Varianciaanalízis. Megoldás: egyszempontú varianciaanalízis (ANOVA = analysis of variance)

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Varianciaanalízis. Megoldás: egyszempontú varianciaanalízis (ANOVA = analysis of variance)"

Átírás

1 Varacaaalíz A étmtá t-próa általáoítáa mtára: ülööző mta átlagát zereté özeaolíta, megállapíta, og va-e özöttü zgfá ülöég. A t-próa azálatatla: Boferro proléma, az I. típuú á özegződe. Ee megértééez tetü eg 7-féle ezeléől álló íérletet, amel teát 7 mta átlagáa özeaolítáát íváa 7 meg. -féleéppe válaztatu mtát özeaolítára. Tudu, og étmtá t-próáál az I. faú a 5%-a, átlagoa mde 0- eete fellép, a c ülöég a ezelée atáa özött, aor mde 0- eete áa zgfá ülöéget ézlelé. Az említett 7 mtá íérlete teát özeaolítá özül átlagoa tö mt özeaolítáál az I. faú a matt ama a coportátlagoat ülöözőe találá. Ez az effetu a mtá zámáa öveléével ő. Megoldá: egzempotú varacaaalíz AOVA aal of varace H 0 : az öze mta ugaaól az alapoaágól zármaz: µ µ... µ H : legalá eg mta em ugaaól az alapoaágól zármaz Alapelv: Ha a ull potéz gaz, aor mde mta varacáa ugaazt az elmélet varacát, σ t ecl. Ezt, mvel tö mta va, ét ülööző, függetle tatztával ecülü. Előzör a mtáo elül varacáól ecülü az özvaracát, máodzor a mtaátlago ecült varacááól. Ez utó egelő az özvaraca -ed rézével, a mde mta elemű, mvel az átlag varacáa varaca /. Ha a mtaelemzámo ülööze, aor ct oolulta a eclé éplete, de az elv ua. Mad ezt a ét eclét aolítu öze. Feltétele: a mtá függetleége ormál elozláú alappopulácó val. vált. 3 a varacá omogetáa a mtá által ecült varaca ugaaa a varacáa a eclée

2 A ét varaca eclé: Mtáo elül varaca elő varaca Mtá özött varaca ülő varaca megatározzu a főátlagot, -t, é a mtaelemeet a mtaátlaggal eletteítü: 3 Tele varaca: a a mtá eg populácóól zármaza, feltezü + + t t Hpotézvzgálat: é özevetée F próával. F / egoldalú. d.f. - é - A zámolá egzerűítée: C - A / t B - A / eől t - Az eltéréégzetözege evezett -val elölt meége a megfelelő varacától aa ülööze, og cee oztva a zaadágfoal. Hazálatuat az doola, og a t az, am felotató -re é -ra, em pedg maga a varaca. Kzámítáura étféle épletet fel zota ír, az elő oa megértető defícó éplet a máodal atéoa zámol muaéplet. Általáoága: Haoló épleteet taultu a varacával apcolata. Özefoglaló tálázat Szórá oa df var F Mtá özött - / - / Mtáo elül - / - Tele + - Alaptálázat

3 Mtá Özegezve a mtára Elemzám Özeg A Átlag - égzet-özeg B / C : a.- mta.- eleme : eltéréégzetözeg um of quare. -t oztva a zaadágfoal apu a ecült varacát. 3

4 A varaca aalíz leegzerűített magarázata, arra az eetre, amor mde coporta ugaa: d mtaelem va Ha mtá va -féle ezelé é özee mtaelemü, aor F ˆ > F rt,, α z.foo: - é azt elet, og a véletle ca valózíűéggel ooz eora eltérét. Általáa 5%-o zgfaca-zte mőítü, teát elvetü H 0 -t, a a mtá özött varaca ol mértée ago a mtá elül varacáál amelet a véletle ca 5%-a ooza. Az 5% felratú F-tálázatot ell azál, mvel tt az F-próa egoldalú. Ha gaz H 0, aor a mtaátlago varacáa varaca/ aol a mtá elemzáma. Valóáa a elzet aval oolulta, og a mtá elemzáma ülöözőe leete:,,, mele özege, de ez a léege em változtat. Ha a mtaátlago varacááa -zeree zgfáa ago mt a ormál varaca, aor a mtaátlago em cupá a véletle, aem a ezelée matt eltére, azaz elvetü H 0 -t. : az ú. mtá elül varaca: a véletle em zztematu atá oozta varaca eclée az öze mtáól álló ag mtáa aár gaz H 0 aár em., a mtaeleme eltéréét a a aát mtáu átlagától égzetre emelü, özegezzü é oztu az özeített zaadágfoal, --val. Ez utó azért em -, mert tö mtáól ecültü a varacát: : az ú. mtá özött varaca, valóáa a mtaátlago ecült varacááa -zeree, amel H 0 feáláa eeté zté ugaazt az özvaracát ecl mt. Ha a ezelée atátalao, aor ugaazt ecl mt azoa valamel ezelé atáo, aor, teát ugaaz a várató értée: az elmélet varaca. Ha várató értée ago lez, mert a mtaátlago em ca a véletle, aem a zztematu atá matt ülööze. Fˆ zámítáaor mdg -et oztu -tel, aor, a eetleg a e ez a rtá, ld. éő. Teát leet Fˆ <, leor H0-t megtartu, meg em ell éz a tálázata. 4

5 A varaca aalíz ét alapmodelle I. Modell A ülöéget KEZELÉS oozza. Cél: a mtaátlago özött ülöége felmérée. Az ege értée özetevő a övetező: µ + α + ε főátlag várató érté + ezelé oozta eltéré poztív v. egatív + orm. elozláú radom ompoe ulla várató értéel Ha az F próa zgfá, tová meetü aa mutatáára, og mel átlago özött vaa zgfá ülöége SD. Ha mtaátlag ülöége megalada az SD-t ő oozzá a ag varacát. a Ha előre eldötöttü, og mel coporto átlagát aaru özeaolíta pl. töféle ezelé é eg otroll eeté: a ezelte ülööze-e a otrolltól, aor az ú. megtervezett eet áll elő. Ha a íérlet eredméée meretée válaztu a ét legá ülööző átlagú coportot, az az ú. em tervezett eet. Utó eete zgorú rtérum alapá dötü el, og zgfá-e a ülöég. I. modell F próa em zgfá STOP megtervezett eet a pror zgfá em tervezett eet a poteror zgorú II. Modell cee rögzített ezelée, a coporto ülöégét radom atáo oozzá. µ + A + ε aol A eg ormál elozláú változó σ A varacával léegée a ülő varca. ε elő varaca Eor az a érdé, og m a coporto özött ülöég, érdetele. A σ A ülő varaca az özvaraca áad rézét tez? Cél: pl. mtavételezé optmalzáláa. elővzgálat eg drágá vzgálat előtt Képzelü el eg ola mtavételezét, amel züégéppe rétegzett radom típuú. Pl. Patámáa zereté megatároz eg ezm ocetrácóát. Mvel eg patámáo elül leete eltérée, ezért eg-eg állat mááól tö mtát vezü. Teát tt eg coport megfelel eg patá mááól vett tö mtáa. Ha a má telee omogé lee, aor em lee rá züég, og eg máól tö mtát vegü. Ha a mtavételezé céla eclé, aor cöete zereté a varacát é eez - mteg előíérletéppe varacaaalízel megállapítu, og a mteleme varacáa ago réze zármaz-e patáo özött ülöégől vag pedg az ege patáo máa elül omogetáól. 5

6 tt: A mel patát válaztom, ε gadozá Eg végletéppe tetü azt az eetet, og mde ege patá zte egforma elteéztett törz, azoo tartá örülmée, de eg máo elül eltérée vaa. Eor a varaca zte telee a coporto elül varácóól ered, vag az ege máao elül egeetleégől. > A eclé optmalzálááoz az ege máao elül mtaelemzámot ell övel coporto elül mtaelemzámot, -t, og az özvaracát cöetü, a patáo zámát em érdeme. A má véglete megfelel az, a a varaca fő forráa a patáo özött ülöég, az ege máao elül alg tér el a mért változó. > Eor a varaca főét a coporto özött ülöégől ered, teát a eclé optmalzálááoz a patáo zámát coporto zámát, -t ell övel, míg az eg-eg máo elül mtaelemzámot em érdeme. A varaca-aalíz foltatáa Modell Ha az F-próa zgfá mel párora va zgfá eltéré?? Megtervezett eet a pror páro SD Szgfá dffereca érvée a t elozlá, a t épletée azálu a o eclét adó tele elő varacát, e a ét mta varacáát é m a ét özeaolítadó mta elemzáma t + m m eől a lege, már zgfá ülöég em tervezett a poteror + m SD t α, m zgoríta ell a teztet, og az I. a elövetéée valózíűége a végreatadó özeaolítáoa özee e alada meg α-t. SD magaa lege α' α /g aol g az özeaolítáo záma, α' az I. típuú a eg özeaolítáál α α' g é SD-t a fet éplettel, a e α' mellett ereett rtu értéel zámítu. 6

7 Az F elozlá é a t-elozlá apcolata Voltaéppe az AOVA a eetre a t-próával megegező Az F / eg varaca áado a t µ zté varaca-áado, ze a zámláló égzete eltéré za. foal. Vag általáa t F, Eől vzot övetez, og a varaca elemzée feltétel a varacá azooága. Ee próáa voltaéppe az elő lépé az elemzé orá. Töféle tezt va, a legegzerű azoo mtaagágora az F ma tezt: F ma ma { } / m { } Ee va elozláa, t. a rtu értéeet tálázat foglala öze. 7

Dr. Balogh Albert: A statisztikai adatfeldolgozás néhány érdekessége

Dr. Balogh Albert: A statisztikai adatfeldolgozás néhány érdekessége Dr. Balogh Albert: A statszta adatfeldolgozás éháy érdeessége Kérdése:. Hogya becsüljü a tapasztalat eloszlásfüggvéyt? 2. M az a redezett mta? 3. M az a medá rag és mlye becslése vaa?. Hogya becsüljü a

Részletesebben

? közgazdasági statisztika

? közgazdasági statisztika 014.10.03. Valózíűégzámítá é a tatztka Valózíűég zámítá Matematka tatztka Alkalmazott tatztka? közgazdaág tatztka épeég tatztka orvo tatztka Stb. Példa: vércoportok Az elozlá A AB 0 P( P( B) P( AB) P(0)

Részletesebben

Ftéstechnika I. Példatár

Ftéstechnika I. Példatár éecha I. Példaár 8 BME Épülegépéze azé éecha I. példaár aralojegyzé. Ha özeoglaló... 3.. Hvezeé...3.. Háadá....3. Hugárzá...6.. Háoáá....5. Szgeel axál hleadáához arozó ül áér....6. Bordázo vezeé.... Sugárzá...5.

Részletesebben

Deszkriptív statisztika

Deszkriptív statisztika Dezkrptív tatztka Legye ξ{,, 3,...,,..., } egy 90 elemű mta, f a gyakorága az mtaértékek 3 4 5 6 7 8 9 0 f 0 4 7 5 6 4 4 3 5 0 f 8 6 4 0 8 6 4 átlag6,7 0 3 4 5 6 7 8 9 0 modu6 medá7 Cetrál tedea a Modu

Részletesebben

A Sturm-módszer és alkalmazása

A Sturm-módszer és alkalmazása A turm-módszer és alalmazása Tuzso Zoltá, zéelyudvarhely zámtala szélsőérté probléma megoldása, vagy egyelőtleség bzoyítása agyo gyara, már a matemata aalízs eszözere szorítoz, mt például a Jese-, Hölderféle

Részletesebben

Numerikus módszerek 5. Közönséges differenciálegyenletek numerikus megoldása

Numerikus módszerek 5. Közönséges differenciálegyenletek numerikus megoldása Nmer módere 5. Köönége derencálegenlete nmer megoldáa Kedet é peremérté eladato A Eler-móder A Eler-móder avítáa Rnge-Ktta-módere Lneár tölépée módere Peremérté eladato máodrendű derencálegenletere Kedet

Részletesebben

9. LINEÁRIS TRANSZFORMÁCIÓK NORMÁLALAKJA

9. LINEÁRIS TRANSZFORMÁCIÓK NORMÁLALAKJA 9. LINÁRIS TRANSZFORMÁCIÓK NORMÁLALAKA Az 5. fejezetbe már megmeredtü a leár trazformácóal mt a leár leépezée egy ülölege típuával a 6. fejezetbe pedg megvzgáltu a leár trazformácó mátr-reprezetácóját.

Részletesebben

13. Tárcsák számítása. 1. A felületszerkezetek. A felületszerkezetek típusai

13. Tárcsák számítása. 1. A felületszerkezetek. A felületszerkezetek típusai Tárcsák számítása A felületszerkezetek A felületszerkezetek típusa A tartószerkezeteket geometra méretek alapjá osztálozzuk Az eddg taulmáakba szereplı rúdszerkezetek rúdjara az a jellemzı hog a hosszuk

Részletesebben

Tuzson Zoltán A Sturm-módszer és alkalmazása

Tuzson Zoltán A Sturm-módszer és alkalmazása Tuzso Zoltá A turm-módszer és alalmazása zámtala szélsérté probléma megoldása, vag egeltleség bzoítása ago gara, már a matemata aalízs eszözere szorítoz, mt például a Jese-, Hölder-féle egeltleség, derválta

Részletesebben

Kétmintás t-próba. F s

Kétmintás t-próba. F s Kémá -próba Ké ma özehaolíáára hazáljuk. Álaláoabb ee: zármazha-e a ké ma ugaabból az alapokaágból? Tehá az a é, hog a ké ma álaga külöbözk cak a mavéel hbáak uhaó be, vag peg valamle zzemaku haáak? Uóbb

Részletesebben

ö ö ö ö ő ö ö ő ö ő ő ő ö ö ő ő ö ö ő ő ű ű ő ő ö ű ő ö ö ő ö ő ö ú ő ö ű ű ő ő ö ű ő ö ö ű ű ő ö ű ő ö ö ű ű ű ű ű ű ű ö ű ő É ö ú ö ö ö ö Ő ö ö ö ö ő ö ö ő ö ö ő ö ö ő ű ö ö ö ö ö ö ő Ö ő ö ö ő ö ő ö

Részletesebben

á ú é é ő é ő á ő ő á á ú ű é é ö ő á ő ú ő ő á é Ü Ü á é á é á é á é á ö ö á é ő á ú ű é é á é é ő á ö ö á á é é ú é é ú á á ő é é é ö ö á á é ű ő á é ű ő ú ő á á é á ú é é á é ö á á ö Ü á á é é ú á á

Részletesebben

Ü Ú Ú Á Á Ő É é ö é é é é é ü ö é é é é é é é é é é ö é ö ö ö é é é é é é ö é é é é ö é ű é é é ö é é é é éé ö é éö é é ö é é é é ö é ű é é é ö ö é é é é é ö é ö é é ö ö é ö é é é é é é ü é é ö é é é é

Részletesebben

ú ő ü ő ő ú Í ő ő ü ő ú ź ö ü ő ő ő ó ú ő ö ő ő ö ö ő ő ó ó ó ö ő ő ő ő ő ő ü ő ő ó ő ő ó ü ő ź ő ő ő ő ő ő ü ź ő ü ó ź ő ú ű ő ö ö Ö É őí ą ő ó ú ú ő ő ü ź Á Ü ó ő ő ő ő ő ű ő ö ő ü ő ö ö ő ö ö ó ó ö

Részletesebben

Síkbeli csuklós szerkezetek kiegyensúlyozásának néhány kérdése

Síkbeli csuklós szerkezetek kiegyensúlyozásának néhány kérdése íbel culó zeezete egyeúlyozáá éáy édée íbel culó zeezete egyeúlyozáá éáy édée DR BENKŐJÁNO gátudoáy Egyete Gödöllő Mg Gépt Itézet gyoozgáú gépzeezete tevezéée foto lépée z egyelete, ezgéete üzeet bztoító

Részletesebben

V. GYAKORLATOK ÉS FELADATOK ALGEBRÁBÓL

V. GYAKORLATOK ÉS FELADATOK ALGEBRÁBÓL 86 Összefoglaló gyaorlato és feladato V GYAKORLATOK ÉS FELADATOK ALGEBRÁBÓL 5 Halmazo, relácó, függvéye Bzoyítsd be, hogy ha A és B ét tetszőleges halmaz, aor a) P( A) P( B) P( A B) ; b) P( A) P ( B )

Részletesebben

GEOMETRIAI OPTIKA - ÓRAI JEGYZET

GEOMETRIAI OPTIKA - ÓRAI JEGYZET ε ε hullámegelet: Mérökizikus szak, Optika modul, III. évolam /. élév, Optika I. tárg GEOMETRIAI OPTIKA - ÓRAI JEGYZET (Erdei Gábor, Ph.D., 6. AJÁNLOTT SZAKIRODALOM: ELMÉLETI ALAPOK Maxwell egeletek E(

Részletesebben

Á Á É É É ö É Ó ú Á ú Á Á Á Á ö Á ő ű ú ö ö ú ű ú É ő ö ú ú ű ö ű ő Ú Ú ú ő ö ö ő ö ö Á ö Á ö ú ű ö ö ö ö ö ö ö ö ö ő ö ö ö ö ő ö Á ö ő ö ö ő ú ú ö ö ő ö ö ö ö ú ö ú ö ő ú ö ö ö ö ö ú ö ú ú ö Ú ő ű ő ö

Részletesebben

É ú ú ú ú ú ú ú ú ú É É ú ű ú ű ú Ú Ü ú ú ú ú ű ú ú ű ú ú ú ú ú ú ű ú ú ű Ü ű ű ú É É ű É ű É ú ú ú ű É ú ú ú ú ú ú ú ú ú ú ú ű ú ú ű Á ú É ű ű ú ú ú ú ű ű ű ú ű ú ú ú ú ú ú ű ú ú Ú ű ú ű ű ú ú ű Ü ú ű

Részletesebben

É ú ú Á É ú É ű Á Ú ú ú ú ű ú É ű ú ú ű ú ú ű ú ú ű ú ú ú ú ú ú ű ű ű ú Á Á ű É É ú ú ú ú ú ú ű Ü ű ű ű Ö Ú ú Ú ú ű ú ú ű ú ű ű ú ú Ö ű ú ú ú ű ű ű ű ú ú É É ű ű É É ú ú ű Á ú ú ú É Ú ű ú ú ű ú ú ú Ü ú

Részletesebben

É Ő É é ö í é í é í í Ú é é é í í ő ö ö é É Ó É Á í é ő é í í í Í Í í í É É É í é é í Í é Íő é í é í é í í Í ú é é ű í í é í í Í ö ö ő é ö ö é é í Á ő é é é í é Í ö é é é é é é ö Í ö é é é í í é ö í í

Részletesebben

Á ö ü ö ő ö ű ö ú ú ö ú ő ő Á ő ő ö ú ü ő ő ú ő ő ő ő ö ü ő ő ú ő ö ö ü ü ő ö ü ü ö ő ú ő ő ő ö ú ú ö ö ú ő ü ü Ü ő ö ő ű ü ö ú ú ú ö ő ö ő ö ú ö ű ő ő ö ő ö ü ö É É É É Ú É É É É É öö É É ő É ö É

Részletesebben

ö ü ö ú ú ö Á Ú ü ö ö ü ű É ú ü ü ű ö ö ö ö ö ö ö ö ű ú ü ö ü ü ű ö ö ö ö ö ö ö ü ö ű ű ú ö ü ö ö ö ű ö ű ö ö ü ú ü ö ü ö ü ü ö ö ö ö ö ü ö ű ü ö ö ű ö ö ö ö ü ú É ö ö ö ö ö ö ö ú ú ö ö ö ö ö ö ú ú ú ú

Részletesebben

ú Á ö ü ö ú ű ü ü ö ö ű ö ö ö ü ö ü ö ű ü ö ú ú ü ü ü ú ö ö ö ű ű ü ú ű ü ö ö Á ö ü ű ö ö ü ö ü ö ö ü ö ö ü ö ö ö Á ü ú ö ö ü ö ö ö ú ö ü ö ö ú ú ü ö ű ö ö ö úö ö ö ö ö ö ű ö ú ö ö ö ü ü ö ú ö ö ú ö ö

Részletesebben

ő Á ú ő ú ő ú ú ú ő ő ő ű ú ű ő ő ú ő ő ő ú Á ő ú ő ő ú ő ő É É ú ő ő Ú ő É ú ú ő ő ő ő ő É ő ő ú É ű ű ű ú ő ő É ő ű ő ő É ú É ú ő ő ű ú ű ő ő ú ú Ú ú Ü ő ű ú ő ű ő ő ú ő ő ő ő ú ő ő ú ú ő ú ő ú ű ű É

Részletesebben

Á ű Ú ÚÉ Á Á Ü Ü ű Ü Ü Ü Ú Ü Ü Ü É Ú Ü ű Ü Ü Ö ű ű Ü Ü Ü Ü Ü ű ű ű Ú ű ű Ú ű ű ű ű Á Ú É Á ű Á É Á Ú ű Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á ű Á Á Á Á Á É ű Ü ű Á ű ű ű Á ű Ú Ó Á Á ű Ú ű Ü ű Ü Á Á ű ű É

Részletesebben

É É Á É É ó ó ö ű ó ó ó ű ó ö ö ű ó ó ő ö ű ó ó ű ú ö ű ó ó ó ó ö ű ó ó ó ö ű ő ő ő ó ö ű ú ö ó ó ó ú ő ő ü ó ó ó ö ű ű ö ő ó ú ó ö ü ö ű ó ó ö ő ö ó ö ö ő ő ö ó ő ö ő ó ő ó ő ú ú ö ű ó ú ö ő ű ö ó ó ó

Részletesebben

É É É É É Ö Á Á É Ő ű ű ű Ü ű ű ű Ú Á ű Ö ű Ú Á Ú ű Ó Ú Ú Ú Ú ű Ú Ú ű É ű ű É É É ű É É Ü ű ű É Á ű Á Á Ü Á Ü É Ú Á Ú Ó Ü Ü Ú ű ű Ú Ü Ü ű Ú É Ö ű ű Ü Ó Á Ö Ö ű Ö É É ű ű É ű ű ű Ú ű Ö É Ó ű Ú Ú Ú É Ú Ú

Részletesebben

Á Ó Ö Á É É É É Ő ű Á Ó ű Ö ű ű ű Ó ű Ö Ú Ö Ú ű ű ű ű Ö ű ű ű ű ű Ü Á ű ű ű ű ű ű ű ű Ö Ó ű Ö ű ű Ü ű ű ű Ö ű ű ű ű ű ű ű Ö Ó ű ű ű ű ű Á Á ű É ű ű ű ű ű Ö ű ű ű ű ű Ó Ü Á É Ű ű ű ű ű Á ű ű ű Á É ű Ú Ó

Részletesebben

ö ű ö ö ö ö ü ö ö ü ö ö ö ö ö ö ű ö ü ú ö ö ö ö ű ü ü Ö ü ö ű ű ű ö ú Ü Á Á Á ö ö ú ü ú Ü ö ö ö ö ö ú Ü Ü ö ö Ü ö ü ö ú ö ü ö ü ü Ü ü ű ö ü ö Ü Ú Ü ü Ü ü Ü ú Ü ö ö ü ö ö ű ű ü ö ű Á ö ü ö ö ú ö Ü Á Ü Ő

Részletesebben

ő ő ő ü ő ő ő ő ő ő ő ű Ö ő Ö ő ő ő ő ő ő ő ő ü Ö ő ő ü É ő ő ü ő Ú üü ő ő Á Á É É Á ü Ú ő Ó ű ő É ő ű ő ő ő ő ő ű É Ö ű Ú Ö É ő ű ü ő ü É É É É É ő É ü ű ő ü űú ű ü ű Ú É ü ű É É É ő Ó ő ű Á ÚÚ ő ő É

Részletesebben

ö Á É É ö ö Ö ö ű ö ő ö ő ö ú ü ö Ü ö ö ö ö ü ö ú ö ő ü ö Ú ü ü ö Ü ö ö ö ö ö ö ö ö ö ö ö ö ü ő ö ú ö ö ü ö ö ö ö ő ő ö ű ö ö ű ö ö ő Ü ö Ü ö ü Ü ö ö ö ú Ó ö ö ö ö ö ő ö ö ú ö ő ö ö ő ő ö ö ö ü ö ö É ö

Részletesebben

ű É ű Á Ü É É ű ű Ű ÓÓ Ü É Ü Ú Ú ű Ú Ö Ö Ü ű ű Ű Ú Ö Ü Ö Ú Ó Ó Á É Ú Ű Ú Ú Ú Ú Ú ű Ú Ű Ú ű ű Ú ű ű Ú Ú É Á Ú Ú É É ű ű ű Ú ű ű Ú ű Ú Ó É Ű Ó ű Ú ű ű ű Á ű ű Ú ű ű É ű ű ű ű Ó Ú Á Ú ű Á ű Á Ú Ó ű ű Á ű

Részletesebben

ó á á á á á ó á ó Á ö é á ó Ú á á á ó Á ö é á á á ó ó ó á á ó á ó Ú á é á ó ü é ü é á á á á ó é é á ú á ó á é ó á ó Ó é á ó é á ó ó á Ó Ö é á ó á ó é é é ü é ó á Ó é é é ó ó ó á ó é é ó á ü ó é á ó é é

Részletesebben

Ó Ú Ö Ú É Ö É Á ű ű ű ű ű ű ű ű Á ű Á Ú ű Ü ű ű Ü ű Ó ű ű Ú ű Ö Ö ű ű ű ű Á É Ó ű ű Ü Ö ű ű Ü Ú É ű ű ű ű É Ü Ü Ü É Ü Ü Ü Ü ű ű ű ű ű ű ű Ú É ű ű ű ű É Ü ű ű ű ű ű ű ű ű ű Ú ű Ö ű Ü ű ű ű ű É ű Ó ű ű É

Részletesebben

É Ó Ö Á ú Á ú ú ú ú Ó ú ú ú ú ű ú Á ÁÉ Á ű ű ú ú É ú É É ű ű É ű Ú ű Ü ú ű ú Ö Ú ű Ö Ö ú Ő ú ű Ö ú ú Ú Ó ú ú ű ú Ö Ú Ü Á Á Á É Ü ű Ü Ö É Á Ü Ó É Ö É ű Ü Á Á Á ú Ü Ö Á É Ü Á ú Ö Ö ú Ö Á ú É É Ö É Á Á Á

Részletesebben

Ú ű Ú ű ű ű Á ű Ö Á ű ű ű ű ű ű Ö ű Á ű ű Á ű ű ű ű ű Á ű Ú Ü Ü ű ű Ü Ü Ö ű ű ű ű ű Ú Ü ű ű ű ű ű Ú Ó ű ű ű Á É ű ű ű Ű ű ű ű É Á Á Á Á Ó Ó ű Ü Ú Ú Ö Ú ű Ö Ő Ú Ú ű Ó Ő Ú Ö Ö Ő Ű É ű Ó É Á Á ű ű Ú Á É É

Részletesebben

ú ú ű ú ú Ú É É Ó ű ű ü ú ü ű ü ú ú ü ü ü ú ü ú ü ü ü ü ú ű ü ü ú ű ü ü ü Á ű ű ú ű ü ü ú ű ü ű ú ü ü ü ú ű ü ü ü ű ú ü ú ü ü ü ű ű ú ü ú ű Ö ú ü ü ü ü ü ú ű Ö ü Ú É ú ú ü ü ü ü ü ü ü ü ü ú ü ú ü ú ü ü

Részletesebben

Ú ő É ő ű ő ű Á É ő Ó Á Á ő ű ű Á ű Ú É ő É Ú Ö ő ő Á ő ő Á É É Á ő ő ő ő ő ő Á Ó Á É Ú Á Á Á ő Á Á Á Á Á É ő ő ű ő ő É ő ő Á Á Ó Ü Á É Á ő Á ő ő ő Á É Ü ő Á Á ő Ö ő ő Á É ő ő ű ő Ö Á Á Ú Á Á Á É É ő ű

Részletesebben

Á ú ő ú Ú ü Ö ú Á Ó ú ü ő ő ő ú Ö ú É ú ű ü É ü ú ő ő ő ú ú ü ü Ö Ö ú ő ő ű É ü ü ü ú ő ő ú ü ü ő ő ő ú ü ő Ö ű ő ü ő ü ő ő Á É ő ü ő ü ú ú ő ü ü ü ő ü ő Ó ü ü ü ü ú É ő ü ü ü ú ő ü Ó ü ü ő ú ő ő ü ü ú

Részletesebben

Á É ö ö ő ő ő Ú Ü ö ö ő ő ö ú ő ö ő ö ú ü ö Ü Ó ö ö ö ö ö ő ö ú ú ö ü Ü ö ö ö ö ö ö ő ö ö ő ö ü ő ö ő ü Ü Ó Ó ö ö ő Ü Ó ö ő ő ő ő Á ő ő Ü ő ö ő ő ő ő ő ő ő ő ő ő ő ő ő É ü É ö ö É Ó ő ő ő ő Ü É ő Ó ő ő

Részletesebben

Á ő ő ő ö ö Ó ő ú ö Á É É ü Ö ő ö ő ő ö Ó ö Ú Ó ő ő ő ö Ö Ú Ú ő Ö ú ö ő ú ú ú Ó ö Ó Ó Ú Ú Ú Ú Ö Ó ő ő ú ő ű ü ő ö ö ö ő ü Ó Ó ő ő Ó ö Ó Ó ü ő ő Ó ő ö ő ő Ó ő ő ő Ú ö ő Ó Ó ő Ó ő Ö ő ö ő ü ü ű ö ö ö Ó ö

Részletesebben

Á Á ó ő ő ó Ő ó ó ó Ó Ó Ó ó Ó Ó Ó Ó ó ő ó ó Ő Ó Ó Ó Ó ó Ó Ó Ó Á Ó ó Ó ó Ó Ó Ó ó Ó ó Ó Ó Ó Ó Ó Ó ó Ó ó Ó Ó Ó Ó Ó Ó ó Á Ó ó ó Ő ó ó ó Ó ó Ú ó Ó Ó ó Ó Ó Ő ó Ó ó ó Ó ó Ó Ó Ó ó ó ó Ó ó ó ó Ó Ú Ó Ó ó ó ő ö Ó

Részletesebben

É Ú ú Á Ú Ú Á Á Ú ú ú ú Ú ú Á Ú Ü Ü ű ű ú ú ú ú Ü ú Ü Ú ú ű ú É ú Ü ű ú ú Ú É É Á Á Á Á Ü ú Á Á É Ú É ú Á Ü É Ü Ü Ü Ü Á Á ű ú ű ú Ü ű Á ú ű ű ú ű ű ű ú ű ű ű ű ú Ü É ű ú ű Ü ű ú ű Ü Ü Ü ú Ú ú ú ú ű ú ű

Részletesebben

É É ú í ö É É í ú É Á Á Á ö í ö í ú í Ö ö ö í í Á ö ö ö í í ö í É í ö ö í í í ö í í í í ö í í ö ö í ö ö í ö í ű í ö ú ű í í ö Ö ö ö í ö ö í ö ö í í í ö É ö ö ú ö ö ö í ö ű í ú ö ú Í É ú ö ö ö É ö ö í Íí

Részletesebben

Á Á é é ő ö ó é é é é é ő é é é ő ő ő é ü ő ó ó ó ö ö é é ő é ő é ő ö é é é é é é é ő é ű ő é é é é é ó ő ö é ú ö é ö é é ö ő ó ő ó é ő é ő ő é ő ó ó é ő ő é é ü ő é ó é ö ő é ő é ó ő é é ő é é ő é é é

Részletesebben

ú ő ü ő ő ü ő ű ű ő ü ü ő ő Ü Á ő ü ő ő ü ő ő ü ő ú ő ő ő ü ő ő ő ő ő ő ü ő ü ő ő ű ű ő ü ő ő ő ü ő ü ő ű ő ü ő ő ő ő ü ü ü ő ő ű ú ü ü ő ő ő ő ü ü ő ő ő ü ő ő ő ő ű ő ú ő ő ü ő ő ü ő ő ő ű ő ő ű ü ü ő

Részletesebben

ü Ü ö ö ö Á ő ö ö ö ü ú ö ő Á ő ö ő ü ú ő ő ő ö ö ö ő ú ő ő ő ö ő ö ű ő ő ő Ú ö ü ő ő ú ú ö ő ö ő ú ú ő ú ö ö ő ú ő ü Ü ö ő É ő ő ü ö ő ú ő ö ű ő ő ü ő Ú ű Ö ü ő ú ő ő ő ú Ú ü ö ő ő ú ő ű ő ö ö ü ö ö ő

Részletesebben

ö ő ö Ö ö ó ő ő ő ú ö ö ő ó ü ö ö ő ő ő ő ő ö ő ö ő ó ő ö ő ő ő ú ó ő ö ó ö ő ó ö ő ő ő ó ő ő ő ő ö ö ő ö ő ó ú ö ö ő ő ó ő ő ú ő ü ő ó ö ö ő ő ő ü ö ö ő ó ó ö ő ő ö ő ö ö ö ö ő ő ő ü ű ö ö ő ő ó ö ö ö

Részletesebben

ö É ö ö ő ő ö ó ó ú ő ó ö ö ő ő ö ö ó ű ű ó ú ó ő ő ö ű ó ő ö ö ű ű ó ú ő ó ó ö ű ó ő ö ö ű ű ó ő ő ö Ü Ü ö ű ó ő ö ö ű ű ó ő ó Ü Ü ó ő ő ű ö ö ű ű ű ű ő ö ó ű ó ö ű ö ó ö ó ö ő ó ö ö ő ó ö ö ö ű Ö ö ö

Részletesebben

Á ú Ö Ú Á Á ú ú ú ú ü ü ú É ő ú ű ú ü Á É Á Í Á ú ú ú ű ú Ö ú ü ú ú ü ú ú ü ú ü ü ú ü ü ú ú ú ü ű ü ü ü ü ú ü ú ő ő ú ü ű ü ő ú ő ú ü ú ü ő ű ő ő ő ő ő ü ú ú ü ő ü ü ú ő ü ü ü ü ő ü Á ú ő ú ú ú ő Á ú ü

Részletesebben

ú Ö ó ú ó ú Ö ő ü ú ő ó ü ú ő ü ú ő ó ó ó ó Ö ő ü ü ü ü ő ú ű ü ú Ö ő ü ő ó ü ü ü ő ő ő ü ó ő ü ú ő ü ő ő ő ó ó ő ó ó ü ő ó ü ó ó ü ú ó ó ő ú Ö ó ü ó ő ó ő ó ő ó ó ü ó ó ó ó ú ő ü ó ü ú ó ő ü ó ő ő ő ü

Részletesebben

ű Ö ű ú ű ü ú Á ű Á ű Á ú ű ü ú ú Í ü Á ú Ö ú ú ú ű ú ü ú Ö ú ű ű É ü ű ü ű ű É ü ű Ö ú É ú ú ú Á Á Á Á Á Á ú Ö Á Á Á Á ú ú Á Í Ü Á Á ú ú ú ú Á Á Á ű ü ü ü Ö ű ú Á Á Á É ú Á Á ű ú Ö ű ú ű Ö ű ű Ö ű ű Ö

Részletesebben

Ó Á É Ő É ő ő ő ó ó ó ó ó ő Ö ó ő ó ü ő ó ő ű ó ó ó ő ő ő ő ő ű ő ó ü ó ő ő ő ő ó ü ó ó ó ű ő ó ő ó ő ú ő ő ü ő ó ü ó ő ő ő ü ó ó ő ő ü ő ó ő ó ő ű ő ő ű ő ó ó ó ó ó ó ő ő ó ó ó ő ó ő ü ó ű ő ő Á ó ó Ó

Részletesebben

É ü É É ü Á Á Á ö É ú ő í á é ő á á á é é ü é é é é é ú é é ő ü ü é é í á é é é ő ő á é ü é é ü á é ú úá íő ű á ő é ü á á é é é é í üé á ő é é é ü Í é ő á í á é ú á á á é á ö ü Á á ő é é ü á é á á ö í

Részletesebben

Ü Á Á ü É ü ü Í ú Í ú É ű ü ű ü ö ö Í ü ö ü ü ö Í ü ö ö ö ú Í ü ö ö ü ű ö ú ö ö ö ú ú ö ű ö ű ü ü Í ü ú ü ú ö ú ú ú ú Ő É É Ü É Á ü ü Í ü ü ö ö ú ö Á Á Ő ü ü ú ú Ö ü ö ö ö ö ú Í ö ú ö Í ö ö Í ú Í Í ü ú

Részletesebben

Á É ü Ö Á ö ö ö ö ü ö ö ö ü ö ű ö Í Ü ü ö ö ö Ü ö ö ö ö ü ö ö ú ö ö Í ű ö ű ü ö ú ü ü ű ö ö ö Ü ú ú ö ö ö ö ü ü ö ü ö ö ö ö ö ö ö ö ö ű Á ü ü ü ö ü ö ö ü ü Í ö ü ü É ű ű ö ö ö ö ö ö Á ö ö ö ü ö ö ö ö ü

Részletesebben

Ö ö ö í ö í ű ö ő ú ü í ú ő ő ő ú ő ú ő í ő í Á Ö ő ő í ö ö Ö í É Á Á ú Ú í í í í í ű ö í í í ő ö ü ü ö í í ú í í ö ő ü ú ő ö ö ő ú ú ö ű ú í ő Á ú ú ő ú ű ü í ú ü ü ü ö ő í ő Ö ú ö ö ö ő ü ü ö őí ö ö

Részletesebben

í ö ö ü ü í ü ö ü ö í ú ú Ö ö ö ü ü ö ö ű í ö ö ü ű ö í ű ö ö ü Á ö í ö í í í í ö ö ű ű í í í í í í ö í Ú í ü ü ö ű ö ö í ú ö ö ö ö ö ö Á í ö ú í ü í ú í ú Á í ú í ú ú Á ü ü í í í ö í í Á ú í ö ö í í ú

Részletesebben

ű É Í É Ö ű ü Ö É Ö Í É Ö Ö

ű É Í É Ö ű ü Ö É Ö Í É Ö Ö ú Ú Í Ú Ú ű É Í É Ö ű ü Ö É Ö Í É Ö Ö ü É Í ü Á É Ö Ő ú Ö ű Ő Ő Ő Í Ö ü Í Á Ö Ö Í ű Ő Í É É ü ü Í ü Í Í ű Í Ö É Ö ü É ű ű Ö ü Í Í ü Ö Í ű Ö É Ö ű Ö ü Ő Ő Á Í Í Í Ö Í É É Í ű ü ü ű É ü ű Ö Ö Ö ü Ö Í ü ű

Részletesebben

Í É ő ű Á ő ő ú ű ő ő ű ú ü ő ú ű ő ú ú ü ő ú ü ú ü ü ü ő ő őü Í ú ű ő É ű Í ű ű ű ü ő ő ű ő ű ű Á Á ú ú ú ú ú Í ő Í ő ü ú ü Ü ő Á ő ő ő Á ő ő ő ű Ü ú ü Á ő ű É ü ú ő ú ü Ö Í É Ü É Ü ú Ü ő ő Ő Á ű ü ő

Részletesebben

ö ü ö ú ú ö Í Ú ü Í ö ö ü É ú ü ü ű ö ö ö ö ö ö ö ö ű ú ü ö ú ü ü ü ű ö ö ö ö ö ö ö ü ö Í Í ű ű ú ö ü ö ö ö ű ö ú ö ö ü ü ú Í ö ü ű ö Í ü Í ü ö ö Í ö ö ö ö ü ü ű ö Í ö ö Ö ú Í ú Í ö ö ö ö ö ö ú ú Á ö ö

Részletesebben

Á Á Á ö Á ű Á Á ű ő ö ö í É ő í ő ő í ő ö ö ö ü ö ő É Ö ő í ü ü ö ö ő ö ő ő í ő ö ú ü ö ő Á ő ö ö í ö ö ö ö ú ő ú ú ő Í ü ő ő ű ő í ö ú ú ő ő ö ü ő É ö ő ö ö ő ü ö ú ő í ű ö ű ü ö ő í ö ő ő ő ö ő í í ö

Részletesebben

É Á í Ú É í ö í ő ú ö Í ö ü Ö ö ü ö Ö ö Á É őí ö ú ő í ő í ú ö í ő ő ö ú Ú ű ő ő Ú ü ö ú ü ö ö ü í Í ú ő í ü ü ő ö ö Ú ú Í Ú ü Ú ö ő ú ö ű ü í Ö Ö ö í ö ő ö ú ő Ú ú Ö í Ú ü í Á í É ő ö ő ö Á ű Ü í ü í

Részletesebben

ú ű ú ú ü í Ü í Ü ü ö ö ű í ö ű ü ö ö ö ö ö ú ú ü í í ű í ú ű ú ű ú ü ú ö ö ö ö ú ú í ű í ú ö ú ú ú ú ü ü ö ü ü ö ö ö ö ú í ü ö ü ú ö ü ü í ü í ö ü ü í ö í í ö í ú ü ö í í ú ü ö ü Á ü ú ü ö Á ö ö ü ö ü

Részletesebben

ú í ö ü í íí ő ö ö ö ü ö ö ö ú ű ű Í Í í ő í ű í ő ü Í ő íú í ö ö ö ő í í í Í Í í í ö ö í í ö ö ö ő Í Í ÍÍ ö ö ő ö ö í ő ő ö í ö ö ú í ő ö ő í ö ő ö ö ö í ö ú Í ő í ű ö ő ú ö ő ö í í ő ö ö ő ö ö ú ö ű

Részletesebben

Ü É Á í í Á ü ű í ú í ű ü ü Ö í Ü É Í í ü ü ü ü í ú ü í ü ű í í ü ü í í ü Í ú ú ú ű ü É ü í ü í Í í í ű ú í ú Á í í Ü É í í ú ú ű í í í ü í ú Ö ü ü ü ú ű ü í í í ü ü ü ű ü ü ű í ű Ö í í í ü ú Ü É í ú ú

Részletesebben

Á É ú Ö ü ö É ü ő Á í ő ú ű ő ü ű ö ö ö Ö Ö ü í ü ű ö ő ö Ö ü ö í ü ő ő ő ö í ő ö ű í ü í ú í í í í í ő ő ö ő í ü ű í í ő í ő í ő ű í ű Ő í ú ű ü ö ö ő ő ő ü ö ö ő Ú ű ő í ü ő ö í ö ü ö ö ö ü ö ü ő í í

Részletesebben

ő ű ü ü ű í í ú ő Í ő ö ő ő ő í ö ő ő ő í ő ő ö ö ő ő í ő ö Í ő í ü ú ő ő ű ö ő ő ü É í ú ő ö ü ő ü ü ú ü ő í í ő ü í É í ú ő í ú í ő í í ú í ő ö Ú ő ú ő í Á Ú ő Ú Ú ú ú ü ő ő ü Ú í ú ő ő Á í í ű ő Ú ö

Részletesebben

ú ľ ľ ú Á Ó ú ľ ľ ő ľ ľ ľ ľ ľ ĺ ľ ľ í ĺí ľó ó ő ö Í ź ö ö ő ó ó ö ę ő ľ í ó ĺ ő ó ú ö ő ľ ľ ľ Ú Ú Ü Ú Ú ú Ú Ó Ü ĺ Ó í Í Ýŕ Ę ýę ő ő Ż ĺ ź ö ö Ż ö ľő ó ó Ż ö ő Ĺ í ó ö ő ó ń ü ú ö ő Ż ä ľ ú ö ú Üĺ Ú Ú ő

Részletesebben

STATISZTIKA 1. KÉPLETGYŰJTEMÉNY. alapfogalmak egy ismérv szerinti elemzés két ismérv szerinti elemzés standardizálás indexszámítás

STATISZTIKA 1. KÉPLETGYŰJTEMÉNY. alapfogalmak egy ismérv szerinti elemzés két ismérv szerinti elemzés standardizálás indexszámítás STTSZTK. KÉPLETGYŰJTEMÉY alaogalma eg smér szer elemzés é smér szer elemzés sadardzálás dexszámíás . LPOGLMK..smére íusa TEÜLET, DŐEL, MŐSÉG, MEYSÉG. MŐSÉG omáls (éleges) soaság eleme alamle uladoságo

Részletesebben

é é é ú Ü é é ü é é ú é ü é é ü é é é Á é é é é ú é é é ü é ú é é é ű í é é é é é é ü é í é ü é é é é é é é ú é é í ü é é ú í í é é é é ü í ü é é é é é é é í é é é é é ü é é é é é é í é é í ü é ú ü é é

Részletesebben

Példa: 5 = = negatív egész kitevő esete: x =, ha x 0

Példa: 5 = = negatív egész kitevő esete: x =, ha x 0 Ha mást em moduk, szám alatt az alábbiakba, midig alós számot értük. Műeletek összeadás: Példa: ++5 tagok: amiket összeaduk, az előző éldába a, az és az 5 szorzás: Példa: 5 téezők: amiket összeszorzuk,

Részletesebben

Ö í í ű í ü í ú í ü í ü í ü í ű í íí ü ü ű í í ú ü í ü ü ü ü ü ü ü í ü í ű ü í ü í ü ü ü í ü ű ü ü ű Í ü í ü ü í í ű ű ű í ü ű ű ü ü ü Í ü ú ú ü ű ü í É ü í í ü ü í í ü í Ú í í ü ü í ű í í í ü ű Á Ú í

Részletesebben

Á ü ü Á Á Á ü Á ű ű ű Ö ü ü ü ü ü ü ü ű É É É É Ö Á ű ű ű Á ű ű Á ű Ö Í ű ü ü ü ü Í ü Í Ü Ö ü Ü ü ű ű Ö Ö Ü ü ü ű ü Í ü ü ü Ő Ő Ü ü Í ű Ó ü ű Ú ü ü ü ü ü Ö ü Ű Á Á ű É ü ü ü ü ű ü ü ü ű Ö Á Í Ú ü Ö Í Ö

Részletesebben

ő ú ö ú ű ő Á ö ő Á ö ű ö ő Á ö Á Á ú ö ő ő ő ú ű ö ú ű ő Á ö ö ű ű ő ö Á ö ő ő ö Á ö ű ö ő ő ő ö ő ö ő ű ú ö ő ö Á ö Á Á ö ű ö ö ű ö ő ő ű ő ö ő ő ö ö ű ö ö ú ö ú ö ö ö ű ö Á ő Ü ö ű ö ő ő ö ö ö ö ő ú

Részletesebben

ú ű ú ű Ó Ú Á ú Ú ú ú ú Ú Ú Ó ú ú Ö ú É ű ú

ú ű ú ű Ó Ú Á ú Ú ú ú ú Ú Ú Ó ú ú Ö ú É ű ú ű ú ű ű ű É ű ú É É ú Ó Á ú ú Á ú É É ű ű É ú ú ű ú ű ú ű Ó Ú Á ú Ú ú ú ú Ú Ú Ó ú ú Ö ú É ű ú ú ú ú É ú ű ű Ú ú É ű ú ú ú ú ú Á Ú ú Ú ű ú ű ú ú ű ú ú ű ú ú ú Ú ú ú ű ú ú Á ú ú ú ű ú Ú ú ú ú ű ú ú Ú ú ű

Részletesebben

Ó É Í ű ö ö ű í ö ö ö ö ö ö ö í ö ú ö í í ö í í í í ű ö í ö í ú Á Í Ó Á í ö ö ö ö ö ú Ú ö í í í ö ű ö ú ö Ú É É ö ú ö ö ú í í ú ú í ú ú í É ö É ö ú ú ú ö ú ö ú í É ö ö ö ö ö ö ú ö ö ú ú Á í ú ö Í ö í ö

Részletesebben

ú ű ű ü ú Ó ú ü É ú ű ú ú ü ú ű Á ü ú ü ü ű ú ü ü ü ú ü ü ú Ú ü ű ú ü ű ü É ú ú ú ü ú ú Ö ú ü ü ü ü ü ü Á ú ú ú ú ü ü ű ü ú ú ü ü ü ü Ö ü ú ü Ö ü ü ű ű ü ü ü ű ü ÍÓ ú ü ü ü ü ú ü ú ú Á É ú ü ü ű ü ú Á

Részletesebben

ő Á Ó ő ú ő ő ő ő ü ü ő ü ö ö ű ű ö ő ú ü ő ű ö ő ü ö ö ő ö ő Ú ú ü ö ő ö ü ő ő ü ő ü ü ö ő ű ű ö ö ö ö ö ű ö ő ű ű ö ö ő ü ő ü ő ö ú ú ő ő ú ö ö ü ü ö ő ő ü ő ő Í ü ő ü ő ö ö ő ú ű ö ú ő ő ő ő ű ö ü ö

Részletesebben

ő ú ú ú ú ő É Á Ő ú ő ű ő ő ü ú Ö É É Á Á Á Á ú ő ü ú ő Ö ú ú Á Á Á ő ü É Á Á ú Ö Ö É É ü Á É Á Ü É Ö Á Á Á Á Ó É Ó Á Á É É É Ü Ö Ú É ú Á É É ü ú Ö Ú É É Ő Ó Ó Ö Ó ú Ő ű ú Ő ű ő ő ú Ö ű ő ő ű É Ő É ű Ü

Részletesebben

ű Ö ű ű Ú Ú ű

ű Ö ű ű Ú Ú ű ű Ö ű ű Ú Ú ű Á Á Ö Ö Ö Ö Ö Ö Á Ö Á Á Á Ú Á Á Á Á Ö ű ű Á ű ű ű Ö Ö Á Á Á Á Á ű Ú Ö ű Ú Ú ű Ú Á Á ű ű ű ű ű ű Á ű ű Á Á Ő Á Á Á Á Á Á Ö Á ű ű Ö Ö ű Ú Ö Ú ű Ú ű ű ű ű ű Ö Á Ú ű Á Ö Á Ú Á Á Á Á Á Á Ö Ö Á

Részletesebben

ű Ó ú ú ú ú ú Ö Ö ú Á Ú ű ú ú Ú É ú ú Ö Ö Ű ú ú ú ű ú É ű ú É ú ú ú ű ű ű ú ű ú ű ú ű ű ú ű ű ú ú Á ú É ű ú ú ű ú Ü ű ú ú ű ű ú ú ú ú Ö Ö Ú ú ú ú ú ú ú ú ű É ú ú ú ű ú ú ű ú ú ú É Í ú ű ú ú ú ú ű ű É ú

Részletesebben

ű ű ű É Ü ű ű ű Ö Ü Ö ű Ö Ú Ö ű ű ű Á ű ű Á É ű Ú ű Ó ű É Ó É ű ű É ű ű ű Á ű ű ű ű Ö Ö É Ú Í ű Ó ű Ö ű Ö Ö Ö Ö Ö ű ű ű ű ű Ö É É Á Á É Ö Ö É Ú Á ű Ö ű ű ű ű ű ű ű ű ű ű ű ű ű ű ű ű ű ű ű ű É ű Ő ű Á ű

Részletesebben

ű ű ű ű É ű É Ú É É ű Ú É ű ű É É ű ű ű ű É É ű É ű ű ű É ű ű Á Ü Á ű Ú É É ű É ű ű É É ű ű É Á Á ű É É Ü ű Ú Ü ŰŰ ű ű ű Ó Ú ű ű Ö É ű Ú ű ű ű ű ű ű ű Ú Á É Ö Ü ű ű ű É É Á Á Á Á Ú É ű É ű ű Ü É É Ú ű

Részletesebben

Í É Á Á É É Á Ó É ú ü ö ű ű ö ű ö Í É É É Á Ő É ú ö ü ú Í Á ü ö ö ö ű ö ú ú ü ö ö ö ü ú ú Ü ö ű ú ö ö ű ü ú ö ö ű ü ö ű ü ö ű ü ö ö ű ö ö ű ö ű ö ö ű ö ű ö ű ö ű ö Á Ú ü ü ú ű ö ö ö ö ö Á ú ú Ü Á É ö ü

Részletesebben

ő Á Á Á ő ó Á Ö É Ö Á Á É Ó Á É É ó ő ü ő ü ő ő ó ó ő ó ó ő ó ő ő Ö ü ó ú ó ő Ö ő ü ó ő ő ú ó ő ü ő ő ü ü ő ő ő ő ő ő ő ü ü ó ó ő ü ő ő ü ü ő ü ó ő ó ü ü ő ú ü ő ü ü ő ő ü ó ő ü ó ó ő ü ú ő ó ő ü ó ú ő

Részletesebben

ú ű Í Í Ó ú ú ú ú Í ú ú ú ú ú ú Í ú ú ú ú ú ű Í ű ú ú ú Í ú ú ú É Ó Á Á Á É Á Á Á ú ű Á Á Á É ú É Á ű Á ű Á Á Á Á Á ú ú Á ú É Á É ű ű ú ű ú ű Í ű ú ú ú É Í É Í ú ú ű ú Í ú Í ű ű ú ű Í ú ú ú ú ű ú ú ú ű

Részletesebben