Digitális technika VIMIAA02 9. hét Fehér Béla BME MIT
|
|
- Csilla Papp
- 5 évvel ezelőtt
- Látták:
Átírás
1 BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA02 9. hét Fehér Béla BME MIT Processzor adatstruktúrák DIGITÁLIS RENDSZEREK ÁLTALÁNOS FELÉPÍTÉSE: ADATSTRUKTÚRA + VEZÉRLÉS Vezérlés: Minden feladatra egységes általános elv De természetesen egyedi állapotdiagram, jelek, stb. Adatstruktúra: Egyedi felépítés, feladatorientált kialakítás Megmaradt a HW párhuzamos, időben konkurens működése
2 Processzor adatstruktúrák ADATSTRUKTÚRA + VEZÉRLÉS Adatstruktúra: Ahány feladat, annyi architektúra Lehetne itt is általánosítani? Valószínűleg igen Feladjuk a párhuzamos működés előnyét az egyszerű tervezhetőség érdekében Sok elemi művelet időben sorban egymás után, lehetőleg ugyanazt a HW-t használva Processzor adatstruktúrák Milyen legyen az általános adatstruktúra? Komponensek: adattárolók, műveletvégzők, huzalozás Adattárolók: Önálló regiszterek: bármelyik adat bármikor elérhető/tölthető : korlátozott számú adat érhető el (1,2,3) Stack: csak a stack teteje érhető el (1,2) Műveletvégzők: Egyedi elemek, közvetlen egyedi bemenetekkel Többfunkciós egység, funkcióválasztással és bemeneti operátor kiválasztással (ADD/SUB/COMP, AND/OR/XOR) Általános státuszjelek a művelet eredményéről (Z/C/N/V) Huzalozás: Bemenet/ kimenet kiválasztás/aktiválás Belső adatutak, operandus kiválasztás
3 Processzor adatstruktúrák Milyen legyen az általános adatstruktúra? Szabványosítás: Adatméret: minden legyen adat azonos méretű pl. 8 bit Egyedi jelek lehetnek egy bitvektor elemei, beolvasunk 8 bitet, és maszkoljuk a kívánt bitpozíciót Az eddigi külső vezérlőjelek (pl. START) is adatbemenetként kezelhetőek, beolvashatóak, tesztelhetőek és a teszt eredménye szerint használhatóak a vezérlési feladat végrehajtására A kimeneti jelek hasonlóan egységesen kezelhetők, 8 bites bitvektorok közvetlenül, egyedi bitek bitpozíció beállítással kiadhatók A vezérlő egység kimenete (pl. READY) is így kezelhető Processzor vezérlés Az általános adatstruktúra jól használható, de képességei korlátosan érvényesíthetők Egy ütemben egy változó módosulhat Ez erősen szekvenciális végrehajtást jelent A vezérléshez az ASM működési modell csökkentett képessége bőven elegendő Nem jelent lényeges előnyt az általános FSM/HLSM tetszőleges állapotátmeneti képessége ASM állapotátmenetek: CONT: folytatás (ez az alapértelmezett mód) JUMP: ugrás tetszőleges állapotra (saját magára is) CJMP: elágazás, feltételes ugrás tetszőleges állapotra Feltétel nem teljesülése esetén CONT, folytatás
4 Processzor vezérlés ASM algoritmikus állapotvezérlővel A vezérlő ebben az esetben lehet egy egyszerű számlálón alapuló vezérlőegység: programszámláló (, Program Counter) Az állapotátmenetek vezérlése: CONT: <= + 1; // számláló INC JUMP : <= LABEL; // számláló LOAD CJMP : if (COND) then <= LABEL // LOAD else <= +1 // INC Ezt a feladatot egy inicializálható, tölthető bináris felfelé számláló tudja biztosítani RESET-re = 0, vagy a csupa 1, azaz 0xFFFF Processzor vezérlés ASM algoritmikus állapotvezérlővel A vezérlőjelek tehát nem közvetlenül a értékéből származnak, (annak állapota nem direktben kódolja azokat), hanem a tartalma megcímzi és kiolvassa a programmemóriában található utasítás szót (FETCH), és az utasításszó tartalmazza a kódolt vezérlőjeleket (annyi biten, amennyi a formátumba belefér), ezt az utasítás dekóder értelmezi (DECODE) és juttatja el az adatstruktúra felé végrehajtásra (EXECUTE). Tehát az adatstruktúra vezérlőjel generálás folyamata: új érték FETCH DECODE EXECUTE Ez történik a processzor vezérlő egységében
5 Processzor műveletvégzés alapú adatstruktúra kiegészítése be- /kimeneti interfésszel (memória, periféria) Általános tulajdonságok: Minden adatot először beírunk a regisztertömbbe Műveletet csak a regiszter adatokon végzünk Létezik közvetlen adat programkódból A részeredményeket visszaírjuk A végeredményt kiadjuk Ezt hívjuk LOAD/STORE felépítésnek A regisztertömb mérete Szélesség: 8/16/32/64 bit Mélység: 16/32/64 regiszter Több regiszter több reg. címbit (ut. méret) Több regiszter kevesebb extra adatmozgatás A 32 bites utasításméret jó kompromisszum Processzor műveletvégzés Az adatstruktúra műveleti egysége: : Aritmetikai Logikai Egység Műveleti képességek (utasítás készlet) Aritmetikai (ADD, SUB, INC, DEC.) Logikai (AND, OR, XOR, NOT ) Léptetés (SHL, SHR, ASH ) Forgatás (ROL, ROR, ) Feltétel vizsgálat (COMP, TST, ) Egyszerű adatmozgatás (MOV, LD, ST) Minden művelet a szabványos adatméreten 8 / 16 / 32 / 64 bit, az adott rendszer jellemzője Kisebb adatméret: operandus/eredmény maszkolása Nagyobb adatméret: Átvitelbit használatával kiterjesztett műveletvégzés
6 Processzor műveletvégzés felépítése 1. verzió: Minden feladatra külön áramkör, a kimeneten MUX hálózattal nem gazdaságos 2. verzió: Sok feladat egyetlen összeadóval + a bemeneten speciális kiegészítés az adatelőkészítésre Kivonás: Kettes komplemens képzéssel Inkrementálás: 1 hozzáadása (pl. Ci) Dekrementálás: 1 kivonása Léptetés balra: önmagával összeadás Konkrét áramköri megoldások eltérőek Közös vonás: Néhány bites vezérlés: FUN bitek Operandus kiválasztás: REG1, REG2 cím Bemenet/kimenet előválasztás MUX vez Összegzés Tetszőleges digitális rendszer: Általános rendszerterv: adatstruktúra + vezérlés Processzoros rendszerek: Általános processzor adatstruktúra + ASM alapú egyszerűsített processzor vezérlőegység A vezérlési állapot indirekt megadása: (programmemória cím) programtár olvasás (aktuális utasítás) dekódolt vezérlő jelek származtatása és végrehajtás Továbblépés: = +1 vagy esetleg (feltételes) ugrás Egységesített adatméret és be-/kimeneti interfészek LOAD/STORE működés, külső vagy memória adatok regiszterbe töltődnek használat előtt
7 MiniRISC processzor - Bevezetés 8 bites vezérlőegység egyszerű alkalmazásokhoz Jól illeszkedik a LOGSYS Spartan-3E FPGA kártya komplexitásához Egyszerű felépítés, kis erőforrásigény Harvard architektúra 256 x 16 bites programmemória 256 x 8 bites adatmemória Egyszerű RISC jellegű utasításkészlet Load/store architektúra Műveletvégzés csak regisztereken 16 x 8 bites belső regisztertömb MiniRISC mintarendszer LED ek DIP kapcsoló A bővítőcsatlakozó B bővítőcsatlakozó 128 x 8 bites adatmemória (0x00 0x7F) basic_owr (0x80) basic_in (0x81) basic_io (0x84 0x87) basic_io (0x88 0x8B) MiniRISC CPU Adatmem. interfész Debug Prg. mem. Debug modul 256 x 16 bites programmemória slave_usrt (0x8E 0x8F) USRT basic_display (0x90 0x9F) basic_timer (0x8C 0x8D) basic_in (0x82) JTAG nyomógombok fejlesztői és kommunikációs port kijelzők
8 MiniRISC processzor Felépítése követi az adatstruktúra-vezérlő szemléletet : az utasítások beolvasása, feldolgozása és ennek megfelelően az adatstruktúra vezérlése Adatstruktúra: műveletek végrehajtása az adatokon RD WR DIN jelek Adatstruktúra Feltétel jelek MiniRISC processzor MiniRISC processzor adatstruktúra működése DIN RD WR DIN RD WR DIN RD WR MUX MUX MUX olvasás (load) Lokális adat átalakítása ( művelet) írás (store)
9 MiniRISC processzor A működés bemutatása egy egyszerű példán Példa: DMEM[3] = DMEM[0] + DMEM[1], ez négy adatstruktúra műveletet igényel: 1. REG[0] = DMEM[0] (load) 2. REG[1] = DMEM[1] (load) 3. REG[1] = REG[0] + REG[1] ( művelet) 4. DMEM[3] = REG[1] (store) Utasítás: a processzor által végrehajtható művelet Program: utasítások sorozata A végrehajtandó feladatot a processzor által támogatott utasításokra kell lebontani A programot a programmemória tárolja A vezérlőegység beolvassa az utasításokat és végrehajtja azokat az adatstruktúrán Programszámláló (Program Counter, ): a beolvasandó utasítás címét állítja elő Utasításregiszter (Instruction Register, ): a beolvasott utasítást tárolja vezérlő jelek feltétel jelek MiniRISC processzor Minden egyes utasítás végrehajtásánál a vezérlőegységnek a következő lépéseket kell elvégeznie: Lehívás (fetch): az utasítás beolvasása a programmemóriából és a növelése Dekódolás (decode): a művelet és az operandusok meghatározása Végrehajtás (execute): az utasításhoz tartozó művelet végrehajtásra kerül az adatstruktúrán A vezérlő lehet például egy állapotgép A fenti lépésekhez a vezérlő állapotgép egy-egy állapota rendelhető hozzá Ekkor egy utasítás végrehajtása három órajelciklust igényel vezérlő jelek feltétel jelek
10 MiniRISC processzor teljes blokkvázlata A részletes felépítést lásd a Verilog forráskódban DIN RD WR Q Számláló 0x00 0x01 ugrási cím Verem Z,C,N,V Z,C,N,V IE bit IF bit vezérlő jelek MUX1 WrX RdX RdY Debug modul Break állapotgép Int_req feltétel jelek MiniRISC processzor 8 bites konstans ugrási cím OP1 Adatstruktúra MUX2 OP2 MiniRISC processzor működése DMEM[0]=5 DMEM[1]=2 DMEM[2]=0 DMEM[3]=0 DIN RD WR 0 1 REG[0]=DMEM[0] 1 REG[0]=DMEM[0] 1 REG[0]=DMEM[0] MUX LOAD LOAD REG[0]=? 5 REG[1]=? REG[2]=? Adatstruktúra Utasítás lehívása Dekódolás Végrehajtás
11 MiniRISC processzor működése DMEM[0]=5 DMEM[1]=2 DMEM[2]=0 DMEM[3]=0 DIN RD WR 1 2 REG[1]=DMEM[1] 2 REG[1]=DMEM[1] 2 REG[1]=DMEM[1] MUX LOAD LOAD REG[0]=5 REG[1]=? 2 REG[2]=? Adatstruktúra Utasítás lehívása Dekódolás Végrehajtás MiniRISC processzor működése DMEM[0]=5 DMEM[1]=2 DMEM[2]=0 DMEM[3]=0 DIN RD WR 2 3 R[1] = R[0] + R[1] 3 R[1] = R[0] + R[1] 3 R[1] = R[0] + R[1] MUX ADD ADD REG[0]=5 REG[1]=2 7 REG[2]=? = 7 7 Adatstruktúra Utasítás lehívása Dekódolás Végrehajtás
12 MiniRISC processzor működése DMEM[0]=5 DMEM[1]=2 DMEM[2]=0 DMEM[3]=0 7 DIN RD WR 3 4 DMEM[3]=REG[1] 4 DMEM[3]=REG[1] 4 DMEM[3]=REG[1] MUX STORE STORE REG[0]=5 REG[1]=7 REG[2]=? Adatstruktúra Utasítás lehívása Dekódolás Végrehajtás MiniRISC processzor utasításai A programmemória bináris kód formájában tartalmazza a végrehajtandó utasításokat (gépi kód, assembly kód) Magasabb szintű leírást a processzor nem tud értelmezni Minden utasítás tartalmazza a művelet leírását és a művelet elvégzéséhez szükséges egyéb adatokat művelet (4 bit) regisztercím (4 bit) memóriacím (8 bit) Cím Művelet Gépi kód (16 bit) Assembly kód 0: REG[0] = DMEM[0] MOV r0, 0x00 1: REG[1] = DMEM[1] MOV r1, 0x01 2: REG[1] =REG[0] + REG[1] ADD r1, r0 3: DMEM[3] = REG[1] MOV 0x03, r1
13 MiniRISC assembler A MiniRISC processzor felhasználói programjait alacsonyszintű (gépközeli) programnyelven készíthetjük el és fordíthatjuk futtatható bináris kódra. Az assembly nyelven megírt programok lefordítása a LOGSYS MiniRISCv2-as assemblerrel lehetséges Konkrét programfejlesztési részletek az előadás végén MiniRISC kódgenerálás az assemblerrel Fordítás eredménye: Generált lista fájl: demo_add.lst
14 MiniRISC kódgenerálás az assemblerrel A generált memória tárgykód fájlok: kódfájl: code.hex 256 db 16 bites utasításkód kódfájl: data.hex 128 db 8 bites adat A kész kódfájlokat futtatás előtt a MiniRISC mintarendszer megfelelő memóriájába le kell tölteni. code.hex data.hex MiniRISC IDE - Programfejlesztés Futtatás: Szimulátorban Hardveren Fordítás és letöltés Végrehajtás vezérlése Forráskód szerkesztő tartalma USRT terminál Kijelző vezérlőpanel GPIO vezérlőpanel Periféria vezérlőpanel: LED ek, DIP kapcsoló Nyomógombok Assembler konzol CPU állapot:, flag ek, verem teteje, regiszterek tartalma Végrehajtott utasítások száma Elfogadott megszakításkérések száma
15 MiniRISC IDE - Programfejlesztés Digitális technika 9. EA vége
Digitális technika VIMIAA02 9. hét
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA02 9. hét Fehér Béla BME MIT Processzor adatstruktúrák
Digitális technika VIMIAA01 9. hét Fehér Béla BME MIT
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA01 9. hét Fehér Béla BME MIT Eddig Tetszőleges
Digitális technika VIMIAA01 9. hét
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA01 9. hét Fehér Béla BME MIT Eddig Tetszőleges
Digitális technika VIMIAA01
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA01 Fehér Béla BME MIT Digitális rendszerek tervezése
Digitális technika (VIMIAA01) Laboratórium 8
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika (VIMIAA01) Laboratórium 8 Fehér Béla Raikovich Tamás,
Digitális technika (VIMIAA02) Laboratórium 8
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika (VIMIAA02) Laboratórium 8 Fehér Béla Raikovich Tamás,
A MiniRISC processzor
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK A MiniRISC processzor Fehér Béla, Raikovich Tamás, Fejér Attila BME MIT
A MiniRISC processzor
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK A MiniRISC processzor Fehér Béla, Raikovich Tamás, Fejér Attila BME MIT
A MiniRISC processzor (rövidített verzió)
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK A MiniRISC processzor (rövidített verzió) Fehér Béla, Raikovich Tamás,
A MiniRISC processzor
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK A MiniRISC processzor Fehér Béla, Raikovich Tamás, Fejér Attila BME MIT
Digitális technika (VIMIAA02) Laboratórium 1
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika (VIMIAA02) Laboratórium 1 Fehér Béla Raikovich Tamás,
Digitális technika (VIMIAA02) Laboratórium 1
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika (VIMIAA02) Laboratórium 1 Fehér Béla Raikovich Tamás,
Digitális technika VIMIAA hét
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA02 11. hét Fehér Béla BME MIT MiniRISC mintarendszer
Bevezetés az informatikába
Bevezetés az informatikába 3. előadás Dr. Istenes Zoltán Eötvös Loránd Tudományegyetem Informatikai Kar Programozáselmélet és Szoftvertechnológiai Tanszék Matematikus BSc - I. félév / 2008 / Budapest Dr.
Digitális technika VIMIAA hét
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK VIMIAA02 14. hét Fehér Béla BME MIT Rövid visszatekintés, összefoglaló
Digitális technika VIMIAA hét
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA02 14. hét Fehér Béla BME MIT Digitális technika
Digitális technika (VIMIAA02) Laboratórium 5
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika (VIMIAA02) Laboratórium 5 Fehér Béla Raikovich Tamás,
Digitális technika (VIMIAA02) Laboratórium 5
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika (VIMIAA02) Laboratórium 5 Fehér Béla Raikovich Tamás,
Összetett feladatok megoldása
Összetett feladatok megoldása F1. A laboratóriumi feladat a legnagyobb közös osztó kiszámító algoritmusának realizálása digitális hardver eszközökkel. Az Euklideszi algoritmus alapja a maradékos osztás,
Egyszerű RISC CPU tervezése
IC és MEMS tervezés laboratórium BMEVIEEM314 Budapesti Műszaki és Gazdaságtudományi Egyetem Egyszerű RISC CPU tervezése Nagy Gergely Elektronikus Eszközök Tanszéke (BME) 2013. február 14. Nagy Gergely
Digitális technika VIMIAA02 7. hét Fehér Béla BME MIT
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA02 7. hét Fehér Béla BME MIT Kombinációs logikák
Digitális technika VIMIAA02 7. hét
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA02 7. hét Fehér Béla BME MIT Kombinációs logikák
A PicoBlaze vezérlő alkalmazása a LOGSYS kártyán
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK A PicoBlaze vezérlő alkalmazása a LOGSYS kártyán Fehér Béla BME MIT atórium
Digitális technika VIMIAA hét
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA02 10. hét Fehér Béla BME MIT Processzor utasítás
Digitális technika VIMIAA hét
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA02 10. hét Fehér Béla BME MIT A processzorok
Digitális technika VIMIAA01
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA01 Fehér Béla BME MIT Processzor utasítás rendszerek
Digitális technika VIMIAA01
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA01 Fehér Béla BME MIT Processzor utasítás rendszerek
Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD)
Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD) Bevezetés A laborgyakorlatok alapvető célja a tárgy későbbi laborgyakorlataihoz szükséges ismeretek átadása, az azokban szereplő
Adatok ábrázolása, adattípusok
Adatok ábrázolása, adattípusok Összefoglalás Adatok ábrázolása, adattípusok Számítógépes rendszerek működés: információfeldolgozás IPO: input-process-output modell információ tárolása adatok formájában
Számítógépek felépítése, alapfogalmak
2. előadás Számítógépek felépítése, alapfogalmak Lovas Szilárd, Krankovits Melinda SZE MTK MSZT kmelinda@sze.hu B607 szoba Nem reprezentatív felmérés kinek van ilyen számítógépe? 2 Nem reprezentatív felmérés
Mikrorendszerek felépítésének általános modellje
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Mikrorendszerek felépítésének általános modellje Fehér Béla, Raikovich
Digitális technika (VIMIAA02) Laboratórium 5.5
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika (VIMIAA02) Laboratórium 5.5 Fehér Béla Raikovich Tamás,
VI. SZOFTVERES PROGRAMOZÁSÚ VLSI ÁRAMKÖRÖK
VI. SZOFTVERES PROGRAMOZÁSÚ VLSI ÁRAMKÖRÖK 1 Az adatok feldolgozását végezhetjük olyan általános rendeltetésű digitális eszközökkel, amelyeket megfelelő szoftverrel (programmal) vezérelünk. A mai digitális
Digitális technika (VIMIAA02) Laboratórium 4
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika (VIMIAA02) Laboratórium 4 Fehér Béla Raikovich Tamás,
Számítógépek felépítése, alapfogalmak
2. előadás Számítógépek felépítése, alapfogalmak Lovas Szilárd SZE MTK MSZT lovas.szilard@sze.hu B607 szoba Nem reprezentatív felmérés kinek van ilyen számítógépe? Nem reprezentatív felmérés kinek van
Digitális technika II. (vimia111) 5. gyakorlat: Mikroprocesszoros tervezés, egyszerű feladatok HW és SW megvalósítása gépi szintű programozással
Digitális technika II. (vimia111) 5. gyakorlat: Mikroprocesszoros tervezés, egyszerű feladatok HW és SW megvalósítása gépi szintű programozással Megoldás Elméleti anyag: Processzor belső felépítése, adat
Digitális technika (VIMIAA02) Laboratórium 4
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika (VIMIAA02) Laboratórium 4 Fehér Béla Raikovich Tamás,
A mikroprocesszor egy RISC felépítésű (LOAD/STORE), Neumann architektúrájú 32 bites soft processzor, amelyet FPGA val valósítunk meg.
Mikroprocesszor A mikroprocesszor egy RISC felépítésű (LOAD/STORE), Neumann architektúrájú 32 bites soft processzor, amelyet FPGA val valósítunk meg. A mikroprocesszor részei A mikroprocesszor a szokásos
Bevezetés az informatikába
Bevezetés az informatikába 4. előadás Dr. Istenes Zoltán Eötvös Loránd Tudományegyetem Informatikai Kar Programozáselmélet és Szoftvertechnológiai Tanszék Matematikus BSc - I. félév / 2008 / Budapest Dr.
Digitális technika (VIMIAA01) Laboratórium 11
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika (VIMIAA01) Laboratórium 11 Fehér Béla Raikovich Tamás,
Digitális technika (VIMIAA02) Laboratórium 3
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika (VIMIAA02) Laboratórium 3 Fehér Béla Raikovich Tamás,
Digitális technika (VIMIAA02) Laboratórium 3
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika (VIMIAA02) Laboratórium 3 Fehér Béla Raikovich Tamás,
Digitális rendszerek. Utasításarchitektúra szintje
Digitális rendszerek Utasításarchitektúra szintje Utasításarchitektúra Jellemzők Mikroarchitektúra és az operációs rendszer közötti réteg Eredetileg ez jelent meg először Sokszor az assembly nyelvvel keverik
Egyszerű számítógép működése
gyszerű számítógép működése gy Neumann és egy Harvard arcitektúrájú számítógép egyszerűsített blokkvázlatát mutatják az alábbi ábrák. Neumann architektúra cím busz környezet CPU ROM RAM perifériák órajel
Nagy Gergely április 4.
Mikrovezérlők Nagy Gergely BME EET 2012. április 4. ebook ready 1 Bevezetés Áttekintés Az elektronikai tervezés eszközei Mikroprocesszorok 2 A mikrovezérlők 3 Főbb gyártók Áttekintés A mikrovezérlők az
Digitális technika VIMIAA01 6. hét Fehér Béla BME MIT
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA01 6. hét Fehér Béla BME MIT Kiegészítés az eddigi
Digitális technika (VIMIAA01) Laboratórium 11
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika (VIMIAA01) Laboratórium 11 Fehér Béla Raikovich Tamás,
Operandus típusok Bevezetés: Az utasítás-feldolgozás menete
Operandus típusok Bevezetés: Az utasítás-feldolgozás menete Egy gépi kódú utasítás általános formája: MK Címrész MK = műveleti kód Mit? Mivel? Az utasítás-feldolgozás általános folyamatábrája: Megszakítás?
Digitális technika (VIMIAA01) Laboratórium 9
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika (VIMIAA01) Laboratórium 9 Fehér Béla Raikovich Tamás,
A mikroszámítógép felépítése.
1. Processzoros rendszerek fő elemei mikroszámítógépek alapja a mikroprocesszor. Elemei a mikroprocesszor, memória, és input/output eszközök. komponenseket valamilyen buszrendszer köti össze, amelyen az
Digitális technika II. (vimia111) 5. gyakorlat: Tervezés adatstruktúra-vezérlés szétválasztással, vezérlőegység generációk
Digitális technika II. (vimia111) 5. gyakorlat: Tervezés adatstruktúra-vezérlés szétválasztással, vezérlőegység generációk Elméleti anyag: Processzoros vezérlés általános tulajdonságai o z induló készletben
Digitális technika (VIMIAA01) Laboratórium 9
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika (VIMIAA01) Laboratórium 9 Fehér Béla Raikovich Tamás,
A mikroprocesszor felépítése és működése
A mikroprocesszor felépítése és működése + az egyes részegységek feladata! Információtartalom vázlata A mikroprocesszor feladatai A mikroprocesszor részegységei A mikroprocesszor működése A mikroprocesszor
A számítógép alapfelépítése
Informatika alapjai-6 számítógép felépítése 1/8 számítógép alapfelépítése Nevezzük számítógépnek a következő kétféle elrendezést: : Harvard struktúra : Neumann struktúra kétféle elrendezés alapvetően egyformán
Összeadás BCD számokkal
Összeadás BCD számokkal Ugyanúgy adjuk össze a BCD számokat is, mint a binárisakat, csak - fel kell ismernünk az érvénytelen tetrádokat és - ezeknél korrekciót kell végrehajtani. A, Az érvénytelen tetrádok
Digitális technika (VIMIAA01) Laboratórium 10
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika (VIMIAA01) Laboratórium 10 Fehér Béla Raikovich Tamás,
[cimke:] [feltétel] utasítás paraméterek [; megjegyzés]
Szoftver fejlesztés Egy adott mikroprocesszoros rendszer számára a szükséges szoftver kifejlesztése több lépésből áll: 1. Forrás nyelven megírt program(ok) lefordítása gépi kódra, amihez megfelelő fejlesztő
SZÁMÍTÓGÉPEK BELSŐ FELÉPÍTÉSE - 1
INFORMATIKAI RENDSZEREK ALAPJAI (INFORMATIKA I.) 1 NEUMANN ARCHITEKTÚRÁJÚ GÉPEK MŰKÖDÉSE SZÁMÍTÓGÉPEK BELSŐ FELÉPÍTÉSE - 1 Ebben a feladatban a következőket fogjuk áttekinteni: Neumann rendszerű számítógép
SZÁMÍTÓGÉP ARCHITEKTÚRÁK
SZÁMÍTÓGÉP ARCHITEKTÚRÁK Kártyás ajtónyitó tervezése Horváth Gábor BME Hálózati Rendszerek és Szolgáltatások Tanszék ghorvath@hit.bme.hu, belso@hit.bme.hu Budapest, 2018-02-19 Hálózati Rendszerek és Szolgáltatások
Máté: Számítógép architektúrák
A mikroprogram Mic 1: 4.. ábra. 51x3 bites vezérlőtár a mikroprogramnak, MPC (MicroProgram Counter): mikroprogram utasításszámláló. MIR (MicroInstruction Register): mikroutasítás regiszter. Az adatút ciklus
Adatelérés és memóriakezelés
Adatelérés és memóriakezelés Jelen nayagrészben az Intel x86-os architektúrára alapuló 32 bites processzorok programozását tekintjük. Egy program futása során (legyen szó a program vezérléséről vagy adatkezelésről)
Mikroprocesszor CPU. C Central Központi. P Processing Számító. U Unit Egység
Mikroprocesszor CPU C Central Központi P Processing Számító U Unit Egység A mikroprocesszor általános belső felépítése 1-1 BUSZ Utasítás dekóder 1-1 BUSZ Az utasítás regiszterben levő utasítás értelmezését
Számítógépek felépítése
Számítógépek felépítése Emil Vatai 2014-2015 Emil Vatai Számítógépek felépítése 2014-2015 1 / 14 Outline 1 Alap fogalmak Bit, Byte, Word 2 Számítógép részei A processzor részei Processzor architektúrák
Számítógép architektúrák
Számítógép architektúrák Kártyás ajtónyitó tervezése 2016. március 7. Budapest Horváth Gábor docens BME Hálózati Rendszerek és Szolgáltatások Tanszék ghorvath@hit.bme.hu Számítógép Architektúrák Horváth
Digitális technika (VIMIAA01) Laboratórium 4
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika (VIMIAA01) Laboratórium 4 Fehér Béla Raikovich Tamás,
Véges állapotú gépek (FSM) tervezése
Véges állapotú gépek (FSM) tervezése F1. A 2. gyakorlaton foglalkoztunk a 3-mal vagy 5-tel osztható 4 bites számok felismerésével. Abban a feladatban a bemenet bitpárhuzamosan, azaz egy időben minden adatbit
Digitális technika VIMIAA02 6. EA Fehér Béla BME MIT
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA02 6. EA Fehér Béla BME MIT Kiegészítés az eddigi
b. Következő lépésben egészítse ki az adatstruktúrát a teljes rendezéshez szükséges további egységekkel és készítse el a teljes mikroprogramot!
Digitális technika II. (vimia111) 4. gyakorlat: Processzorok alapvető jellemzői Megoldás Elméleti anyag: Mikroprogramozott vezérlő tervezése o Adatstruktúra tervezése, vezérlő és feltétel jelek felvétele
Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD)
Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD) Összeadó áramkör A legegyszerűbb összeadó két bitet ad össze, és az egy bites eredményt és az átvitelt adja ki a kimenetén, ez a
Digitális technika VIMIAA01 5. hét
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA01 5. hét Fehér Béla BME MIT Sorrendi logikák
Digitális technika VIMIAA02 6. EA
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA02 6. EA Fehér Béla BME MIT Kiegészítés az eddigi
Mintavételes szabályozás mikrovezérlő segítségével
Automatizálási Tanszék Mintavételes szabályozás mikrovezérlő segítségével Budai Tamás budai.tamas@sze.hu http://maxwell.sze.hu/~budait Tartalom Mikrovezérlőkről röviden Programozási alapismeretek ismétlés
ISA szimulátor objektum-orientált modell (C++)
Budapesti Műszaki és Gazdaságtudományi Egyetem ISA szimulátor objektum-orientált modell (C++) Horváth Péter Elektronikus Eszközök Tanszéke 2015. február 12. Horváth Péter ISA szimulátor objektum-orientált
Labor gyakorlat Mikrovezérlők
Labor gyakorlat Mikrovezérlők ATMEL AVR ARDUINO 1. ELŐADÁS BUDAI TAMÁS Tartalom Labor 2 mikrovezérlők modul 2 alkalom 1 mikrovezérlők felépítése, elmélet 2 programozás, mintaprogramok Értékelés: a 2. alkalom
Mikrorendszerek tervezése
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Mikrorendszerek tervezése Megszakítás- és kivételkezelés Fehér Béla Raikovich
Mikrorendszerek tervezése
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Mikrorendszerek tervezése MicroBlaze processzor Fehér Béla Raikovich Tamás
Labor gyakorlat Mikrovezérlők
Labor gyakorlat Mikrovezérlők ATMEL AVR ARDUINO 1. ELŐADÁS BUDAI TAMÁS 2015. 09. 06. Tartalom Labor 2 mikrovezérlők modul 2 alkalom 1 mikrovezérlők felépítése, elmélet 2 programozás, mintaprogramok Értékelés:
Véges állapotú gépek. Steiner Henriette
Véges állapotú gépek Steiner Henriette Logikai hálózat Logikai hálózatnak nevezzük azokat a rendszereket, melyeknek bemeneti illetve kimeneti jelei logikai jelek, a kimeneti jeleket a bemeneti jelek függvényében
5. KOMBINÁCIÓS HÁLÓZATOK LEÍRÁSÁNAK SZABÁLYAI
5. KOMBINÁCIÓS HÁLÓZATOK LEÍRÁSÁNAK SZABÁLYAI 1 Kombinációs hálózatok leírását végezhetjük mind adatfolyam-, mind viselkedési szinten. Az adatfolyam szintű leírásokhoz az assign kulcsszót használjuk, a
Informatika 1 2. el adás: Absztrakt számítógépek
Informatika 1 2. el adás: Budapesti M szaki és Gazdaságtudományi Egyetem 2015-09-08 1 2 3 A egy M = Q, Γ, b, Σ, δ, q 0, F hetes, ahol Q az 'állapotok' nem üres halmaza, Γ a 'szalag ábécé' véges, nem üres
Digitális technika HF2 Elkészítési segédlet Gépi szintű programozás
Digitális technika HF2 Elkészítési segédlet Gépi szintű programozás A programozási feladat egy adott probléma 3 féle megoldásának elkészítése. Mindegyik program lehet egyetlen közös forrásfájlban, a megoldás
Assembly Utasítások, programok. Iványi Péter
Assembly Utasítások, programok Iványi Péter Assembly programozás Egyszerű logikán alapul Egy utasítás CSAK egy dolgot csinál Magas szintű nyelven: x = 5 * z + y; /* 3 darab művelet */ Assembly: Szorozzuk
A 32 bites x86-os architektúra regiszterei
Memória címzési módok Jelen nayagrészben az Intel x86-os architektúrára alapuló 32 bites processzorok programozását tekintjük. Egy program futása során (legyen szó a program vezérléséről vagy adatkezelésről)
VEZÉRLŐEGYSÉGEK. Tartalom
VEZÉRLŐEGYSÉGEK Tartalom VEZÉRLŐEGYSÉGEK... 1 Vezérlőegységek fajtái és jellemzői... 2 A processzor elemei... 2 A vezérlés modellje... 2 A vezérlőegységek csoportosítása a tervezés módszere szerint...
Máté: Számítógép architektúrák
NEXT ADDRESS JMPC JAMN JAMZ SLL8 SRA1 F0 F1 ENA EN INVA INC H OPC TOS LV SP PC MDR MAR WRITE READ FETCH 4 sín Mikroutasítások 24 bit: az adatút vezérléséhez bit: a következő utasítás címének megadásához,
Véges állapotú gépek (FSM) tervezése
Véges állapotú gépek (FSM) tervezése F1. Tervezzünk egy soros mintafelismerőt, ami a bemenetére ciklikusan, sorosan érkező 4 bites számok közül felismeri azokat, amelyek 3-mal vagy 5-tel oszthatók. A fenti
SzA19. Az elágazások vizsgálata
SzA19. Az elágazások vizsgálata (Az elágazások csoportosítása, a feltételes utasítások használata, a műveletek eredményének vizsgálata az állapottér módszerrel és közvetlen adatvizsgálattal, az elágazási
Máté: Számítógép architektúrák
MPC új tartalma, JMPC JMPC esetén MPC 8 alacsonyabb helyértékű bitjének és MR 8 bitjének bitenkénti vagy kapcsolata képződik MPC-ben az adatút ciklus vége felé (MR megérkezése után). Ilyenkor Addr 8 alacsonyabb
Máté: Számítógép architektúrák
Mikroarchitektúra szint Feladata az ISA (Instruction Set Architecture gépi utasítás szint) megvalósítása. Nincs rá általánosan elfogadott, egységes elv. A ISA szintű utasítások függvények, ezeket egy főprogram
SZORGALMI FELADAT. 17. Oktober
SZORGALMI FELADAT F2. Tervezzen egy statikus aszinkron SRAM memóriainterfész áramkört a kártyán található 128Ki*8 bites memóriához! Az áramkör legyen képes az írási és olvasási műveletek végrehajtására
1. Az utasítás beolvasása a processzorba
A MIKROPROCESSZOR A mikroprocesszor olyan nagy bonyolultságú félvezető eszköz, amely a digitális számítógép központi egységének a feladatait végzi el. Dekódolja az uatasításokat, vezérli a műveletek elvégzéséhez
Digitális technika VIMIAA01 5. hét Fehér Béla BME MIT
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA01 5. hét Fehér Béla BME MIT Sorrendi logikák
Járműfedélzeti rendszerek I. 3. előadás Dr. Bécsi Tamás
Járműfedélzeti rendszerek I. 3. előadás Dr. Bécsi Tamás ATmega128 CPU Single-level pipelining Egyciklusú ALU működés Reg. reg., reg. konst. közötti műveletek 32 x 8 bit általános célú regiszter Egyciklusú
találhatók. A memória-szervezési modell mondja meg azt, hogy miként
Memória címzési módok Egy program futása során (legyen szó a program vezérléséről vagy adatkezelésről) a program utasításai illetve egy utasítás argumentumai a memóriában találhatók. A memória-szervezési
Szekvenciális hálózatok és automaták
Szekvenciális hálózatok a kombinációs hálózatokból jöhetnek létre tárolási tulajdonságok hozzáadásával. A tárolás megvalósítása történhet a kapcsolás logikáját képező kombinációs hálózat kimeneteinek visszacsatolásával
A számítógép alapfelépítése
Informatika alapjai-6 A számítógép felépítése 1/14 A számítógép alapfelépítése Nevezzük számítógépnek a következő kétféle elrendezést: A: Harvard struktúra B: Neumann struktúra A kétféle elrendezés alapvetően
LOGIKAI TERVEZÉS HARDVERLEÍRÓ NYELVEN. Dr. Oniga István
LOGIKI TERVEZÉS HRDVERLEÍRÓ NYELVEN Dr. Oniga István Digitális komparátorok Két szám között relációt jelzi, (egyenlő, kisebb, nagyobb). három közül csak egy igaz Egy bites komparátor B Komb. hál. fi
A ChipScope logikai analizátor
A ChipScope egy, az FPGA tervbe integrálható logikai analizátor, amely az FPGA terv belső jeleinek vizsgálatára használható Előnye a normál logikai analizátorhoz képest Az igényeknek megfelelően konfigurálható
PWM elve, mikroszervó motor vezérlése MiniRISC processzoron
PWM elve, mikroszervó motor vezérlése MiniRISC processzoron F1. A mikroprocesszorok, mint digitális eszközök, ritkán rendelkeznek közvetlen analóg kimeneti jelet biztosító perifériával, tehát valódi, minőségi
Digitális technika (VIMIAA02) Laboratórium 2
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika (VIMIAA02) Laboratórium 2 Fehér Béla Raikovich Tamás,