Máté: Számítógép architektúrák
|
|
- Marika Halászné
- 10 évvel ezelőtt
- Látták:
Átírás
1 MPC új tartalma, JMPC JMPC esetén MPC 8 alacsonyabb helyértékű bitjének és MR 8 bitjének bitenkénti vagy kapcsolata képződik MPC-ben az adatút ciklus vége felé (MR megérkezése után). Ilyenkor Addr 8 alacsonyabb helyértékű bitje általában 0 Feltétlen ugrás az MR-ben tárolt címre kapcsoló utasítás: goto(mr) vagy goto(mr OR 0x100) Kezdődhet az újabb mikroutasítás végrehajtása. JMPC: TOS=H+SP+1; goto(mr) Máté: Architektúrák 6. előadás 1 mic1_2.swf Máté: Architektúrák 6. előadás 2 Mic-1 működése (MPC) MIR regiszter sín, Addr MPC ALU, léptető megtudja, mit kell csináljon, eredmény C, N, Z C regiszterekbe JAMN, JAMZ és (N), (Z) mem. MDR és/vagy alapján módosul MPC mem. MR Memória ciklus indítása JMPC és (MR) (rd, wr, fetch) alapján módosul MPC. Máté: Architektúrák 6. előadás 3 Mic-1 programozása (4.5, 6. ábra) 36 bites bináris utasításokat kellene megadnunk. Pl.: Egy ciklusban növeljük SP-t 1-gyel és olvasást kezdeményezünk a memóriából, folytatás a 122-es utasításnál. Szimbolikusan ilyesmi: ReadRegister = SP, ALU = INC, Write SP, Read, NextAddress = 122; Nehézkes, helyette: SP = SP + 1; rd A folytatás címet csak akkor tüntetjük fel, ha az nem a következőként írt mikroutasítás (pl. goto Main1). Máté: Architektúrák 6. előadás 4 memória C sín MAR MDR PC MR SP LV CPP TOS OPC H A 6 ALU Léptető sín N Z 2 MAL (Micro Assembly Language) SOURCE: a sínre kötött regiszterek bármelyike: MDR, PC, MRU (előjel nélküli - MR Unsigned), MR, SP, LV, CPP, TOS, OPC. DEST: a C sínre kapcsolt regiszterek bármelyike: MAR, MDR, PC, SP, LV, CPP, TOS, OPC, H. Több regiszter is kaphatja ugyanazt az értéket. wr: memóriába írás MDR-bőla MAR címre. rd: memóriából olvasás MDR-be a MAR címről. fetch: 8 bites utasításkód betöltése MR-be a PC címről. Nem megengedett pl. az alábbi utasítás pár: MAR = SP; rd MDR = H // A memóriából is most kapna értéket! Máté: Architektúrák 6. előadás 5 Máté: Architektúrák 6. előadás 6 6. előadás 1
2 Feltétlen ugrás: goto Main1 Az Addr mezőbe Main1 címét kell írni. Feltétlen ugrás MR szerint (kapcsoló utasítás): Ilyenkor JMPC = 1 goto (MR OR value) value általában 0 vagy 0x100. Feltételes elágazás, pl.: TOS (Top Of Stack) alapján Z = TOS ; if (Z) goto L1; else goto L2 // Z=1, ha TOS=0, különben Z=0. Cím 0x75 Addr 0x092 JAM 001 Adatút vezérlő bitek... JAMZ =1 esetén a mikroprogram az L2 0x092 címen folytatódik, ha Z = 0, L1 0x192 címen folytatódik, ha Z = 1. Az L1 és L2 címek különbsége 256 (0x100) kell legyen (4.7. ábra)! Máté: Architektúrák 6. előadás 7 Máté: Architektúrák 6. előadás 8 A verem operandusok és az eredmény ideiglenes tárolására is használható (operandus verem), pl. (4.9. ábra): a1 = + SP LV a1 SP LV a1 SP + LV a1 SP LV + IJVM (Integer Java Virtual Machine): a JVM egész értékű aritmetikát tartalmazó része. Az IJVM utasítások szerkezete: az első mező az opcode (Operation Code, műveleti kód), az esetleges második mezőben az operandus meghatározására szolgáló adat van. Mikroprogram: betölti, értelmezi és végrehajtja az IJVM utasításokat: betöltés-végrehajtás (fetch-execute) ciklus. Máté: Architektúrák 6. előadás 9 Máté: Architektúrák 6. előadás 10 Az IJVM memóriamodellje (4.10. ábra) A 4 G memória, 1 G szóként is szervezhető. Konstansok, mutatók Tartalma a program betöltésekor alakul ki, ISA utasítások nem írhatják felül CPP Konstans terület Verem lokális változók és operandus verem SP LV Aktuális operandusok 3. Aktuális lokális változók 3. lokális változók 2. lokális változók 1. Program PC bájtot címez a metódus területen belül PC Metódus terület Máté: Architektúrák 6. előadás 11 hex Mnemonic 10 IPUSH byte A7 GOTO offset F F IADD ISU NOP SWAP IJVM néhány utasítása: ábra (részlet). IFEQ offset IF_ICMPEQ offset ILOAD varnum ISTORE varnum jelentés eteszi a byte ot a verembe Feltétel nélküli ugrás offset -re Kivesz a veremből két szót, az összegüket a verembe teszi Kivesz a veremből egy szót, ha 0, akkor offset -re ugrik Kivesz a veremből két szót, ha egyenlők, akkor offset - re ugrik eteszi varnum -ot a verembe Kivesz a veremből egy szót, és eltárolja varnum -ba Kivesz a veremből két szót, a különbségüket a verembe teszi Nem csinál semmit A verem két felső szavát megcseréli Máté: Architektúrák 6. előadás előadás 2
3 Java (C) IJVM program ábra in. kód program 1 ILOAD j // i = j + k ILOAD k i = j + k; 3 IADD 60 if(i = = 3) 4 ISTORE i k = 0; 5 ILOAD i // if(i = = 3) else 6 IPUSH j = j 1; 7 IF_ICMPEQ L1 9F 00 0D 8 ILOAD j // j = j IPUSH ISU ISTORE j GOTO L2 A7 00 0F 13 L1: IPUSH 0 // k = ISTORE k L2: IJVM megvalósítása Mic-1-en (4.11., 17. ábra) Előkészület a gép indításakor: PC a végrehajtandó utasítás címét, MR az utasítás kódját tartalmazza. A főciklus legelső mikroutasítása a Main1, ez: PC=PC+1; fetch; goto(mr); PC most a végrehajtandó utasítás utáni bájtra mutat, ez lehet egy újabb utasítás kódja, vagy operandus. PC új értékének kialakulása után indul a fetch-csel kezdeményezett memória ciklus, ez a program következő bájtját olvassa MR-be (a következő mikroutasítás végén lesz MR-ben a bájt). goto (MR) elugrik az utasítás feldolgozásához. Máté: Architektúrák 6. előadás 13 Máté: Architektúrák 6. előadás 14 Minden utasítás feldolgozását végző függvény első mikroutasítása az utasítás kódnak megfelelő címen van a mikroprogram tárban. A mikroutasítások egy lehetséges elhelyezkedése a mikroprogram tárban (részlet) A 3 4 C 5 D 6 E 7 F 0 NOP1 IAND3 POP3 SWAP2 SWAP3 SWAP4 SWAP5 SWAP6 8 LDC_W3 LDC_W4 IINC3 IINC4 IINC5 IINC6 IFLT2 IFLT3 10 IPUSH1 IPUSH2 IPUSH2 LDC_W1 LDC_W2 ILOAD1 ILOAD2 ILOAD3 18 ILOAD4 ILOAD5 IFLT4 INVOKEV19 INVOKEV20 INVOKEV21 INVOKEV22 INVOKEV23 20 F F ISTORE1 ISTORE2 38 ISTORE3 ISTORE4 ISTORE5 ISTORE POP1 58 POP2 DUP1 DUP2 SWAP1 60 IADD1 IADD2 IADD3 ISU1 ISU2 ISU IAND1 IAND2 80 IOR1 IOR2 IOR3 IINC1 IINC2 INVOKEV1 INVOKEV2 88 INVOKEV3 INVOKEV4 INVOKEV5 INVOKEV6 INVOKEV7 INVOKEV8 INVOKEV9 INVOKEV10 Máté: Architektúrák 6. előadás 15 Máté: Architektúrák 6. előadás 16 Látható, hogy nem helyezhetjük egymás után az egyes utasítások feldolgozását végző mikroutasítás sorozatot, ezért inkább azt a megoldást választottuk, hogy minden mikroutasítás tartalmazza a következő címét. Ha az első utasítás pl. NOP (No OPeration, nem csinál semmit), ennek a kódja 0x00, ezért a 0x00 címen kezdődik a NOP feldolgozását végző függvény. Ez egyetlen goto Main1 mikroutasítás. Máté: Architektúrák 6. előadás 17 IJVM megvalósítása Mic-1-en (4.11., 17. ábra) A főciklus a Main1-nél kezdődik; PC a végrehajtandó utasítás címét, MR az utasítás kódját tartalmazza. Main1 a következő utasítást vagy adatbájtot olvassa. Címke Main1 nop1 iadd1 iadd2 iadd3 Műveletek // kommentár PC = PC + 1; fetch; goto(mr) goto Main1 MAR = SP = SP 1; rd H = TOS MDR = TOS = MDR + H; wr; goto Main1 Máté: Architektúrák 6. előadás előadás 3
4 Megállapodás szerint TOS tartalmazza a verem tetején lévő szót! Ez többnyire előny. SP A swap1 swap2 MAR = SP 1; rd // A 2. szó címe, olvasás MAR = SP // MAR a verem tetejére mutat MAR MAR A MDR Máté: Architektúrák 6. előadás 19 mic1_3.swf Máté: Architektúrák 6. előadás 20 swap1 swap2 swap3 swap4 MAR = SP 1; rd // A 2. szó címe, olvasás MAR = SP // MAR a verem tetejére mutat H = MDR; wr // 2. szó H-ba, verem tetejére MDR = TOS // verem régi teteje MAR MAR A MDR H = MDR (MAR) MDR = A SP swap4-ben előny, hogy TOS tartalmazza a verem tetején lévő szót. swap1 swap2 swap3 swap4 swap5 swap6 MAR = SP 1; rd // A 2. szó címe, olvasás MAR = SP // MAR a verem tetejére mutat H = MDR; wr // 2. szó H-ba, verem tetejére MDR = TOS MAR = SP 1; wr TOS = H; goto Main1 // verem régi teteje // a 2. szóba // TOS frissítése swap6-ban hátrány, mert ez az utasítás csak azért kell, hogy TOS tartalmazza a verem tetején lévő szót. MAR MAR A MDR H = MDR (MAR) MDR = A MAR MDR (MAR) SP A Máté: Architektúrák 6. előadás 21 Máté: Architektúrák 6. előadás 22 A WIDE utasítás A WIDE utasítás valójában prefixum: önmagában nem csinál semmit, csak jelzi, hogy a következő utasításnak 16 bites indexe van. Pl.: varnum a lokális változó 8 bites indexe. WIDE varnum a lokális változó 16 bites indexe. w_iload1 címe = iload1 címe + 0x100 mic1_4.swf Máté: Architektúrák 6. előadás 23 Máté: Architektúrák 6. előadás előadás 4
5 Main1 iload1 iload2 iload3 iload4 iload5 varnum a lokális változó 8 bites indexe. PC = PC + 1; fetch; goto(mr) H = LV MAR = H + MRU; rd // rd(lv+varnum) MAR = SP = SP + 1 PC = PC + 1; fetch; wr TOS = MDR; goto Main1 MR = ILOAD MR varnum MDR (MAR) (MAR) MDR MR opkód Máté: Architektúrák 6. előadás 25 Main1 iload1 iload2 iload3 iload4 iload5 wide1 w_iload1 w_iload2 w_iload3 w_iload4 WIDE varnum a lokális változó 16 bites indexe. PC = PC + 1; fetch; goto(mr) H = LV MAR = H + MRU; rd // rd(lv+varnum) MAR = SP = SP + 1 PC = PC + 1; fetch; wr TOS = MDR; goto Main1 PC = PC + 1; fetch; goto(mr OR 0x100) PC = PC + 1; fetch // index 2. bájtja H = MRU << 8 // 1. bájt léptetése H = H OR MRU // H = a 16 bites index MAR = LV + H; rd; goto iload3 MR = WIDE MDR (MAR) (MAR) MDR MR opkód MR ILOAD MR 1. bájt MR 2. bájt rd(lv+varnum) Máté: Architektúrák 6. előadás 26 Az GOTO offset utasítás. PC relatív: PC értékéhez hozzá kell adni a két bájtos, előjeles offset értékét. Mic-1 program: Main1 PC = PC + 1; fetch; goto(mr) goto1 OPC=PC 1 // Main1-nél : PC=PC+1 MR 1. bájt goto2 PC=PC+1; fetch // offset 2. bájtja goto3 H=MR<<8 // 1. (előjeles) bájt <<8 MR 2. bájt goto4 H=MRU OR H // 16 bites offset goto5 PC=OPC+H; fetch; goto Main1 // PC új értéke Main1 PC = PC + 1; fetch; goto(mr) MR opkód goto5 kezdeményezi a PC új értékénél lévő bájt olvasását, Main1-ben goto(mr) már a folytatás első opkódjának megfelelő címre ugrik! Máté: Architektúrák 6. előadás 27 mic1_5.swf Máté: Architektúrák 6. előadás 28 Máté: Architektúrák 6. előadás 29 mic1_5.swf A IFLT offset utasítás (Mic-1) Kivesz egy szót a veremből és ugrik, ha negatív. iflt1 MAR=SP=SP 1; rd // 2. szó a veremből iflt2 OPC=TOS // TOS mentése iflt3 TOS=MDR // TOS= a verem új teteje iflt4 N=OPC; if(n) goto T; else goto F //elágazás T OPC=PC 1; goto goto2 // igaz ág F PC=PC+1 // hamis ág, át kell lépni offset-et F2 PC=PC+1; fetch; goto (Main1) // PC új értéke a folytatás 1. utasításának betöltése Fontos: T címe = F címe + 0x100 Máté: Architektúrák 7. előadás előadás 5
6 Milyen részei vannak az egy bites ALU-nak? Milyen vezérlő bemenetei vannak az ALU-nak? Milyen vezérlő bemenetek esetén lesz 1 az eredmény? Milyen eredményt szolgáltat az F 0 =0, F 1 =1, ENA=0, EN=0, INVA=1, INC=1 vezérlő bemenet? A Mic-1 mely regisztere lehet az ALU bal/jobb operandusa? Hova tárolhatja a Mic-1 az eredményt? Érvényes utasítás-e Mic-1-en a H=OPC-H? Miért? Érvényes utasítás-e Mic-1-en a H=H-OPC? Miért? Máté: Architektúrák 6. előadás 31 mic1_5.swf Máté: Architektúrák 6. előadás 32 Milyen utasításai vannak a Mic-1 gépnek? Milyen ugró utasításai vannak a Mic-1 gépnek? Milyen értékeket vehet föl a SOURCE operandus? Milyen értékeket vehet föl a DEST operandus? Mit jelent a wr? Mely utasítások tudnak olvasni a memóriából, és hogy működnek? Hogy lehet védekezni az ellen, hogy MDR egyszerre kapjon értéket a memóriából és a C sínről? Mi az operandus verem? Hogy történik a memóriából olvasás? Hogy történik a memóriába írás? Mire szolgál a MAR/MDR regiszter? Ha egy mikroutasítás módosítja MAR tartalmát, és olvas a memóriából, akkor mely címről fog olvasni? Memóriából olvasás után mikor használható MDR új értéke az adatúton illetve MPC meghatározásához? Mire szolgál a PC és az MR regiszter? Mire szolgál az N és a Z regiszter? Mire szolgál a H regiszter? Máté: Architektúrák 6. előadás 33 Máté: Architektúrák 6. előadás 34 Milyen memória műveletei vannak a Mic-1 -nek? Milyen jelek szükségesek a Mic-1 adatútjának vezérléséhez? Hány jel szolgál az A sín vezérlésére? Hány jel szolgál a sín vezérlésére? Hány jel szolgál az ALU és a léptető vezérlésére? Hány jel szolgál a C sín vezérlésére? Hány jel szolgál a memória elérésére? Milyen részei vannak a Mic-1 mikroutasításainak? Milyen részei vannak az adatút ciklusnak? Milyen típusú memória a mikroprogram tároló? Mire szolgál az MPC regiszter? Mire szolgál az MIR regiszter? Miért van szükség az Addr mezőre? Milyen részei vannak az adatút ciklusnak? Hány bit kell a /C sín vezérléséhez? Mire szolgál a JMPN/JMPZ bit? Mire szolgál a JMPC bit? Hogy alakul ki MPC új tartalma? Máté: Architektúrák 6. előadás 35 Máté: Architektúrák 6. előadás előadás 6
7 Miért nem megengedett az MAR = SP; rd MDR = H utasítás pár? Hogy valósítható meg feltétlen ugrás a mikroprogramban? Hogy valósítható meg feltételes ugrás a mikroprogramban? Hogy valósítható meg kapcsoló utasítás a mikroprogramban? Minek a rövidítése az IJVM? Ismertesse az IJVM memóriamodelljét! Milyen utasításai vannak az IJVM-nek? Mi a IPUSH/DUP/IADD/SWAP utasítás feladata? Mi a GOTO utasítás feladata? Mi a IFEQ/IF_ICMPEQ utasítás feladata? Hogy működik a Mic-1 főciklusa? Mit tartalmaz PC és MR a főciklus indulásakor? Hogy valósítható meg Mic-1-en a NOP utasítás? Hogy valósítható meg Mic-1-en az IADD utasítás? Máté: Architektúrák 6. előadás 37 Máté: Architektúrák 6. előadás 38 Mire szolgál a SWAP utasítás? Hogy valósítható meg a SWAP utasítás? Mire szolgál a WIDE utasítás? Hogy valósítható meg a WIDE utasítás? Mire szolgál az ILOAD utasítás? Hogy valósítható meg az ILOAD utasítás? Mire szolgál a WIDE ILOAD utasítás? Hogy valósítható meg a WIDE ILOAD utasítás? Mire szolgál a GOTO utasítás? Hogy valósítható meg a GOTO utasítás? Melyek az IJVM feltételes ugró utasításai? Mire szolgál az IFLT utasítás? Hogy valósítható meg az IFLT utasítás? Máté: Architektúrák 6. előadás 39 Máté: Architektúrák 6. előadás 40 Az előadáshoz kapcsolódó Fontosabb tételek A Mic-1 működése, adatút ciklusa, memória ciklusa, mikroprogramja. MPC új értékének kialakulása Mic-1-en. Az IJVM, az IJVM memória modellje, az IJVM megvalósítása Mic-1-en. A WIDE utasítás hatása és működése Mic-1-en. Feltétlen és feltételes elágazó utasítás megvalósítása Mic-1-en. Máté: Architektúrák 6. előadás előadás 7
Máté: Számítógép architektúrák
A mikroprogram Mic 1: 4.. ábra. 51x3 bites vezérlőtár a mikroprogramnak, MPC (MicroProgram Counter): mikroprogram utasításszámláló. MIR (MicroInstruction Register): mikroutasítás regiszter. Az adatút ciklus
Máté: Számítógép architektúrák
NEXT ADDRESS JMPC JAMN JAMZ SLL8 SRA1 F0 F1 ENA EN INVA INC H OPC TOS LV SP PC MDR MAR WRITE READ FETCH 4 sín Mikroutasítások 24 bit: az adatút vezérléséhez bit: a következő utasítás címének megadásához,
Máté: Számítógép architektúrák
Mikroarchitektúra szint Feladata az ISA (Instruction Set Architecture gépi utasítás szint) megvalósítása. Nincs rá általánosan elfogadott, egységes elv. A ISA szintű utasítások függvények, ezeket egy főprogram
Máté: Számítógép architektúrák
Az GOTO offset utasítás. P relatív: P értékéhez hozzá kell adni a két bájtos, előjeles offset értékét. Mic 1 program: Main1 P = P + 1; fetch; goto() goto1 OP=P 1 // Main1 nél : P=P+1 1. bájt goto P=P+1;
Számítógép architektúrák
Számítógép architektúrák Számítógépek felépítése Digitális adatábrázolás Digitális logikai szint Mikroarchitektúra szint Gépi utasítás szint Operációs rendszer szint Assembly nyelvi szint Probléma orientált
Digitális rendszerek. Mikroarchitektúra szintje
Digitális rendszerek Mikroarchitektúra szintje Mikroarchitektúra Jellemzők A digitális logika feletti szint Feladata az utasításrendszer-architektúra szint megalapozása, illetve megvalósítása Példa Egy
találhatók. A memória-szervezési modell mondja meg azt, hogy miként
Memória címzési módok Egy program futása során (legyen szó a program vezérléséről vagy adatkezelésről) a program utasításai illetve egy utasítás argumentumai a memóriában találhatók. A memória-szervezési
Máté: Számítógép architektúrák
Máté: Számítógép architektúrák... Pl.: a verem két felső szavának cseréje Micon (.. ábra): swap swap swap swap swap swap cy MAR= SP;rd B=SP MAR= SP H=MDR; wr C=B B=SP MAR=C C=B Várni kell! rd MAR=C Várni
Bevezetés az informatikába
Bevezetés az informatikába 3. előadás Dr. Istenes Zoltán Eötvös Loránd Tudományegyetem Informatikai Kar Programozáselmélet és Szoftvertechnológiai Tanszék Matematikus BSc - I. félév / 2008 / Budapest Dr.
Digitális rendszerek. Utasításarchitektúra szintje
Digitális rendszerek Utasításarchitektúra szintje Utasításarchitektúra Jellemzők Mikroarchitektúra és az operációs rendszer közötti réteg Eredetileg ez jelent meg először Sokszor az assembly nyelvvel keverik
VEZÉRLŐEGYSÉGEK. Tartalom
VEZÉRLŐEGYSÉGEK Tartalom VEZÉRLŐEGYSÉGEK... 1 Vezérlőegységek fajtái és jellemzői... 2 A processzor elemei... 2 A vezérlés modellje... 2 A vezérlőegységek csoportosítása a tervezés módszere szerint...
Adatelérés és memóriakezelés
Adatelérés és memóriakezelés Jelen nayagrészben az Intel x86-os architektúrára alapuló 32 bites processzorok programozását tekintjük. Egy program futása során (legyen szó a program vezérléséről vagy adatkezelésről)
Máté: Számítógép architektúrák
Máté: Számítógép architektúrák... Hétszakaszú csővezeték: Mic (.. ábra). Az IFU a bejövő bájtfolyamot a dekódolóba küldi. IJVM hossz. A dekódoló a WIDE prefixumot felismeri, pl. WIDE ILOAD ot átalakítja
1. Az utasítás beolvasása a processzorba
A MIKROPROCESSZOR A mikroprocesszor olyan nagy bonyolultságú félvezető eszköz, amely a digitális számítógép központi egységének a feladatait végzi el. Dekódolja az uatasításokat, vezérli a műveletek elvégzéséhez
Digitális technika VIMIAA01 9. hét Fehér Béla BME MIT
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA01 9. hét Fehér Béla BME MIT Eddig Tetszőleges
Digitális technika VIMIAA01 9. hét
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA01 9. hét Fehér Béla BME MIT Eddig Tetszőleges
A 32 bites x86-os architektúra regiszterei
Memória címzési módok Jelen nayagrészben az Intel x86-os architektúrára alapuló 32 bites processzorok programozását tekintjük. Egy program futása során (legyen szó a program vezérléséről vagy adatkezelésről)
Operandus típusok Bevezetés: Az utasítás-feldolgozás menete
Operandus típusok Bevezetés: Az utasítás-feldolgozás menete Egy gépi kódú utasítás általános formája: MK Címrész MK = műveleti kód Mit? Mivel? Az utasítás-feldolgozás általános folyamatábrája: Megszakítás?
SZÁMÍTÓGÉP ARCHITEKTÚRÁK
SZÁMÍTÓGÉP ARCHITEKTÚRÁK Kártyás ajtónyitó tervezése Horváth Gábor BME Hálózati Rendszerek és Szolgáltatások Tanszék ghorvath@hit.bme.hu, belso@hit.bme.hu Budapest, 2018-02-19 Hálózati Rendszerek és Szolgáltatások
Aritmetikai utasítások I.
Aritmetikai utasítások I. Az értékadó és aritmetikai utasítások során a címzési módok különböző típusaira látunk példákat. A 8086/8088-as mikroprocesszor memóriája és regiszterei a little endian tárolást
Assembly Utasítások, programok. Iványi Péter
Assembly Utasítások, programok Iványi Péter Assembly programozás Egyszerű logikán alapul Egy utasítás CSAK egy dolgot csinál Magas szintű nyelven: x = 5 * z + y; /* 3 darab művelet */ Assembly: Szorozzuk
Adatok ábrázolása, adattípusok
Adatok ábrázolása, adattípusok Összefoglalás Adatok ábrázolása, adattípusok Számítógépes rendszerek működés: információfeldolgozás IPO: input-process-output modell információ tárolása adatok formájában
A mikroprocesszor egy RISC felépítésű (LOAD/STORE), Neumann architektúrájú 32 bites soft processzor, amelyet FPGA val valósítunk meg.
Mikroprocesszor A mikroprocesszor egy RISC felépítésű (LOAD/STORE), Neumann architektúrájú 32 bites soft processzor, amelyet FPGA val valósítunk meg. A mikroprocesszor részei A mikroprocesszor a szokásos
Balaton Marcell Balázs. Assembly jegyzet. Az Assembly egy alacsony szintű nyelv, mely a gépi kódú programozás egyszerűsítésére született.
Balaton Marcell Balázs Assembly jegyzet Az Assembly egy alacsony szintű nyelv, mely a gépi kódú programozás egyszerűsítésére született. 1. Regiszterek Regiszterek fajtái a. Szegmensregiszterek cs (code):
Számítógépek felépítése
Számítógépek felépítése Emil Vatai 2014-2015 Emil Vatai Számítógépek felépítése 2014-2015 1 / 14 Outline 1 Alap fogalmak Bit, Byte, Word 2 Számítógép részei A processzor részei Processzor architektúrák
Számítógép architektúrák
Számítógép architektúrák Kártyás ajtónyitó tervezése 2016. március 7. Budapest Horváth Gábor docens BME Hálózati Rendszerek és Szolgáltatások Tanszék ghorvath@hit.bme.hu Számítógép Architektúrák Horváth
Assembly utasítások listája
Assembly utasítások listája Bevezetés: Ebben a segédanyagban a fontosabb assembly utasításokat szedtem össze. Az utasítások csoportosítva vannak. A fontos kategóriába azok az utasítások tartoznak, amiknek
1. ábra: Perifériára való írás idődiagramja
BELÉPTETŐ RENDSZER TERVEZÉSE A tárgy első részében tanult ismeretek részbeni összefoglalására tervezzük meg egy egyszerű mikroprocesszoros rendszer hardverét, és írjuk meg működtető szoftverét! A feladat
Egyszerű RISC CPU tervezése
IC és MEMS tervezés laboratórium BMEVIEEM314 Budapesti Műszaki és Gazdaságtudományi Egyetem Egyszerű RISC CPU tervezése Nagy Gergely Elektronikus Eszközök Tanszéke (BME) 2013. február 14. Nagy Gergely
A MiniRISC processzor
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK A MiniRISC processzor Fehér Béla, Raikovich Tamás, Fejér Attila BME MIT
Mintavételes szabályozás mikrovezérlő segítségével
Automatizálási Tanszék Mintavételes szabályozás mikrovezérlő segítségével Budai Tamás budai.tamas@sze.hu http://maxwell.sze.hu/~budait Tartalom Mikrovezérlőkről röviden Programozási alapismeretek ismétlés
Programozás alapjai. 10. előadás
10. előadás Wagner György Általános Informatikai Tanszék Pointerek, dinamikus memóriakezelés A PC-s Pascal (is) az IBM PC memóriáját 4 fő részre osztja: kódszegmens adatszegmens stackszegmens heap Alapja:
SZÁMÍTÓGÉPEK BELSŐ FELÉPÍTÉSE - 1
INFORMATIKAI RENDSZEREK ALAPJAI (INFORMATIKA I.) 1 NEUMANN ARCHITEKTÚRÁJÚ GÉPEK MŰKÖDÉSE SZÁMÍTÓGÉPEK BELSŐ FELÉPÍTÉSE - 1 Ebben a feladatban a következőket fogjuk áttekinteni: Neumann rendszerű számítógép
Számítógépek felépítése, alapfogalmak
2. előadás Számítógépek felépítése, alapfogalmak Lovas Szilárd, Krankovits Melinda SZE MTK MSZT kmelinda@sze.hu B607 szoba Nem reprezentatív felmérés kinek van ilyen számítógépe? 2 Nem reprezentatív felmérés
A számok kiírása is alapvetően karakterek kiírásán alapul, azonban figyelembe kell venni, hogy a számjegyeket, mint karaktereket kell kiírni.
Példák számok kiírására A számok kiírása is alapvetően karakterek kiírásán alapul, azonban figyelembe kell venni, hogy a számjegyeket, mint karaktereket kell kiírni. Decimális számok kiírása Az alábbi
Programozott soros szinkron adatátvitel
Programozott soros szinkron adatátvitel 1. Feladat Név:... Irjon programot, mely a P1.0 kimenet egy lefutó élének időpontjában a P1.1 kimeneten egy adatbitet ad ki. A bájt legalacsonyabb helyiértéke 1.
Adatszerkezetek Tömb, sor, verem. Dr. Iványi Péter
Adatszerkezetek Tömb, sor, verem Dr. Iványi Péter 1 Adat Adat minden, amit a számítógépünkben tárolunk és a külvilágból jön Az adatnak két fontos tulajdonsága van: Értéke Típusa 2 Adat típusa Az adatot
8. Fejezet Processzor (CPU) és memória: tervezés, implementáció, modern megoldások
8. Fejezet Processzor (CPU) és memória: The Architecture of Computer Hardware and Systems Software: An Information Technology Approach 3rd Edition, Irv Englander John Wiley and Sons 2003 Wilson Wong, Bentley
DSP architektúrák dspic30f család
DSP architektúrák dspic30f család A Microchip 2004 nyarán piacra dobta a dspic30f családot, egy 16 bites fixpontos DSC. Mivel a mikróvezérlők tantárgy keretén belül a PIC családdal már megismerkedtetek,
8. Fejezet Processzor (CPU) és memória: tervezés, implementáció, modern megoldások
8. Fejezet Processzor (CPU) és memória: The Architecture of Computer Hardware and Systems Software: An Information Technology Approach 3rd Edition, Irv Englander John Wiley and Sons 2003 Wilson Wong, Bentley
Máté: Számítógép architektúrák
I-51 (19) Cél: beépített rendszerekben való alkalmazás Fő szempont: olcsóság (ma már 1-15 ), sokoldalú alkalmazhatóság A memóriával, be- és kivitellel együtt egyetlen lapkára integrált számítógép Mikrovezérlő
A Számítógépek felépítése, mőködési módjai
Mechatronika, Optika és Gépészeti Informatika Tanszék Kovács Endre tud. Mts. A Számítógépek felépítése, mőködési módjai Mikroprocesszoros Rendszerek Felépítése Buszrendszer CPU OPERATÍV TÁR µ processzor
Mi az assembly? Gyakorlatias assembly bevezető. Sokféle assembly van... Mit fogunk mi használni? A NASM fordítóprogramja. Assembly programok fordítása
Mi az assembly Gyakorlatias assembly bevezető Fordítóprogramok előadás (A, C, T szakirány) programozási nyelvek egy csoportja gépközeli: az adott processzor utasításai használhatóak általában nincsenek
Mutatók és mutató-aritmetika C-ben március 19.
Mutatók és mutató-aritmetika C-ben 2018 március 19 Memória a Neumann-architektúrában Neumann-architektúra: a memória egységes a címzéshez a természetes számokat használjuk Ugyanabban a memóriában van:
Szekvenciális hálózatok és automaták
Szekvenciális hálózatok a kombinációs hálózatokból jöhetnek létre tárolási tulajdonságok hozzáadásával. A tárolás megvalósítása történhet a kapcsolás logikáját képező kombinációs hálózat kimeneteinek visszacsatolásával
7. Fejezet A processzor és a memória
7. Fejezet A processzor és a memória The Architecture of Computer Hardware and Systems Software: An Information Technology Approach 3rd Edition, Irv Englander John Wiley and Sons 2003 Wilson Wong, Bentley
Assembly. Iványi Péter
Assembly Iványi Péter További Op. rsz. funkcionalitások PSP címének lekérdezése mov ah, 62h int 21h Eredmény: BX = PSP szegmens címe További Op. rsz. funkcionalitások Paraméterek kimásolása mov di, parameter
Az MSP430 mikrovezérlők digitális I/O programozása
10.2.1. Az MSP430 mikrovezérlők digitális I/O programozása Az MSP430 mikrovezérlők esetében minden kimeneti / bemeneti (I/O) vonal önállóan konfigurálható, az P1. és P2. csoportnak van megszakítás létrehozó
Máté: Assembly programozás
Dr. Máté Eörs docens Képfeldolgozás és Számítógépes Grafika Tanszék Árpád tér 2. II. em. 213 6196, 54-6196 (6396, 54-6396) http://www.inf.u-szeged.hu/~mate Tantárgy leírás: http://www.inf.u-szeged.hu/oktatas/kurzusleirasok/
Az interrupt Benesóczky Zoltán 2004
Az interrupt Benesóczky Zoltán 2004 1 Az interrupt (program megszakítás) órajel generátor cím busz környezet RESET áramkör CPU ROM RAM PERIF. adat busz vezérlõ busz A periféria kezelés során információt
Máté: Számítógép architektúrák 2010.10.06.
szinkron : Minden eseményt egy előző esemény okoz! Nincs órajel, WIT, van viszont: MSYN# (kérés Master SYNchronization), SSYN# (kész Slave SYNchronization). Ugyanazon a en gyors és lassú mester szolga
Máté: Számítógép architektúrák
Sín műveletek z eddigiek közönséges műveletek voltak. lokkos átvitel (3.4. ábra): kezdő címen kívül az adatre kell tenni a mozgatandó adatok számát. Esetleges várakozó ciklusok után ciklusonként egy adat
Programozás BMEKOKAA146. Dr. Bécsi Tamás 2. előadás
Programozás BMEKOKAA146 Dr. Bécsi Tamás 2. előadás Szintaktikai alapok Alapvető típusok, ismétlés C# típus.net típus Méret (byte) Leírás byte System.Byte 1Előjel nélküli 8 bites egész szám (0..255) char
5-6. ea Created by mrjrm & Pogácsa, frissítette: Félix
2. Adattípusonként különböző regisztertér Célja: az adatfeldolgozás gyorsítása - különös tekintettel a lebegőpontos adatábrázolásra. Szorzás esetén karakterisztika összeadódik, mantissza összeszorzódik.
Bonyolultságelmélet. Monday 26 th September, 2016, 18:50
Bonyolultságelmélet Monday 26 th September, 2016, 18:50 A kiszámítás modelljei 2 De milyen architektúrán polinom? A kiszámításnak számos (matematikai) modellje létezik: Általános rekurzív függvények λ-kalkulus
Máté: Számítógép architektúrák 2010.12.10.
Pentium 4 Gépi utasítások RIS szerű μműveletek, több μművelet futhat egyszerre: szuperskaláris gép, megengedi a sorrenden kívüli végrehajtást is. Pentium 4 3 szintű belső gyorsító tár. L1: KBadat, 4 utas
DSP architektúrák dspic30f család memória kezelése
DSP architektúrák dspic30f család memória kezelése Az adatmemória Az adatmemória 16 bites, két külön memóriazóna van kiépítve, az X és az Y memória, mindkettőnek címgeneráló egysége és adat sínrendszere
Programozási nyelvek 6. előadás
Programozási nyelvek 6. előadás Szempontok Programozási nyelvek osztályozása Felhasználói kör (amatőr, professzionális) Emberközelség (gépi nyelvektől a természetes nyelvekig) Számítási modell (hogyan
A mikroprocesszor felépítése és működése
A mikroprocesszor felépítése és működése + az egyes részegységek feladata! Információtartalom vázlata A mikroprocesszor feladatai A mikroprocesszor részegységei A mikroprocesszor működése A mikroprocesszor
Számítógép Architektúrák
Kocsis Ilona Győri László Számítógép Architektúrák Előadás jegyzet SZÁMÍTÓGÉP ARCHITEKTÚRÁK A számítógép architektúra szintjei A digitális számítógép olyan gép, amely a neki szóló utasítások alapján problémákat
Máté: Számítógép architektúrák
Máté: Számítógép architektúrák 211117 Utasításrendszer architektúra szintje ISA) Amit a fordító program készítőjének tudnia kell: memóriamodell, regiszterek, adattípusok, ok A hardver és szoftver határán
SzA19. Az elágazások vizsgálata
SzA19. Az elágazások vizsgálata (Az elágazások csoportosítása, a feltételes utasítások használata, a műveletek eredményének vizsgálata az állapottér módszerrel és közvetlen adatvizsgálattal, az elágazási
7.hét: A sorrendi hálózatok elemei II.
7.hét: A sorrendi hálózatok elemei II. Tárolók Bevezetés Bevezetés Regiszterek Számlálók Memóriák Regiszter DEFINÍCIÓ Tárolóegységek összekapcsolásával, egyszerű bemeneti kombinációs hálózattal kiegészítve
Adatszerkezetek 1. Dr. Iványi Péter
Adatszerkezetek 1. Dr. Iványi Péter 1 Adat Adat minden, amit a számítógépünkben tárolunk és a külvilágból jön Az adatnak két fontos tulajdonsága van: Értéke Típusa 2 Adat típusa Az adatot kódoltan tároljuk
Hardverközeli programozás 1 1. gyakorlat. Kocsis Gergely 2015.02.17.
Hardverközeli programozás 1 1. gyakorlat Kocsis Gergely 2015.02.17. Információk Kocsis Gergely http://irh.inf.unideb.hu/user/kocsisg 2 zh + 1 javító (a gyengébbikre) A zh sikeres, ha az elért eredmény
Informatika 1 2. el adás: Absztrakt számítógépek
Informatika 1 2. el adás: Budapesti M szaki és Gazdaságtudományi Egyetem 2015-09-08 1 2 3 A egy M = Q, Γ, b, Σ, δ, q 0, F hetes, ahol Q az 'állapotok' nem üres halmaza, Γ a 'szalag ábécé' véges, nem üres
Számítógép architektúrák
Számítógép architektúrák Számítógépek felépítése Digitális adatábrázolás Digitális logikai szint Mikroarchitektúra szint Gépi szint Operációs rendszer szint Assembly nyelvi szint Probléma orientált (magas
Labor gyakorlat Mikrovezérlők
Labor gyakorlat Mikrovezérlők ATMEL AVR ARDUINO 1. ELŐADÁS BUDAI TAMÁS Tartalom Labor 2 mikrovezérlők modul 2 alkalom 1 mikrovezérlők felépítése, elmélet 2 programozás, mintaprogramok Értékelés: a 2. alkalom
3. Gyakorlat Ismerkedés a Java nyelvvel
3. Gyakorlat Ismerkedés a Java nyelvvel Parancssori argumentumok Minden Java programnak adhatunk indításkor paraméterek, ezeket a program egy tömbben tárolja. public static void main( String[] args ) Az
Programozás I. 3. gyakorlat. Szegedi Tudományegyetem Természettudományi és Informatikai Kar
Programozás I. 3. gyakorlat Szegedi Tudományegyetem Természettudományi és Informatikai Kar Antal Gábor 1 Primitív típusok Típus neve Érték Alap érték Foglalt tár Intervallum byte Előjeles egész 0 8 bit
Máté: Számítógép architektúrák
.7. ábra. A NetBurst csővezeték Branch Target Buffer elágazási cél puffer Branch Target Buffer elágazási cél puffer Bemeneti rész ekódoló egység L1 BTB μrom Nyomkövető Nyomkövető BTB Bemeneti rész ekódoló
sallang avagy Fordítótervezés dióhéjban Sallai Gyula
sallang avagy Fordítótervezés dióhéjban Sallai Gyula Az előadás egy kis példaprogramon keresztül mutatja be fordítók belső lelki világát De mit is jelent, az hogy fordítóprogram? Mit csinál egy fordító?
Digitális technika VIMIAA02 9. hét
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA02 9. hét Fehér Béla BME MIT Processzor adatstruktúrák
A programozás alapjai
A programozás alapjai Változók A számítógép az adatokat változókban tárolja A változókat alfanumerikus karakterlánc jelöli. A változóhoz tartozó adat tipikusan a számítógép memóriájában tárolódik, szekvenciálisan,
Programozás alapjai C nyelv 4. gyakorlat. Mit tudunk már? Feltételes operátor (?:) Típus fogalma char, int, float, double
Programozás alapjai C nyelv 4. gyakorlat Szeberényi Imre BME IIT Programozás alapjai I. (C nyelv, gyakorlat) BME-IIT Sz.I. 2005.10.10.. -1- Mit tudunk már? Típus fogalma char, int, float,
VI. SZOFTVERES PROGRAMOZÁSÚ VLSI ÁRAMKÖRÖK
VI. SZOFTVERES PROGRAMOZÁSÚ VLSI ÁRAMKÖRÖK 1 Az adatok feldolgozását végezhetjük olyan általános rendeltetésű digitális eszközökkel, amelyeket megfelelő szoftverrel (programmal) vezérelünk. A mai digitális
Összeadás BCD számokkal
Összeadás BCD számokkal Ugyanúgy adjuk össze a BCD számokat is, mint a binárisakat, csak - fel kell ismernünk az érvénytelen tetrádokat és - ezeknél korrekciót kell végrehajtani. A, Az érvénytelen tetrádok
0 0 1 Dekódolás. Az órajel hatására a beolvasott utasítás kód tárolódik az IC regiszterben, valamint a PC értéke növekszik.
Teszt áramkör A CPU ból és kiegészítő áramkörökből kialakított számítógépet összekötjük az FPGA kártyán lévő ki és bemeneti eszközökkel, hogy az áramkör működése tesztelhető legyen. Eszközök A kártyán
SZÁMÍTÓGÉP ARCHITEKTÚRÁK
SZÁMÍTÓGÉP ARCHITEKTÚRÁK Pipeline utasításfeldolgozás Horváth Gábor, Belső Zoltán BME Hálózati Rendszerek és Szolgáltatások Tanszék ghorvath@hit.bme.hu, belso@hit.bme.hu Budapest, 2018-04-24 1 UTASÍTÁSOK
Járműfedélzeti rendszerek I. 3. előadás Dr. Bécsi Tamás
Járműfedélzeti rendszerek I. 3. előadás Dr. Bécsi Tamás ATmega128 CPU Single-level pipelining Egyciklusú ALU működés Reg. reg., reg. konst. közötti műveletek 32 x 8 bit általános célú regiszter Egyciklusú
Labor gyakorlat Mikrovezérlők
Labor gyakorlat Mikrovezérlők ATMEL AVR ARDUINO 1. ELŐADÁS BUDAI TAMÁS 2015. 09. 06. Tartalom Labor 2 mikrovezérlők modul 2 alkalom 1 mikrovezérlők felépítése, elmélet 2 programozás, mintaprogramok Értékelés:
Máté: Számítógép architektúrák
Pentium 4 Nagyon sok előd kompatibilitás!), a fontosabbak: 44: 4 bites, 88: 8 bites, 886, 888: es, 8 bites adat sín 8286: 24 bites nem lineáris) címtartomány 6 K darab 64 KB-os szegmens) 8386: IA-32 architektúra,
Gábor Dénes Főiskola Győr. Mikroszámítógépek. Előadás vázlat. 2004/2005 tanév 4. szemeszter. Készítette: Markó Imre 2006
Gábor Dénes Főiskola Győr Mikroszámítógépek Előadás vázlat 102 2004/2005 tanév 4. szemeszter A PROCESSZOR A processzorok jellemzése A processzor felépítése A processzorok üzemmódjai Regiszterkészlet Utasításfelépítés,
Számítástechnika I. BMEKOKAA152 BMEKOKAA119 Infokommunikáció I. BMEKOKAA606. Dr. Bécsi Tamás 2. előadás
Számítástechnika I. BMEKOKAA152 BMEKOKAA119 Infokommunikáció I. BMEKOKAA606 Dr. Bécsi Tamás 2. előadás Console I/O bővebben Lásd mintaprogram 2015.09.21. Számítástechnika I. 2. Előadás 2 Számábrázolásról
BASH script programozás II. Vezérlési szerkezetek
06 BASH script programozás II. Vezérlési szerkezetek Emlékeztető Jelölésbeli különbség van parancs végrehajtása és a parancs kimenetére való hivatkozás között PARANCS $(PARANCS) Jelölésbeli különbség van
Szoftvertechnológia alapjai Java előadások
Szoftvertechnológia alapjai Java előadások Förhécz András, doktorandusz e-mail: fandrew@mit.bme.hu tárgy honlap: http://home.mit.bme.hu/~fandrew/szofttech_hu.html A mai előadás tartalma: Miért pont Java?
A verem (stack) A verem egy olyan struktúra, aminek a tetejéről kivehetünk egy (vagy sorban több) elemet. A verem felhasználása
A verem (stack) A verem egy olyan struktúra, aminek a tetejére betehetünk egy új (vagy sorban több) elemet a tetejéről kivehetünk egy (vagy sorban több) elemet A verem felhasználása Függvény visszatérési
SZÁMÉRTÉKEK (ÁT)KÓDOLÁSA
1 ELSŐ GYAKORLAT SZÁMÉRTÉKEK (ÁT)KÓDOLÁSA A feladat elvégzése során a következőket fogjuk gyakorolni: Számrendszerek közti átváltás előjelesen és előjel nélkül. Bináris, decimális, hexadexcimális számrendszer.
Mit tudunk már? Programozás alapjai C nyelv 4. gyakorlat. Legnagyobb elem keresése. Feltételes operátor (?:) Legnagyobb elem keresése (3)
Programozás alapjai C nyelv 4. gyakorlat Szeberényi Imre BME IIT Mit tudunk már? Típus fogalma char, int, float, double változók deklarációja operátorok (aritmetikai, relációs, logikai,
7. fejezet: Mutatók és tömbök
7. fejezet: Mutatók és tömbök Minden komolyabb programozási nyelvben vannak tömbök, amelyek gondos kezekben komoly fegyvert jelenthetnek. Először is tanuljunk meg tömböt deklarálni! //Tömbök használata
Mikroprocesszor CPU. C Central Központi. P Processing Számító. U Unit Egység
Mikroprocesszor CPU C Central Központi P Processing Számító U Unit Egység A mikroprocesszor általános belső felépítése 1-1 BUSZ Utasítás dekóder 1-1 BUSZ Az utasítás regiszterben levő utasítás értelmezését
BEÁGYAZOTT RENDSZEREK TERVEZÉSE Részletes Hardver- és Szoftvertervezés
BEÁGYAZOTT RENDSZEREK TERVEZÉSE 1 A beágyazott szoftver- és hardver integrálásának a folyamata jól felkészült szakemberek munkáját igényli, amelyek gyakorlottak hibakeresési és felderítési metódusok alkalmazásában.
Assembly programozás levelező tagozat
Assembly programozás levelező tagozat Szegedi Tudományegyetem Képfeldolgozás és Számítógépes Grafika Tanszék 2011-2012-2 Tematika Assembly nyelvi szint. Az Intel 8086/88 regiszter készlete, társzervezése,
Máté: Számítógép architektúrák
Elágazás jövendölés ok gép megjövendöli, hogy egy ugrást végre kell hajtani vagy sem. Egy triviális jóslás: a visszafelé irányulót végre kell hajtani (ilyen van a ciklusok végén), az előre irányulót nem
Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD)
Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD) Bevezetés A laborgyakorlatok alapvető célja a tárgy későbbi laborgyakorlataihoz szükséges ismeretek átadása, az azokban szereplő
Gyakorló feladatok. /2 Maradék /16 Maradék /8 Maradék
Gyakorló feladatok Számrendszerek: Feladat: Ábrázold kettes számrendszerbe a 639 10, 16-os számrendszerbe a 311 10, 8-as számrendszerbe a 483 10 számot! /2 Maradék /16 Maradék /8 Maradék 639 1 311 7 483
A fordítóprogramok szerkezete. Kódoptimalizálás. A kódoptimalizálás célja. A szintézis menete valójában. Kódoptimalizálási lépések osztályozása
A fordítóprogramok szerkezete Forrásprogram Forrás-kezelő (source handler) Kódoptimalizálás Fordítóprogramok előadás (A,C,T szakirány) Lexikális elemző (scanner) Szintaktikus elemző (parser) Szemantikus
C programozási nyelv Pointerek, tömbök, pointer aritmetika
C programozási nyelv Pointerek, tömbök, pointer aritmetika Dr. Schuster György 2011. június 16. C programozási nyelv Pointerek, tömbök, pointer aritmetika 2011. június 16. 1 / 15 Pointerek (mutatók) Pointerek
Adatszerkezetek Adatszerkezet fogalma. Az értékhalmaz struktúrája
Adatszerkezetek Összetett adattípus Meghatározói: A felvehető értékek halmaza Az értékhalmaz struktúrája Az ábrázolás módja Műveletei Adatszerkezet fogalma Direkt szorzat Minden eleme a T i halmazokból
Mikrokontrollerek. Tihanyi Attila 2007. május 8
Mikrokontrollerek Tihanyi Attila 2007. május 8 !!! ZH!!! Pótlási lehetőség külön egyeztetve Feladatok: 2007. május 15. Megoldási idő 45 perc! Feladatok: Első ZH is itt pótolható Munkapont számítás Munkapont