Emlékeztető: A három virtualizációs lehetőség Virtualizáció

Részletesebben

Nem biztos, hogy mindenhol helytáll, helyenként hiányos, de az eddigi kérdések össze vannak gyűjtve őszi félév első zhval bezárólag.

Nem biztos, hogy mindenhol helytáll, helyenként hiányos, de az eddigi kérdések össze vannak gyűjtve őszi félév első zhval bezárólag. Nem biztos, hogy mindenhol helytáll, helyenként hiányos, de az eddigi kérdések össze vannak gyűjtve. 2013 őszi félév első zhval bezárólag. 1. Mi az operációs rendszer kernel módja és a felhasználói módja

Részletesebben

találhatók. A memória-szervezési modell mondja meg azt, hogy miként

találhatók. A memória-szervezési modell mondja meg azt, hogy miként Memória címzési módok Egy program futása során (legyen szó a program vezérléséről vagy adatkezelésről) a program utasításai illetve egy utasítás argumentumai a memóriában találhatók. A memória-szervezési

Részletesebben

Adatbáziskezelő-szerver. Relációs adatbázis-kezelők SQL. Házi feladat. Relációs adatszerkezet

Adatbáziskezelő-szerver. Relációs adatbázis-kezelők SQL. Házi feladat. Relációs adatszerkezet 1 2 Adatbáziskezelő-szerver Általában dedikált szerver Optimalizált háttértár konfiguráció Csak OS + adatbázis-kezelő szoftver Teljes memória az adatbázisoké Fő funkciók: Adatok rendezett tárolása a háttértárolón

Részletesebben

Architektúra, címzési módok

Architektúra, címzési módok Architektúra, címzési módok Mirıl lesz szó? Címzés fogalma, címzési módok Virtuális tárkezelés Koschek Vilmos Példa: Intel vkoschek@vonalkodhu Fogalom A címzési mód az az út (algoritmus), ahogyan az operandus

Részletesebben

Előadás_#12. Előadás_12-1 -

Előadás_#12. Előadás_12-1 - Előadás_#12. 1. Az NT alapú rendszerek memóriakezelése A Windows feladatkezelő (a Teljesítmény fülön) információt ad a memória állapotáról (is) a felhasználó számára a következők szerint. A Fizikai memória

Részletesebben

Mikrorendszerek tervezése

Mikrorendszerek tervezése BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Mikrorendszerek tervezése MicroBlaze processzor Fehér Béla Raikovich Tamás

Részletesebben

Virtualizáció. egy hardveren több virtuális rendszer működik egyszerre, virtuális gépekben futó önálló vendég (guest) operációs rendszerek formájában

Virtualizáció. egy hardveren több virtuális rendszer működik egyszerre, virtuális gépekben futó önálló vendég (guest) operációs rendszerek formájában Virtualizáció Virtualizáció fogalma: Virtualizáció egy hardveren több virtuális rendszer működik egyszerre, virtuális gépekben futó önálló vendég (guest) operációs rendszerek formájában A virtualizáció

Részletesebben

Mikrorendszerek tervezése

Mikrorendszerek tervezése BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Mikrorendszerek tervezése Megszakítás- és kivételkezelés Fehér Béla Raikovich

Részletesebben

Architektúra, cache. Mirıl lesz szó? Mi a probléma? Teljesítmény. Cache elve. Megoldás. Egy rövid idıintervallum alatt a memóriahivatkozások a teljes

Architektúra, cache. Mirıl lesz szó? Mi a probléma? Teljesítmény. Cache elve. Megoldás. Egy rövid idıintervallum alatt a memóriahivatkozások a teljes Architektúra, cache irıl lesz szó? Alapfogalmak Adat cache tervezési terének alapkomponensei Koschek Vilmos Fejlıdés vkoschek@vonalkodhu Teljesítmény Teljesítmény növelése Technológia Architektúra (mem)

Részletesebben

Címzés IP hálózatokban. Varga Tamás

Címzés IP hálózatokban. Varga Tamás Hálózatba kötve Multicast csoport Router A Router B Router C Broadcast Multicast Unicast 2. oldal Klasszikus IP címzés 32 bit hosszú Internet címek 8 bites csoportok decimális alakban RFC 791 Bit #31 Bit

Részletesebben

Operációs rendszerek. Folyamatok kezelése a UNIX-ban

Operációs rendszerek. Folyamatok kezelése a UNIX-ban Operációs rendszerek Folyamatok kezelése a UNIX-ban Folyamatok a UNIX-ban A folyamat: multiprogramozott operációs rendszer alapfogalma - absztrakt fogalom. A gyakorlati kép: egy program végrehajtása és

Részletesebben

Hardver Ismeretek IA32 -> IA64

Hardver Ismeretek IA32 -> IA64 Hardver Ismeretek IA32 -> IA64 Problémák az IA-32-vel Bonyolult architektúra CISC ISA (RISC jobb a párhuzamos feldolgozás szempontjából) Változó utasításhossz és forma nehéz dekódolni és párhuzamosítani

Részletesebben

Informatikai Rendszerek Intézete Gábor Dénes Foiskola. Operációs rendszerek - 105 1. oldal LINUX

Informatikai Rendszerek Intézete Gábor Dénes Foiskola. Operációs rendszerek - 105 1. oldal LINUX 1. oldal LINUX 2. oldal UNIX történet Elozmény: 1965 Multics 1969 Unix (Kernighen, Thompson) 1973 Unix C nyelven (Ritchie) 1980 UNIX (lényegében a mai forma) AT&T - System V Microsoft - Xenix Berkeley

Részletesebben

elektronikus adattárolást memóriacím

elektronikus adattárolást memóriacím MEMÓRIA Feladata A memória elektronikus adattárolást valósít meg. A számítógép csak olyan műveletek elvégzésére és csak olyan adatok feldolgozására képes, melyek a memóriájában vannak. Az információ tárolása

Részletesebben

Programok, statikus linkelés

Programok, statikus linkelés Memória kezelés 1 Programok, statikus linkelés Rendszer könyvtár, mint bármelyik másik tárgykód (object file) Előny Egyszerű Nincs verzió probléma, program és library illeszkedik Hátrány Nagy bináris kód

Részletesebben

Adatszerkezetek I. 8. előadás. (Horváth Gyula anyagai felhasználásával)

Adatszerkezetek I. 8. előadás. (Horváth Gyula anyagai felhasználásával) Adatszerkezetek I. 8. előadás (Horváth Gyula anyagai felhasználásával) Kereső- és rendezőfák Közös tulajdonságok: A gyökérelem (vagy kulcsértéke) nagyobb vagy egyenlő minden tőle balra levő elemnél. A

Részletesebben

5-6. ea Created by mrjrm & Pogácsa, frissítette: Félix

5-6. ea Created by mrjrm & Pogácsa, frissítette: Félix 2. Adattípusonként különböző regisztertér Célja: az adatfeldolgozás gyorsítása - különös tekintettel a lebegőpontos adatábrázolásra. Szorzás esetén karakterisztika összeadódik, mantissza összeszorzódik.

Részletesebben

Szegmentálás. Memória kezelési stratégia mely a felhasználó nézőpontját támogatja Például:

Szegmentálás. Memória kezelési stratégia mely a felhasználó nézőpontját támogatja Például: Szegmentálás 1 Szegmentálás Memória kezelési stratégia mely a felhasználó nézőpontját támogatja Például: Egy program szegmensekből áll Mindegyik szegmens külön címtér Egy eljárás nullás címen kezdődik

Részletesebben

Adatszerkezetek Adatszerkezet fogalma. Az értékhalmaz struktúrája

Adatszerkezetek Adatszerkezet fogalma. Az értékhalmaz struktúrája Adatszerkezetek Összetett adattípus Meghatározói: A felvehető értékek halmaza Az értékhalmaz struktúrája Az ábrázolás módja Műveletei Adatszerkezet fogalma Direkt szorzat Minden eleme a T i halmazokból

Részletesebben

Memóriakezelés. Operációs rendszerek (vimia219) dr. Kovácsházy Tamás 8. anyagrész, Memóriakezelés. BME-MIT 2011, Minden jog fenntartva

Memóriakezelés. Operációs rendszerek (vimia219) dr. Kovácsházy Tamás 8. anyagrész, Memóriakezelés. BME-MIT 2011, Minden jog fenntartva Operációs rendszerek (vimia9) Memóriakezelés dr. Kovácsház Tamás 8. anagrész, Memóriakezelés Budapesti Műszaki és Gazdaságtudománi Egetem Méréstechnika és Információs Rendszerek Tanszék BME-MIT, Minden

Részletesebben

Gábor Dénes Főiskola Győr. Mikroszámítógépek. Előadás vázlat. 2004/2005 tanév 2. szemeszter. Készítette: Markó Imre 2005

Gábor Dénes Főiskola Győr. Mikroszámítógépek. Előadás vázlat. 2004/2005 tanév 2. szemeszter. Készítette: Markó Imre 2005 Gábor Dénes Főiskola Győr Mikroszámítógépek Előadás vázlat 102 2004/2005 tanév 2. szemeszter Memóriakezelés A tárolókezelés alapfogalmai Alapfogalmak A tárolószervezésnek legfontosabb elve, hogy a gyakran

Részletesebben

A memória fogalma. Tárolt adatok fajtái. Csak olvasható memóriák. Egyszer írható memóriák

A memória fogalma. Tárolt adatok fajtái. Csak olvasható memóriák. Egyszer írható memóriák A memória fogalma A memória (tár) egy számítógépben az adatokat tárolja Neumann elv: programok kódja és adatai ugyanabban a memóriában tárolhatók Mai számítógépek szinte kivétel nélkül binárisak Ö tárak

Részletesebben

8. Fejezet Processzor (CPU) és memória: tervezés, implementáció, modern megoldások

8. Fejezet Processzor (CPU) és memória: tervezés, implementáció, modern megoldások 8. Fejezet Processzor (CPU) és memória: The Architecture of Computer Hardware and Systems Software: An Information Technology Approach 3rd Edition, Irv Englander John Wiley and Sons 2003 Wilson Wong, Bentley

Részletesebben

Programozás alapjai C nyelv 8. gyakorlat. Mutatók és címek (ism.) Indirekció (ism)

Programozás alapjai C nyelv 8. gyakorlat. Mutatók és címek (ism.) Indirekció (ism) Programozás alapjai C nyelv 8. gyakorlat Szeberényi Imre BME IIT Programozás alapjai I. (C nyelv, gyakorlat) BME-IIT Sz.I. 2005.11.07. -1- Mutatók és címek (ism.) Minden változó és függvény

Részletesebben

IT - Alapismeretek. Megoldások

IT - Alapismeretek. Megoldások IT - Alapismeretek Megoldások 1. Az első négyműveletes számológépet Leibniz és Schickard készítette. A tárolt program elve Neumann János nevéhez fűződik. Az első generációs számítógépek működése a/az

Részletesebben

TELJESÍTÉNYMÉRÉS FELHŐ ALAPÚ KÖRNYEZETBEN AZURE CLOUD ANALÍZIS

TELJESÍTÉNYMÉRÉS FELHŐ ALAPÚ KÖRNYEZETBEN AZURE CLOUD ANALÍZIS TELJESÍTÉNYMÉRÉS FELHŐ ALAPÚ KÖRNYEZETBEN AZURE CLOUD ANALÍZIS Hartung István BME Irányítástechnika és Informatika Tanszék TEMATIKA Cloud definíció, típusok, megvalósítási modellek Rövid Azure cloud bemutatás

Részletesebben

Operációs rendszerek. A program. A memória (tár) Memória menedzselés

Operációs rendszerek. A program. A memória (tár) Memória menedzselés Operációs rendszerek Memória menedzselés A program Memória, címtartomány fogalmak A címkötődés és címleképzés kérdései A tárcsere Memóriamenedzselési osztályok, valós MM Virtuális MM koncepció Lapozós

Részletesebben

Moore törvény Sima Dezső cikke Core-count Law

Moore törvény Sima Dezső cikke Core-count Law MEMÓRIÁK I-II. Tartalom MEMÓRIÁK I-II.... 1 Bevezetés... 2 Memóriafajták... 5 Csoportosítás és jellemzők... 5 ROM, SRAM és NVRAM műveletek a bemenetek függvényében... 6 Memóriaszervezési megoldások, memória

Részletesebben

Mutatók és címek (ism.) Programozás alapjai C nyelv 8. gyakorlat. Indirekció (ism) Néhány dolog érthetőbb (ism.) Változók a memóriában

Mutatók és címek (ism.) Programozás alapjai C nyelv 8. gyakorlat. Indirekció (ism) Néhány dolog érthetőbb (ism.) Változók a memóriában Programozás alapjai C nyelv 8. gyakorlat Szeberényi mre BME T Programozás alapjai. (C nyelv, gyakorlat) BME-T Sz.. 2005.11.07. -1- Mutatók és címek (ism.) Minden változó és függvény

Részletesebben

Utolsó módosítás:

Utolsó módosítás: Utolsó módosítás:2012. 09. 20. 1 2 3 4 5 MMU!= fizikai memóriaillesztő áramkör. Az utóbbinak a feladata a memória modulok elektromos alacsonyszintű vezérlése, ez sokáig a CPU-n kívül a chipset északi hídban

Részletesebben

Operációs rendszerek II. kidolgozott tételsor Verzió 1.0 (Build: 1.0.2011.12.30.)

Operációs rendszerek II. kidolgozott tételsor Verzió 1.0 (Build: 1.0.2011.12.30.) Operációs rendszerek II. kidolgozott tételsor Verzió 1.0 (Build: 1.0.2011.12.30.) Készült: Dr. Fazekas Gábor Operációs rendszerek 2. diasorok és előadásjegyzetek Ellenőrző kérdések 2011. december 21-i

Részletesebben

Autóipari beágyazott rendszerek. Komponens és rendszer integráció

Autóipari beágyazott rendszerek. Komponens és rendszer integráció Autóipari beágyazott rendszerek és rendszer integráció 1 Magas szintű fejlesztési folyamat SW architektúra modellezés Modell (VFB) Magas szintű modellezés komponensek portok interfészek adattípusok meghatározása

Részletesebben

UNIX / Linux rendszeradminisztráció

UNIX / Linux rendszeradminisztráció UNIX / Linux rendszeradminisztráció VIII. előadás Miskolci Egyetem Informatikai és Villamosmérnöki Tanszékcsoport Általános Informatikai Tanszék Virtualizáció Mi az a virtualizáció? Nagyvonalúan: számítógép

Részletesebben

Adatbázis-kezelő rendszerek. dr. Siki Zoltán

Adatbázis-kezelő rendszerek. dr. Siki Zoltán Adatbázis-kezelő rendszerek I. dr. Siki Zoltán Adatbázis fogalma adatok valamely célszerűen rendezett, szisztéma szerinti tárolása Az informatika elterjedése előtt is számos adatbázis létezett pl. Vállalati

Részletesebben

Tamás Péter (D. 424) Mechatronika, Optika és Gépészeti Informatika Tanszék (D 407)

Tamás Péter (D. 424) Mechatronika, Optika és Gépészeti Informatika Tanszék (D 407) Tamás Péter (D. 424) Mechatronika, Optika és Gépészeti Informatika Tanszék (D 407) 1 Kérdőív Tematika A számítógép működése Adatok Program Objektum 2 Kérdőív Kitöltötte 204 fő Felkészültség 28% 39% alap

Részletesebben

Hatékony memóriakezelési technikák. Smidla József Operációkutatási Laboratórium január 16.

Hatékony memóriakezelési technikák. Smidla József Operációkutatási Laboratórium január 16. Hatékony memóriakezelési technikák Smidla József Operációkutatási Laboratórium 2014. január 16. 1 Tartalom A cache áthidalása Cache optimalizálás Adatszerkezetek tervezése A programkód szerkezete Prefetch

Részletesebben

9. Virtuális memória kezelés

9. Virtuális memória kezelés 9. Virtuális memória kezelés Háttér Igény szerinti (kényszer) lapozás A kényszer lapozás teljesítménye Laphelyettesítési algoritmusok Frame-k allokálása Vergôdés (csapkodás, thrashing) Kényszer szegmentálás

Részletesebben

Programozás I. - 11. gyakorlat

Programozás I. - 11. gyakorlat Programozás I. - 11. gyakorlat Struktúrák, gyakorlás Tar Péter 1 Pannon Egyetem M szaki Informatikai Kar Rendszer- és Számítástudományi Tanszék Utolsó frissítés: November 16, 2009 1 tar@dcs.vein.hu Tar

Részletesebben

Operációs Rendszerek II. 4. előadás

Operációs Rendszerek II. 4. előadás Operációs Rendszerek II. 4. előadás Valós idejű ütemezés (általános célú OS-ek esetén) Egyre inkább a figyelem középpontjába kerülő problémakör Ebben az esetben a végrehajtás sikere nem csak a végeredményen,

Részletesebben

8. Fejezet Processzor (CPU) és memória: tervezés, implementáció, modern megoldások

8. Fejezet Processzor (CPU) és memória: tervezés, implementáció, modern megoldások 8. Fejezet Processzor (CPU) és memória: The Architecture of Computer Hardware and Systems Software: An Information Technology Approach 3rd Edition, Irv Englander John Wiley and Sons 2003 Wilson Wong, Bentley

Részletesebben

Magas szintű optimalizálás

Magas szintű optimalizálás Magas szintű optimalizálás Soros kód párhuzamosítása Mennyi a várható teljesítmény növekedés? Erős skálázódás (Amdahl törvény) Mennyire lineáris a skálázódás a párhuzamosítás növelésével? S 1 P 1 P N GPGPU

Részletesebben

Virtuális memóriakezelés Védelem. Memória védelem. Intel x68. Izsó Tamás október 18. Izsó Tamás Memória védelem/ 1

Virtuális memóriakezelés Védelem. Memória védelem. Intel x68. Izsó Tamás október 18. Izsó Tamás Memória védelem/ 1 Memória védelem Intel x68 Izsó Tamás 213. október 18. Izsó Tamás Memória védelem/ 1 Section 1 Virtuális memóriakezelés Izsó Tamás Memória védelem/ 2 Operációs rendszer hardver szintű támogatása Hardver

Részletesebben

Architektúra, megszakítási rendszerek

Architektúra, megszakítási rendszerek Architektúra, megszakítási ek Mirıl lesz szó? Megszakítás fogalma Megszakítás folyamata Többszintű megszakítási ek Koschek Vilmos Példa: Intel Pentium vkoschek@vonalkodhu Koschek Vilmos Fogalom A számítógép

Részletesebben

Adatbázis rendszerek. dr. Siki Zoltán

Adatbázis rendszerek. dr. Siki Zoltán Adatbázis rendszerek I. dr. Siki Zoltán Adatbázis fogalma adatok valamely célszerűen rendezett, szisztéma szerinti tárolása Az informatika elterjedése előtt is számos adatbázis létezett pl. Vállalati személyzeti

Részletesebben

A programozás alapjai előadás. Amiről szólesz: A tárgy címe: A programozás alapjai

A programozás alapjai előadás. Amiről szólesz: A tárgy címe: A programozás alapjai A programozás alapjai 1 1. előadás Híradástechnikai Tanszék Amiről szólesz: A tárgy címe: A programozás alapjai A számítógép részegységei, alacsony- és magasszintű programnyelvek, az imperatív programozási

Részletesebben

Virtualizációs technológiák és alkalmazásaik (VIMIAV89) Házi feladat: Intel VT-d (IOMMU) technológia részleteinek megismerése

Virtualizációs technológiák és alkalmazásaik (VIMIAV89) Házi feladat: Intel VT-d (IOMMU) technológia részleteinek megismerése Virtualizációs technológiák és alkalmazásaik (VIMIAV89) Házi feladat: Intel VT-d (IOMMU) technológia részleteinek megismerése Garaczi Tamás BIQYSD 2010.12.01. I. Az I/O-eszközök virtualizációjának kihívásai

Részletesebben

Operációs rendszerek. Az NT folyamatok kezelése

Operációs rendszerek. Az NT folyamatok kezelése Operációs rendszerek Az NT folyamatok kezelése Folyamatok logikai felépítése A folyamat modell: egy adott program kódját végrehajtó szál(ak)ból és, a szál(ak) által lefoglalt erőforrásokból állnak. Folyamatok

Részletesebben

8. témakör. Memóriák 1. Számítógép sematikus felépítése: 2.A memória fogalma: 3.A memóriák csoportosítása:

8. témakör. Memóriák 1. Számítógép sematikus felépítése: 2.A memória fogalma: 3.A memóriák csoportosítása: 8. témakör 12a_08 Memóriák 1. Számítógép sematikus felépítése: 2.A memória fogalma: Gyors hozzáférésű tárak. Innen veszi, és ideírja a CPU a programok utasításait és adatait (RAM, ROM). Itt vannak a futó

Részletesebben

Adatszerkezetek I. 7. előadás. (Horváth Gyula anyagai felhasználásával)

Adatszerkezetek I. 7. előadás. (Horváth Gyula anyagai felhasználásával) Adatszerkezetek I. 7. előadás (Horváth Gyula anyagai felhasználásával) Bináris fa A fa (bináris fa) rekurzív adatszerkezet: BinFa:= Fa := ÜresFa Rekord(Elem,BinFa,BinFa) ÜresFa Rekord(Elem,Fák) 2/37 Bináris

Részletesebben

Komputeralgebrai Algoritmusok

Komputeralgebrai Algoritmusok Komputeralgebrai Algoritmusok Adatábrázolás Czirbusz Sándor, Komputeralgebra Tanszék 2015-2016 Ősz Többszörös pontosságú egészek Helyiértékes tárolás: l 1 s d i B i i=0 ahol B a számrendszer alapszáma,

Részletesebben

Adatbázis rendszerek Gy: Az adattárolás fejlődése

Adatbázis rendszerek Gy: Az adattárolás fejlődése Adatbázis rendszerek 1. 2. Gy: Az adattárolás fejlődése 1/22 B ITv: MAN 2017.09.17 Papír alapú adattárolás Lyukkártya 2/22 Probléma: 3/22 Papír alapú adattárolás Lyukszalag 4/22 Papír alapú adattárolás

Részletesebben

Algoritmusok és adatszerkezetek I. 1. előadás

Algoritmusok és adatszerkezetek I. 1. előadás Algoritmusok és adatszerkezetek I 1 előadás Típusok osztályozása Összetettség (strukturáltság) szempontjából: elemi (vagy skalár, vagy strukturálatlan) összetett (más szóval strukturált) Strukturálási

Részletesebben

9. Állományok kezelése. Operációs rendszerek. Állomány (file) Könyvtár. Az állománykezelő feladatai. Az állományrendszer réteges implementációja

9. Állományok kezelése. Operációs rendszerek. Állomány (file) Könyvtár. Az állománykezelő feladatai. Az állományrendszer réteges implementációja Operációs rendszerek 9. Állományok kezelése Simon Gyula Felhasznált irodalom: Kóczy-Kondorosi (szerk.): Operációs rendszerek mérnöki megközelítésben Tanenbaum: Modern Operating Systems 2nd. Ed. Silberschatz,

Részletesebben

Utolsó módosítás:

Utolsó módosítás: Utolsó módosítás: 2011. 09. 08. 1 A tantárggyal kapcsolatos adminisztratív kérdésekkel Micskei Zoltánt keressétek. 2 3 4 5 6 7 8 9 10 11 12 13 14 Erősen buzzword-fertőzött terület, manapság mindent szeretnek

Részletesebben

1. Digitális írástudás: a kőtáblától a számítógépig 2. Szedjük szét a számítógépet 1. örök 3. Szedjük szét a számítógépet 2.

1. Digitális írástudás: a kőtáblától a számítógépig 2. Szedjük szét a számítógépet 1. örök 3. Szedjük szét a számítógépet 2. Témakörök 1. Digitális írástudás: a kőtáblától a számítógépig ( a kommunikáció fejlődése napjainkig) 2. Szedjük szét a számítógépet 1. ( a hardver architektúra elemei) 3. Szedjük szét a számítógépet 2.

Részletesebben

A Számítógépek hardver elemei

A Számítógépek hardver elemei Mechatronika, Optika és Gépészeti Informatika Tanszék Kovács Endre tud. Mts. A Számítógépek hardver elemei Korszerű perifériák és rendszercsatolásuk A µ processzoros rendszer regiszter modellje A µp gépi

Részletesebben