AGYCSAVARÓ DECEMBER 05.
|
|
- Regina Péter
- 8 évvel ezelőtt
- Látták:
Átírás
1
2 AGYCSAVARÓ 213. DECEMBER 5.
3 Madarak fán A tó partján egy nagy fa áll. Rajta 3 szinten sok madár fészkel. 7 lakik mások felett, 8 madár lakik mások alatt. Középen annyi lakik, mint alul és felül összesen. Hányan laknak az egyes szinteken? Megoldás: A szövegnek megfelelő egyenletek felül: f f+k=7 középen: k k+a=8 alul: a k=a+f Az egyenletrendszert megoldva: f=2 k=5 a=3 kapunk. Tehát a felső szinten 2, a középső szinten 5, az alsó szinten 3 madár fészkel.
4 2. feladat Egy iskolában kémiát, angolt, franciát, földrajzot, matematikát és fizikát tanítanak a következő tanárok: Barna, Kovács, Horváth és Nagy. Minden tanár három tantárgyat tanít, és minden tárgyat ketten tanítanak. Az angolt és a franciát ugyanaz a két tanár tanítja. Nagy tárgyai közül kettőt Kovács is tanít. A matematika tanárai Nagy és Horváth tanár urak. Horváth kémiát is tanít, és Kovács nem tanít fizikát. kik tanítják a földrajzot? Készítsünk táblázatot a kiinduló helyzetről. Barna Kovács Horváth Kémia x Angol Francia Földrajz Matematika x x Fizika Nagy
5 Tudjuk, hogy Nagy és Kovács két tárgyat tanít közösen, ez nem lehet a fizika, mert azt Kovács nem tanítja, és nem lehet matematika, mert ennek mindkét tanárát ismerjük, és nem lehet kémia sem, mert ennek egyik tanára Horváth. Mivel az angolt és a franciát ugyanazok tanítják, csak ez a két tárgy lehet. Barna Kovács Horváth Nagy Kémia x Angol x x Francia x x Földrajz Matematika x x Fizika
6 Ebből következik, hogy fizikát Barna és Horváth tanít. Barna nem tanít angolt franciát és matematikát, így a másik három tárgyat tanítja. Barna Kovács Horváth Nagy Kémia x x Angol x x Francia x x Földrajz x Matematika x x Fizika x x
7 A táblázatból látható, hogy Horváth és Nagy nem taníthat földrajzot, így Kovács a másik földrajz tanár. Barna Kovács Horváth Nagy Kémia x x Angol x x Francia x x Földrajz x x Matematika x x Fizika x x Tehát a két földrajztanár Barna és Kovács.
8 3. feladat Béla bácsi a fiához utazott New Yorkba. 164 Ft-ért váltott dollárt. Berlinben kellett maradnia három napot, így kénytelen volt dollárért 1 eurót váltani az ott tartózkodása idejére. a) Hány dollárt kapott a 164 Ft-ért, ha akkor 1 dollár 25 Ft volt? b) Hány dollárjába került a 1 euró, ha akkor 1 euró éppen 1,2 dollár volt? c) Ha Magyarországon vált be eurót, jobban járt volna, mint így, ha 1 euró ekkor 247 Ft? a.) 164/25=8 Tehát 164 ft-ért 8$-t kapott b.) 1 1 1,2=12$ -ba került c.) ha Magyarországon vált eurót, akkor 1 247=247 ft-ot fizetett volna így fizetett 12 25=246 ft-ot, tehát 1 ft-tal jobban járt, hogy euróért vett dollárt
9 4. feladat Egy autóverseny olyan utcában zajlik, ahol 15 lámpaoszlop van (egymás után egyenlő távolságban). A rajt az első, a cél az utolsó oszlopnál van. Az egyik induló 1 másodperc alatt ér az ötödik oszlophoz. Hány másodperc alatt ér célba, ha végig egyenletesen halad? Az oszlopok sorszámát jelöljük n-nel. Az n.-ik oszlopig megtett út : (n-1)*(két szomszédos oszlop távolsága) - egy oszlopköz megtételéhez szükséges idő: 1/4=2,5 másodperc - a 14 oszlopköz megtételéhez szükséges idő: 14*2,5 = 35 másodperc Tehát az autóversenyző 35 másodperc alatt ér célba.
10 5. feladat Egy nagy, tömör kockát állítottunk össze 27 darab 1 dm élhosszúságú kockából, majd az ábrán látható módon a felső rétegben lévő kockák közül elvettünk néhányat. a) Hány dm 3 az így kapott test térfogata? b) Hány dm 2 az így kapott test felszíne? Írd le a számolás menetét is! a.) A test térfogata 5 dm 3 -mal kevesebb a 3 dm élhosszúságú kocka térfogatánál : 3 3-5=27-5=22 dm 3 b.) A test felszíne : az alaplapé 3 3 =9 dm 2 az oldallapok felszíne 2 sor magasságig: 4 2 3=24 dm 2 a fölfelé néző lapok területe: 3 3=9 dm 2 a felül lévő kiskockák oldallapjainak felülete: 4 4=16 dm 2 a test felszíne: =58 dm 2 Tehát a test térfogata 22 dm 3, felszíne 82 dm 2
11 6. feladat: Már Thalész is ismerte, hogy egy kör köré hat ugyanolyan sugarú kört lehet elhelyezni a vázolt módon. Marci egy ilyen felépítésű diszkó (hangulat) lámpát készített, számítógéphez kötötte és írt egy programot, mellyel villogtatni tudja. A lámpákat megszámozta az ábrán látható módon. A program működése: Bemenetként véletlen egész számokat kap (ezek előállítását az általa használt nyelv támogatja). A kapott egész számot binárissá alakítja és ahol 1-es szerepel, azt a lámpát, vagy lámpákat felvillantja
12 Ekkor az átalakítás menete a következő addig oszt 2-vel, míg a hányados (szám) nem lesz és feljegyzi a maradékokat, így: A lámpák megfeleltetése vastag számmal jelölve. Pl.: A bemenet 82. szám maradék lámpa
13 Mi lesz az eredmény, ha a bemenet 75? Rajzold be! szám maradék lámpa
14 Milyen bemenettel érhető el az alábbi lámpaállás? Írd le a bemenő számot! szám maradék lámpa
15 Milyen bemenettel érhető el az alábbi lámpaállás? Írd le a bemenő számot! szám maradék lámpa
16 Milyen bemenettel érhető el az alábbi lámpaállás? Írd le a bemenő számot! szám maradék lámpa
17 Milyen bemenettel érhető el az alábbi lámpaállás? Írd le a bemenő számot! szám maradék lámpa
18 Milyen bemenettel érhető el az alábbi lámpaállás? Írd le a bemenő számot! szám maradék lámpa
19 Milyen bemenettel érhető el az alábbi lámpaállás? Írd le a bemenő számot! szám maradék lámpa
20 Milyen bemenettel érhető el az alábbi lámpaállás? Írd le a bemenő számot! szám maradék lámpa
21 Milyen bemenettel érhető el az alábbi lámpaállás? Írd le a bemenő számot! szám maradék lámpa Tehát az alábbi lámpaállás a 91-es számmal érhető el.
22 CSERHÁTI AGYCSAVARÓ 213 KÖSZÖNÖM A FIGYELMET!
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Térgeometria
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Térgeometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
RészletesebbenFeladatok MATEMATIKÁBÓL a 12. évfolyam számára
Feladatok MATEMATIKÁBÓL a. évfolyam számára I.. Egy 35 fős osztályból mindenki részvett valamelyik iskolai kiránduláson. 5-en Debrecenbe utaztak, 8-an pedig Pécsre. Hányan utaztak mindkét városba?. Állapítsa
RészletesebbenMatematika felvételi feladatok bővített levezetése 2013 (8. osztályosoknak)
Matematika felvételi feladatok bővített levezetése 2013 (8. osztályosoknak) Erre a dokumentumra az Edemmester Gamer Blog kiadványokra vonatkozó szabályai érvényesek. 1. feladat: Határozd meg az a, b és
RészletesebbenMATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS KÖZÉPSZINT
Matematika Próbaérettségi Megoldókulcs 016. január 16. MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS KÖZÉPSZINT I. rész: Az alábbi 1 feladat megoldása kötelező volt! 1) Egyszerűsítse a következő kifejezést: Válaszát
RészletesebbenScherlein Márta Dr. Hajdu Sándor Köves Gabriella Novák Lászlóné MATEMATIKA 1. A FELMÉRŐ FELADATSOROK ÉRTÉKELÉSE
Scherlein Márta Dr. Hajdu Sándor Köves Gabriella Novák Lászlóné MATEMATIKA 1. A FELMÉRŐ FELADATSOROK ÉRTÉKELÉSE A felmérő feladatsorok értékelése A felmérő feladatsorokat úgy állítottuk össze, hogy azok
RészletesebbenMATEMATIKA PRÓBAFELVÉTELI a 8. évfolyamosok számára
MEGOLDÓKULCS MATEMATIKA PRÓBAFELVÉTELI a 8. évfolyamosok számára 2012. december 17. 10:00 óra NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tollal dolgozz! Zsebszámológépet nem asználatsz. A feladatokat tetszés szerinti
RészletesebbenFEJSZÁMOLÁS A TÍZEZRES SZÁMKÖRBEN A KÉTJEGYŰEKKEL ANALÓG ESETEKBEN. AZ ÖSSZEADÁS ÉS KIVONÁS MONOTONITÁSA. 5. modul
Matematika A 4. évfolyam FEJSZÁMOLÁS A TÍZEZRES SZÁMKÖRBEN A KÉTJEGYŰEKKEL ANALÓG ESETEKBEN. AZ ÖSSZEADÁS ÉS KIVONÁS MONOTONITÁSA 5. modul Készítette: KONRÁD ÁGNES matematika A 4. ÉVFOLYAM 5. modul FEJSZÁMOLÁS
Részletesebben1. A testek csoportosítása: gúla, kúp
TÉRGOMTRI 1. testek csoportosítása: gúla, kúp Keressünk a környezetünkben gömböket, hengereket, hasábokat, gúlákat, kúpokat! Keressük meg a fenti képen az alábbi testeket! gömb egyenes körhenger egyenes
Részletesebben3. Öt alma és hat narancs 20Ft-tal kerül többe, mint hat alma és öt narancs. Hány forinttal kerül többe egy narancs egy
1. forduló feladatai 1. Üres cédulákra neveket írtunk, minden cédulára egyet. Egy cédulára Annát, két cédulára Pétert, három cédulára Bencét és négy cédulára Petrát. Ezután az összes cédulát egy üres kalapba
RészletesebbenMATEMATIKA ÉRETTSÉGI 2011. október 18. EMELT SZINT I.
MATEMATIKA ÉRETTSÉGI 0. október 8. EMELT SZINT I. ) Kinga 0. születésnapja óta kap havi zsebpénzt a szüleitől. Az első összeget a 0. születésnapján adták a szülők, és minden hónapban 50 Fttal többet adnak,
RészletesebbenArany Dániel Matematikai Tanulóverseny 2007/2008-as tanév 2. forduló haladók I. kategória
Bolyai János Matematikai Társulat Oktatási és Kulturális Minisztérium Támogatáskezelő Igazgatósága támogatásával Arany Dániel Matematikai Tanulóverseny 007/008-as tanév. forduló haladók I. kategória Megoldások
RészletesebbenKosztolányi József Kovács István Pintér Klára Urbán János Vincze István. tankönyv. Mozaik Kiadó Szeged, 2013
Kosztolányi József Kovács István Pintér Klára Urbán János Vincze István tankönyv 0 Mozaik Kiadó Szeged, 03 TARTALOMJEGYZÉK Gondolkodási módszerek. Mi következik ebbõl?... 0. A skatulyaelv... 3. Sorba rendezési
RészletesebbenM A T EMATIKA 9. évfo lyam
Fıvárosi Pedagógiai és Pályaválasztási Tanácsadó Intézet Az iskola Az osztály A tanuló A tanuló neme: Kompetenciaalapú mérés 2007/2008. M A T EMATIKA 9. évfo lyam A változat Az FPPTI nem járul hozzá a
RészletesebbenEGYENLETEK, EGYENLŐTLENSÉGEK, EGYENLETRENDSZEREK
X. Témakör: feladatok 1 Huszk@ Jenő X.TÉMAKÖR EGYENLETEK, EGYENLŐTLENSÉGEK, EGYENLETRENDSZEREK Téma Egyenletek, egyenlőtlenségek grafikus megoldása Egyszerűbb modellalkotást igénylő, elsőfokú egyenletre
RészletesebbenRátz László Matematikai kvízverseny 5. osztály
Rátz László Matematikai kvízverseny 5. osztály 2010. november 26. 1. feladat Ez a különleges óra a pontos időt mutatja. Az első sor ötórás intervallumokat számol (minden ötóránként vált szürkére), a második
RészletesebbenKÖZÉPSZINTŰ ÍRÁSBELI VIZSGA
ÉRETTSÉGI VIZSGA 2016. május 3. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2016. május 3. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Matematika középszint
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Térgeometria
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Térgeometria 1) Egy gömb alakú labda belső sugara 13 cm. Hány liter levegő van benne? Válaszát indokolja! 2) Egy forgáskúp alapkörének átmérője egyenlő a
Részletesebben3 6. 3 4. o.: 1 50. feladat 5 6. o.: 26 75. feladat. Mérünk és számolunk 2011. Egységnyi térfogatú anyag tömege
Jármezei Tamás Egységnyi térfogatú anyag tömege Mérünk és számolunk 211 FELADATGYŰJTEMÉNY AZ ÁLTALÁNOS ISKOLA 3 6. ÉVFOLYAMA SZÁMÁRA Jedlik-verseny I. forduló 3 4. o.: 1 5. feladat 5 6. o.: 26 75. feladat
RészletesebbenFelszín- és térfogatszámítás (emelt szint)
Felszín- és térfogatszámítás (emelt szint) (ESZÉV 2004.minta III./7) Egy négyoldalú gúla alaplapja rombusz. A gúla csúcsa a rombusz középpontja felett van, attól 82 cm távolságra. A rombusz oldalának hossza
RészletesebbenOktatáskutató és Fejlesztő Intézet TÁMOP-3.1.1-11/1-2012-0001 XXI. századi közoktatás (fejlesztés, koordináció) II. szakasz. Fejlesztőfeladatok
Oktatáskutató és Fejlesztő Intézet TÁMOP-3.1.1-11/1-2012-0001 XXI. századi közoktatás (fejlesztés, koordináció) II. szakasz Fejlesztőfeladatok MATEMATIKA 4. szint 2015 Oktatáskutató és Fejlesztő Intézet
RészletesebbenV.2. GRAFIKONOK. A feladatsor jellemzői
V.2. GRAFIKONOK Tárgy, téma Grafikonok, diagramok. Előzmények A feladatsor jellemzői Egyenes vonalú egyenletes mozgás, sebesség út idő összefüggésének ismerete. Átlagsebesség. Cél Különböző grafikonok,
RészletesebbenBOLYAI MATEMATIKA CSAPATVERSENY ORSZÁGOS DÖNTŐ SZÓBELI (2015. NOVEMBER 21.) 3. osztály
3. osztály Az első oldalon 1-gyel kezdve egyesével beszámozták egy könyv összes oldalát. Hány oldalas ez a könyv, ha ehhez 55 számjegyet használtak fel? A tarjáni harmadik osztályba 3-mal több fiú jár,
RészletesebbenCAYLUS. A játéktábla. Tartalom. Egyszer volt, hol nem volt. A játék célja. Előkészületek. Nyersanyagok élelmiszer. posztó. arany. Épületek.
CAYLUS William Attia játéka Illusztráció és grafika: Arnaud és Cyril Demaegd A játéktábla játéktábla Tartalom Nyersanyagok élelmiszer udvarnagy (fehér henger) és intéző (fehér korong) 30 egydénáros és
RészletesebbenMATEMATIKA ÉRETTSÉGI 2008. október 21. KÖZÉPSZINT I.
MATEMATIKA ÉRETTSÉGI 008. október 1. KÖZÉPSZINT I. 1) Adja meg a 4 egyjegyű pozitív osztóinak halmazát! A keresett halmaz: {1 4 6 8}. ) Hányszorosára nő egy cm sugarú kör területe, ha a sugarát háromszorosára
RészletesebbenA továbbhaladás feltételei fizikából és matematikából
A továbbhaladás feltételei fizikából és matematikából A továbbhaladás feltételei a 9. szakközépiskolai osztályban fizikából 2 Minimum követelmények 2 A továbbhaladás feltételei a 10. szakközépiskolai osztályban
RészletesebbenPYTAGORIÁDA Súťažné úlohy okresného kola maďarský preklad 35. ročník, školský rok 2013/2014 KATEGÓRIA P 3
KATEGÓRIA P 3 1. Misi két csomag rágógumiért 4 eurót fizetne. Írjátok le, hogy hány eurót fog Misi fizetni, ha mindhárom testvérének egy-egy csomag, saját magának pedig két csomag rágógumit vett! 2. Írjátok
RészletesebbenTanulói munkafüzet. FIZIKA 9. évfolyam 2015. egyetemi docens
Tanulói munkafüzet FIZIKA 9. évfolyam 2015. Összeállította: Scitovszky Szilvia Lektorálta: Dr. Kornis János egyetemi docens Tartalomjegyzék 1. Az egyenletes mozgás vizsgálata... 3 2. Az egyenes vonalú
Részletesebben13. Oldja meg a valós számpárok halmazán a következ egyenletrendszert!
A 13. Oldja meg a valós számpárok halmazán a következ egyenletrendszert! x y 600 x 10 y 5 600 12 pont írásbeli vizsga, II. összetev 4 / 20 2008. október 21. 14. a) Fogalmazza meg, hogy az f : R R, f x
RészletesebbenProjektmunka. Aerodinamika Az alaktényező meghatározása. Ábrám Emese. Ferences Gimnázium. 2014. május
Pojektmunka Aeodinamika Az alaktényező meghatáozása Ábám Emese 04. május Pojektmunka Aeodinamika Az alaktényezők meghatáozása Ebben a dolgozatban az általam végzett kíséletet szeetném kiétékelni és bemutatni.
RészletesebbenMEGOLDÓKULCS AZ EMELT SZINTŰ FIZIKA HELYSZÍNI PRÓBAÉRETTSÉGI FELADATSORHOZ 11. ÉVFOLYAM
AZ OSZÁG VEZETŐ EGYETEMI-FŐISKOLAI ELŐKÉSZÍTŐ SZEVEZETE MEGOLDÓKULCS AZ EMELT SZINTŰ FIZIKA HELYSZÍNI PÓBAÉETTSÉGI FELADATSOHOZ. ÉVFOLYAM I. ÉSZ (ÖSSZESEN 3 PONT) 3 4 5 6 7 8 9 3 4 5 D D C D C D D D B
Részletesebben148 feladat 21 + + 20 20 ) + ( 1 21 + 2 200 > 1 2. 1022 + 1 51 + 1 52 + + 1 99 2 ) (1 1 100 2 ) =?
148 feladat a Kalmár László Matematikaversenyről 1. ( 1 19 + 2 19 + + 18 19 ) + ( 1 20 + 2 20 + + 19 20 ) + ( 1 21 + 2 21 + + 20 21 ) + ( 1 22 + 2 22 + + 21 22 ) =? Kalmár László Matematikaverseny megyei
RészletesebbenMATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS EMELT SZINT
Matematika RÉ megoldókulcs 0. január. MTEMTIK RÓBÉRETTSÉGI MEGOLDÓKULCS EMELT SZINT dottak a 0; ; ; ; ; ; 5; 7; 7; 8 számjegyek. a Hány darab tízjegyű, 5-tel osztható szám készíthető az adott számjegyekből
RészletesebbenKOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA, MATEmATIkA I 11 XI LINEÁRIS EGYENLETRENDSZEREk 1 LINEÁRIS EGYENLETRENDSZER A lineáris egyenletrendszer általános alakja: (1) Ugyanez mátrix alakban: (2), ahol x az ismeretleneket tartalmazó
RészletesebbenFizikai olimpiász. 52. évfolyam. 2010/2011-es tanév. D kategória
Fizikai olimpiász 52. évfolyam 2010/2011-es tanév D kategória Az iskolai forduló feladatai (további információk a http://fpv.uniza.sk/fo vagy www.olympiady.sk honlapokon) A D kategória 52. évfolyamához
RészletesebbenT Ö R P E M O T O R O K
VILLANYSZERELŐ KÉPZÉS 2 0 1 5 T Ö R P E M O T O R O K ÖSSZEÁLLÍTOTTA NAGY LÁSZLÓ MÉRNÖKTANÁR - 2 - Tartalomjegyzék Törpemotorok fogalma...3 Reluktancia motor...3 Árnyékolt pólusú motor...3 Szervomotorok...4
Részletesebben4. modul Poliéderek felszíne, térfogata
Matematika A 1. évfolyam 4. modul Poliéderek felszíne, térfogata Készítette: Vidra Gábor Matematika A 1. évfolyam 4. modul: POLIÉDEREK FELSZÍNE, TÉRFOGATA Tanári útmutató A modul célja Időkeret Ajánlott
RészletesebbenGEOMATECH TANULMÁNYI VERSENYEK 2015. JANUÁR
GEOMATECH TANULMÁNYI VERSENYEK 2015. JANUÁR Letöltöttétek már a GeoGebra legfrissebb verzióját? Ha igen, a Nézet menüpontban nyissátok meg a 3D-s nézetet! Ha nem, töltsétek le a www.geogebra.org oldalon
RészletesebbenMATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Matematika középszint 161 ÉRETTSÉGI VIZSGA 016. május. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos tudnivalók Formai előírások:
RészletesebbenKERÉKPÁR MOZGÁSI JELLEMZÔINEK MEGHATÁROZÁSA ISKOLAI PROJEKTFELADATBAN
KERÉKPÁR MOZGÁSI JELLEMZÔINEK MEGHATÁROZÁSA ISKOLAI PROJEKTFELADATBAN Beke Tamás Nagyasszonyunk Katolikus Ált. Isk. és Gimn., Kalocsa A tanév végén azt a feladatot adtam a 9. évfolyamon, hogy a tanulók
RészletesebbenMunkafüzet megoldások 7. osztályos tanulók számára. Makara Ágnes Bankáné Mező Katalin Argayné Magyar Bernadette Vépy-Benyhe Judit
Kalandtúra 7. unkafüzet megoldások 7. osztályos tanulók számára akara Ágnes Bankáné ező Katalin Argayné agyar Bernadette Vépy-Benyhe Judit BEELEGÍTŐ GONDOLKODÁS. SZÓRAKOZTATÓ FELADVÁNYOK. oldal. 6... 6.
RészletesebbenScherlein Márta Dr. Hajdu Sándor Köves Gabriella Novák Lászlóné MATEMATIKA 1. MÓDSZERTANI AJÁNLÁSOK MÁSODIK FÉLÉV
Scherlein Márta Dr. Hajdu Sándor Köves Gabriella Novák Lászlóné MATEMATIKA. MÓDSZERTANI AJÁNLÁSOK MÁSODIK FÉLÉV Tankönyv második kötet Számok és műveletek 0-től 0-ig Kompetenciák, fejlesztési feladatok:
RészletesebbenMatematikai modellalkotás
Konferencia A Korszerű Oktatásért Almássy Téri Szabadidőközpont, 2004. november 22. Matematikai modellalkotás (ötletek, javaslatok) Kosztolányi József I. Elméleti kitekintés oktatási koncepciók 1. Realisztikus
RészletesebbenMATEMATIKA ÍRÁSBELI ÉRETTSÉGI-FELVÉTELI FELADATOK 2003. május 19. du. JAVÍTÁSI ÚTMUTATÓ
MATEMATIKA ÍRÁSBELI ÉRETTSÉGI-FELVÉTELI FELADATOK 00 május 9 du JAVÍTÁSI ÚTMUTATÓ Oldja meg a rendezett valós számpárok halmazán az alábbi egyenletrendszert! + y = 6 x + y = 9 x A nevezők miatt az alaphalmaz
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Valószínűségszámítás
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Valószínűségszámítás A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett
Részletesebben23. ISMERKEDÉS A MŰVELETI ERŐSÍTŐKKEL
23. ISMEKEDÉS A MŰVELETI EŐSÍTŐKKEL Céltűzés: A műveleti erősítők legfontosabb tlajdonságainak megismerése. I. Elméleti áttentés A műveleti erősítők (továbbiakban: ME) nagy feszültségerősítésű tranzisztorokból
RészletesebbenMATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Matematika középszint 0814 ÉRETTSÉGI VIZSGA 009. május 5. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Fontos tudnivalók Formai előírások:
Részletesebben1. Melyek azok a kétjegyű számok, amelyek oszthatók számjegyeik
1991. évi verseny, 1. nap 1. Számold össze, hány pozitív osztója van 16 200-nak! 2. Bontsd fel a 60-at két szám összegére úgy, hogy az egyik szám hetede egyenlő legyen a másik szám nyolcadával! 3. Van
RészletesebbenTankönyvlista Kecskés Csaba
Könyvtárellátó Nonprofit Kft. TANKÖNYVRENDELÉS Tankönyvlista Kecskés Csaba Adatok Oktatási azonosító Évfolyam / Osztály 9. / 9.a.n Anyja neve Gondviselő neve Díjbekérő postázási címe 4440 Tiszavasvári,
RészletesebbenMATEMATIKA C 8. évfolyam 6. modul ATTÓL FÜGG?
MATEMATIKA C 8. évfolyam 6. modul ATTÓL FÜGG? Készítette: Surányi Szabolcs MATEMATIKA C 8. ÉVFOLYAM 6. MODUL: ATTÓL FÜGG? TANÁRI ÚTMUTATÓ 2 A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási
RészletesebbenAzonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2010. május 4. 8:00. Az írásbeli vizsga időtartama: 240 perc
ÉRETTSÉGI VIZSGA 2010. május 4. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2010. május 4. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM
RészletesebbenMATEMATIKA ÉRETTSÉGI 2012. május 8. EMELT SZINT I.
MATEMATIKA ÉRETTSÉGI 01. május 8. EMELT SZINT I. 1) Egy 011-ben készült statisztikai összehasonlításban az alábbiakat olvashatjuk: Ha New York-ban az átlagfizetést és az átlagos árszínvonalat egyaránt
RészletesebbenJegyzőkönyv. 1. Hazai és EU-s források terhére kiírt pályázatok benyújtásával kapcsolatos döntéshez javaslattétel. Előadó: Pap Tibor polgármester
I-1/3-9/2009.ikt.sz. Jegyzőkönyv Készült: Dévaványa Városi Önkormányzat Polgármesteri Hivatalában 2009. május 25-én megtartott Pénzügyi- Ellenőrző- Önkormányzati Vagyonkezelő Bizottság nyílt ülésén. Jelen
RészletesebbenÉLETPÁLYA- ÉPÍTÉS MATEMATIKA TANÁRI ÚTMUTATÓ KOMPETENCIATERÜLET B. 6. évfolyam
ÉLETPÁLYA- ÉPÍTÉS KOMPETENCIATERÜLET B MATEMATIKA TANÁRI ÚTMUTATÓ 6. évfolyam A kiadvány az Educatio Kht. kompetenciafejlesztő oktatási program kerettanterve alapján készült. A kiadvány a Nemzeti Fejlesztési
RészletesebbenKészült: Salföld Önkormányzat Képviselő-testületének 2011. május 25.- i nyilvános salföldi faluház hivatali helyiségében.
1 SALFÖLD KÖZSÉG ÖNKORMÁNYZAT KÉPVISELŐ-TESTÜLETE 8256 Salföld, Kossuth u. 27. Ikt.szám: S- 4-67 /2011. J E G Y Z Ő K Ö N Y V Készült: Salföld Önkormányzat Képviselő-testületének 2011. május 25.- i nyilvános
RészletesebbenA 2008/2009. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának. feladatai és megoldásai fizikából. I.
Oktatási Hivatal A 8/9. tanévi FIZIKA Országos Közéiskolai Tanulmányi Verseny első fordulójának feladatai és megoldásai fizikából I. kategória A dolgozatok elkészítéséhez minden segédeszköz használható.
RészletesebbenSebesség A mozgás gyorsaságát sebességgel jellemezzük. Annak a testnek nagyobb a sebessége, amelyik ugyanannyi idő alatt több utat tesz meg, vagy
Haladó mozgások Alapfogalmak: Pálya: Az a vonal, amelyen a tárgy, test a mozgás során végighalad. Megtett út : A pályának az a szakasza, amelyet a mozgó tárgy, test megtesz. Elmozdulás: A kezdőpont és
RészletesebbenGyerekrajzok a grafológiában
Gyerekrajzok a grafológiában Az írás grafológiai elemzési szempontjai alkalmasak a gyermekek rajzainak vizsgálatához, értékeléséhez is. Az írás és a rajz is egy valamilyen felületen, valamilyen íróeszközzel
RészletesebbenPYTAGORIÁDA Az iskolai forduló feladatai 35. évfolyam, 2013/2014-es tanév KATEGÓRIA P3
KATEGÓRIA P3 1. Írjátok le, melyik alakzat nem tartozik a többi közé: négyzet, háromszög, egyenes, kör, téglalap 2. Számítsátok ki: 15 + 17= 24 + 59 = 50 + 20 = Az eredményeket adjátok össze és ezt az
RészletesebbenEgy kétszeresen aszimmetrikus kontytető főbb geometriai adatainak meghatározásáról
1 Egy kétszeresen aszimmetrikus kontytető főbb geometriai adatainak meghatározásáról Korábban már több egyszerűbb tető - alak geometriáját leírtuk. Most egy kicsit nehezebb feladat megoldását tűzzük ki
Részletesebben1. Prefix jelentések. 2. Mi alapján definiáljuk az 1 másodpercet? 3. Mi alapján definiáljuk az 1 métert? 4. Mi a tömegegység definíciója?
1. Prefix jelentések. 10 1 deka 10-1 deci 10 2 hektó 10-2 centi 10 3 kiló 10-3 milli 10 6 mega 10-6 mikró 10 9 giga 10-9 nano 10 12 tera 10-12 piko 10 15 peta 10-15 fento 10 18 exa 10-18 atto 2. Mi alapján
RészletesebbenTÉGLATEST, KOCKA, GÖMB TÉGLALAP, NÉGYZET, KÖR
Matematika A 3. évfolyam TÉGLATEST, KOCKA, GÖMB TÉGLALAP, NÉGYZET, KÖR 40. modul Készítette: SZILI JUDIT (A 11., 13., 15. PONTOT: LÉNÁRT ISTVÁN) matematika A 3. ÉVFOLYAM 40. modul TÉGLATEST, KOCKA, GÖMB
RészletesebbenFeladatok és megoldások a 4. hétre
Feladatok és megoldások a. hétre Építőkari Matematika A3. Pisti nem tanult semmit a vizsgára, ahol 0 darab eldöntendő kérdésre kell válaszolnia. Az anyagból valami kicsi dereng, ezért kicsit több, mint
RészletesebbenAzonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2011. október 18. 8:00. Az írásbeli vizsga időtartama: 240 perc
ÉRETTSÉGI VIZSGA 2011. október 18. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2011. október 18. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS MINISZTÉRIUM
Részletesebbenfolyamatos díjas, befektetési egységekhez kötött életbiztosítás szerzôdési feltételei
UNIQA 7 Termékkód: 478 folyamatos díjas, befektetési egységekhez kötött életbiztosítás szerzôdési feltételei I. A BEFEKTETÉSSEL KAPCSOLATOS FOGALMAK 1 II. A BIZTOSÍTÁSI SZERZÔDÉSSEL KAPCSOLATOS ÁLTALÁNOS
RészletesebbenTájékoztató a kiüríthetőség ellenőrzéséről (2015. 08. 07.)
Tájékoztató a kiüríthetőség ellenőrzéről (2015. 08. 07.) A mellékelt táblázatok rzletezik a kiürít első második szakaszának vizsgálatát, a eket a kiürít ellenőrzének lehetséges módjait. A táblázatokban
RészletesebbenMATEMATIKA ÉRETTSÉGI 2006. május 9. EMELT SZINT
) A PQRS négyszög csúcsai: MATEMATIKA ÉRETTSÉGI 006. május 9. EMELT SZINT P 3; I., Q ;3, R 6; és S 5; 5 Döntse el, hogy az alábbi három állítás közül melyik igaz és melyik hamis! Tegyen * jelet a táblázat
RészletesebbenNyugat-magyarországi Egyetem Geoinformatikai Kara. Csordásné Marton Melinda. Fizikai példatár 1. FIZ1 modul. Optika feladatgyűjtemény
Nyugat-magyarországi Egyetem Geoinformatikai Kara Csordásné Marton Melinda Fizikai példatár 1 FIZ1 modul Optika feladatgyűjtemény SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői jogról szóló 1999
RészletesebbenVALÓSZÍNŰSÉG, STATISZTIKA
0893. MODUL VALÓSZÍNŰSÉG, STATISZTIKA Felmérés Készítette: Pintér Klára Matematika A 8. évfolyam 0892. modul: Valószínűség, statisztika Felmérés 2 A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási
Részletesebbenbe/sfp-10094/2015/mlsz
A kérelmező adatai A kérelmező szervezet teljes neve Sásd Városi Sportkör A kérelmező szervezet rövidített neve Sásd Városi Sportkör Gazdálkodási formakód 521 Tagsági azonosítószám 89 A kérelmező jogállása
RészletesebbenGondolatok a Blokus játékról
Gondolatok a Blokus játékról Bagota Mónika Eötvös Loránd Tudományegyetem TÓK Matematika Tanszék, Budapest bagota.monika@tok.elte.hu A Blokus játék tartalma: 1db 400 mezős játéktábla; 84 db alakzat 4 színben.
RészletesebbenTÖRÖKBÁLINT, SZABADHÁZI-HEGY SZABÁLYOZÁSI TERV MÓDOSÍTÁSA - I. ÜTEM 10 II. JÓVÁHAGYANDÓ MUNKARÉSZEK (a hatályos előírásokhoz képest történő változásokat pirossal kiemelve jelöltük) TÖRÖKBÁLINT, SZABADHÁZI-HEGY
RészletesebbenVALÓSZÍNŰSÉGI JÁTÉKOK. 44. modul
Matematika A 3. évfolyam VALÓSZÍNŰSÉGI JÁTÉKOK 44. modul Készítette: SZITÁNYI JUDIT matematika A 3. ÉVFOLYAM 44. modul VALÓSZÍNŰSÉGI JÁTÉKOK MODULLEÍRÁS A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási
RészletesebbenÚj SátóhatSrok & természettudomány és bölcselet határmesgyéjéről.
Új SátóhatSrok & természettudomány és bölcselet határmesgyéjéről. A következőkben két könyvre akarom a figyelmet felhívni. Egy pár idézetet bocsátok előre: Amig a fizika a közönséges világon való pepecselésével,
RészletesebbenFIT-jelentés :: 2014. Öveges József Szakközépiskola és Szakiskola 1117 Budapest, Fehérvári út 10. OM azonosító: 035325. Intézményi jelentés
FIT-jelentés :: 2014 Öveges József Szakközépiskola és Szakiskola 1117 Budapest, Fehérvári út 10. Létszámadatok A telephelyek kódtáblázata A 001 - Öveges József Gyakorló Középiskola és Szakiskola (szakközépiskola)
RészletesebbenA 2011/2012. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának feladatai és megoldásai fizikából. I.
Oktatási Hivatal A 11/1. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának feladatai és megoldásai fizikából I. kategória A dolgozatok elkészítéséhez minden segédeszköz használható.
RészletesebbenMATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Matematika középszint 1413 ÉRETTSÉGI VIZSGA 015. május 5. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos tudnivalók Formai előírások:
RészletesebbenJegyzőkönyv. Jelen vannak: Jelenléti ív szerint
Jegyzőkönyv Készült 2011. december 19-én (szerdán) 18 órakor a kosdi Polgármesteri Hivatal hivatalos helyiségében (2612 Kosd, Szent I. u. 2.) Kosd Község Önkormányzat Képviselő-testületének soron következő
RészletesebbenMUNKAANYAG. Szabó László. Szilárdságtan. A követelménymodul megnevezése:
Szabó László Szilárdságtan A követelménymodul megnevezése: Kőolaj- és vegyipari géprendszer üzemeltetője és vegyipari technikus feladatok A követelménymodul száma: 047-06 A tartalomelem azonosító száma
Részletesebben4 ÉVFOLYAMOS FELVÉTELI EREDMÉNYEK
71400510854-9. évfolyam Magyar nyelv 46 71400510854-9. évfolyam Matematika 31 71479247326-9. évfolyam Magyar nyelv 37 71479247326-9. évfolyam Matematika 25 71507778014-9. évfolyam Magyar nyelv 43 71507778014-9.
RészletesebbenBolyai János Matematikai Társulat
Bolyai János Matematikai Társulat Oktatási és Kulturális Minisztérium Támogatáskezelő Igazgatósága támogatásával Arany Dániel Matematikai Tanulóverseny 007/008-as tanév első (iskolai) forduló haladók II.
RészletesebbenNyomó csavarrugók méretezése
Nyomó csavarrugók méretezése 007 Összeállította: Móka József . Rugó műszaki ábrázolása A körszelvényű hengeres nyomó csavarrugót az MSZ EN ISO 6-000 előírásai szerint ábrázoljuk. Eszerint ötnél kevesebb
RészletesebbenAxonometria és perspektíva. Szemléltető céllal készülő ábrák
Axonometria és perspektíva Szemléltető céllal készülő ábrák Axonometria Jelentése: tengelyek mentén való mérés (axis: tengely, metrum: mérték) Az axonometria a koordinátarendszer tengelyein mért távolságok,
RészletesebbenAz alábbi feladatok közül a megadottat készítse el objektum-orientált módszerrel. Fontos, hogy objektum-orientált módon gondolkozzon és úgy is
Az alábbi feladatok közül a megadottat készítse el objektum-orientált módszerrel. Fontos, hogy objektum-orientált módon gondolkozzon és úgy is valósítsa meg! Például a játékos egy objektum, amelynek vannak
RészletesebbenÁttekintés. A játék célja. Marco Ruskowski és Marcel Süßelbeck játéka 2-4 játékos részére, 10 éves kortól.
Marco Ruskowski és Marcel Süßelbeck játéka 2-4 játékos részére, 10 éves kortól. A püspök magas rangú látogatókat vár, de sajnos a nagy freskófestmény a katedrális mennyezetén sürgős renoválásra szorul.
RészletesebbenMATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Matematika emelt szint 0613 ÉRETTSÉGI VIZSGA 007. május 8. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Formai előírások: Fontos tudnivalók
RészletesebbenA játék célja. A játék elemei
Alexander Pfister játéka 2-4 játékos számára. Ajánlott életkor: 10 év felett. Játékidő: 30 perc. Szabályfordítás: Szűcs Sándor Lektorálta: Iványosi-Szabó Gábor A fordítást ellenőrizte: Cziráki Balázs A
RészletesebbenSzent István Tanulmányi Verseny Matematika 3.osztály
SZENT ISTVÁN RÓMAI KATOLIKUS ÁLTALÁNOS ISKOLA ÉS ÓVODA 5094 Tiszajenő, Széchenyi út 28. Tel.: 56/434-501 OM azonosító: 201 669 Szent István Tanulmányi Verseny Matematika 3.osztály 1. Hányféleképpen lehet
Részletesebbenkészült Vének Község Önkormányzata Képviselő-testületének 2012. november 5-én (hétfőn) 18,00 órai kezdettel tartott közmeghallgatásán
VÉNEK KÖZSÉG ÖNKORMÁNYZATA KÉPVISELŐ-TESTÜLETE JEGYZŐKÖNYV készült Vének Község Önkormányzata Képviselő-testületének 2012. november 5-én (hétfőn) 18,00 órai kezdettel tartott közmeghallgatásán HATÁROZATOK:
RészletesebbenTÖRTSZÁMOK, MÉRÉSEK. 34. modul
Matematika A 3. évfolyam TÖRTSZÁMOK, MÉRÉSEK 34. modul Készítette: SZITÁNYI JUDIT matematika A 3. ÉVFOLYAM 34. modul TÖRTSZÁMOK, MÉRÉSEK MODULLEÍRÁS A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási
RészletesebbenIsmerje meg a kisvállalati adóban rejlő lehetőségeket!
Ismerje meg a kisvállalati adóban rejlő lehetőségeket! A kisvállalati adó (kiva) módot ad arra, hogy a vállalkozások meghatározott köre a hagyományos adózási formákhoz képest kedvezőbb szabályok szerint
RészletesebbenElső sorozat (2000. május 22. du.) 1. Oldjamegavalós számok halmazán a. cos x + sin2 x cos x. +sinx +sin2x =
2000 Írásbeli érettségi-felvételi feladatok Első sorozat (2000. május 22. du.) 1. Oldjamegavalós számok halmazán a egyenletet! cos x + sin2 x cos x +sinx +sin2x = 1 cos x (9 pont) 2. Az ABCO háromszög
RészletesebbenElektrosztatika tesztek
Elektrosztatika tesztek 1. A megdörzsölt ebonitrúd az asztalon külön-külön heverı kis papírdarabkákat messzirıl magához vonzza. A jelenségnek mi az oka? a) A papírdarabok nem voltak semlegesek. b) A semleges
RészletesebbenKÖZÉPSZINTŰ ÍRÁSBELI VIZSGA
ÉRETTSÉGI VIZSGA 2010. október 28. FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2010. október 28. 14:00 Az írásbeli vizsga időtartama: 120 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS MINISZTÉRIUM
Részletesebbenszeptember vége tanmenetek havonta foglalkozási naplók vezetése 3-4 havonta
ÉRTÉKELÉS A szuhakállói Gárdonyi Géza Általános Iskola Minõségirányítási Programjának végrehajtásáról Intézményünk szülõi szervezete 26. július 3-án, nevelõtestülete 26. július 4-én értékelte a Minõségirányítási
RészletesebbenMérések szabványos egységekkel
MENNYISÉGEK, ECSLÉS, MÉRÉS Mérések szabványos egységekkel 5.2 Alapfeladat Mérések szabványos egységekkel 2. feladatcsomag a szabványos egységek ismeretének mélyítése mérések gyakorlása a megismert szabványos
RészletesebbenA SZÁMFOGALOM KITERJESZTÉSE 10 000-IG. FEJSZÁMOLÁS EZRESEKRE KEREKÍTETT ÉRTÉKEKKEL. 4. modul
Matematika A 4. évfolyam A SZÁMFOGALOM KITERJESZTÉSE 10 000-IG. FEJSZÁMOLÁS EZRESEKRE KEREKÍTETT ÉRTÉKEKKEL 4. modul Készítette: KONRÁD ÁGNES matematika A 4. ÉVFOLYAM 4. modul A SZÁMFOGALOM KITERJESZTÉSE
RészletesebbenEurópa az 1900-as évek elején. A játékosok cirkuszigazgatókat alakítanak, akik beutazzák Európa
Európa az 1900-as évek elején. A játékosok cirkuszigazgatókat alakítanak, akik beutazzák Európa városait előadásokat tartva, és a közönséget szórakoztatva. Az előadások előtt gyarapítaniuk kell cirkuszukat
RészletesebbenDOMSZKY ZOLTÁN. Rendhagyó matek II.
DOMSZKY ZOLTÁN Rendhagyó matek II. Ajánlom ezt a könyvet illetve sorozatot mind közül is legkedvesebb tanáraimnak, Molnár Györgynének, aki korrekt szigorúságával a középiskolában alapozta meg szeretetemet
Részletesebben