Feszültségstabilizáló és határoló kapcsolások
|
|
- Fanni Anikó Tamásné
- 6 évvel ezelőtt
- Látták:
Átírás
1 5. Fejezet. Stabilizáló és határoló kapcsolások 5 Feszültségstabilizáló és határoló kapcsolások A logikai áramköröket, mikrovezérlőket tartalmazó alkalmazások jól definiált, zavartalan és stabil egyenfeszültséget igényelnek. A tápvonal bizonytalanságait, kisebb zajait a feszültségstabilizátor képes elhanyagolhatóvá redukálni. A legegyszerűbb ilyen áramkör a Zener-diódás feszültségstabilizátor, mely lényegében egy ellenállásból és egy Zener-diódából álló feszültségosztó. Hátránya, hogy működése feltételezi, hogy az őt követő áramkör bemeneti ellenállása jóval nagyobb, mint a Zener-dióda dinamikus ellenállása a munkapontban, és gondot jelent még a kivehető áram mértékének szempontjából a soros előtét -ellenállás nagysága is, ami a dióda munkapontját állítja be. Ezért általában a gyakorlatban alkalmazott feszültségstabilizátorok (lásd a jegyzet végén, az alkalmazásoknál) kifinomultabb és bonyolultabb szerkezetűek, általában néhány passzív alkatrésszel paraméterezhető integrált formában érhetők el. Mivel a stabilizátorok mindegyike valamilyen módon a Zener-dióda letörési tartományának tulajdonságaira alapoz, az egyszerű Zener-diódás feszültségstabilizátor kiválóan alkalmas a stabilizálás lényegének, működésének bemutatására, értelmezésére. A tápfeszültségre szóródó további zajokat védettebb áramkörök tervezésénél a tápvonal hidegítésével redukálhatjuk a táp és a föld közé helyezett kapacitás segítségével, ami szűrőként a váltakozó komponenst elvezeti. Ilyenkor minden alkatrész tápellátása közvetlenül az alkatrész csatlakozásainál hidegített (pl. táp- és földláb között ~ nf). Felmerülhet a kérdés, hogy mit kezdhetünk az eleve informális módon változó jelekre rakódó túllövések, feszültségtüskék kezelésekor (pl. négyszögjelre rakódott zaj). A vágókapcsolások jelformáló áramkörök. Feszültségtüskék, túlfeszültségek eltávolítására, de szintmetszett (határolt) jelformák előállítására, így jelkondíció javítására is használhatók: például szinusz jelből könnyen trapézjelet (kvázi négyszögjelet) is előállíthatunk a segítségével, akár úgy, hogy annak negatív és pozitív csúcsértéke különböző legyen. Előnyük, hogy analóg működésűek és egyszerű kivitelűek; hátrányuk, hogy a vágási feszültségküszöböt (treshold) biztosítani kell. Amiről szó lesz Miután megtanulta ezt a fejezetet, ismernie kell: 5.1. Zener-diódás feszültségstabilizátor - Nagyjelű vizsgálat - Kisjelű vizsgálat 5.2. Diódás vágókapcsolások - Soros diódás vágókapcsolás - Párhuzamos diódás vágókapcsolás, határoló
2 41 A fejezet néhány fontosabb új fogalma Előtét ellenállás (sönt ellenállás). Itt a Zener-diódás feszültségstabilizátor munkaponti áramát beállító soros ellenállás. kisöntölés. Két párhuzamos ellenállás eredője a kisebbnél lesz kisebb és jellemzőit tekintve is a kisebbre emlékeztet inkább. Ilyekor szokás néha úgy fogalmazni, hogy a kisebbik kisöntöli a nagyobbat. Nagyjelű (egyenáramú) vizsgálat. A kapcsolás munkaponti paramétereit beállító, azok kiszámítását, meghatározását lehetővé tevő összefüggések feltárása. Kisjelű (váltakozó áramú) vizsgálat. A kapcsolás munkaponti paramétereinek kismértékű megváltozásai közötti összefüggések feltárása. Gyakran az adott jelátvitel - erősítés vagy elnyomás - vizsgálatát jelenti. Vágófeszültség. A diódás vágókapcsolásokban a feszültség vágásának referenciaszintje, célszerűen egyenfeszültség. Limiter. Kettős határoló, mely két párhuzamos diódás vágókapcsolással van megvalósítva: két szintnél, magasabb és alacsonyabb jelfeszültségnél is határoló jellegű ZENER-DIÓDÁS FESZÜLTSÉGSTABILIZÁTOR A legegyszerűbb feszültségstabilizátor gyakorlatilag egy ellenállásból és egy záró irányba kötött Zener-diódából álló feszültségosztó, melynek kimenete a diódán eső feszültség: 83. A legegyszerűbb Zener-diódás feszültségstabilizátor. Működésének lényege hogy a bemeneti feszültség egy része a Zener-diódát a letörési tartomány egy biztonságosnak ítélt munkapontján tartja. Itt a rendkívül magas meredekség hatására a dióda néhány századnyi feszültségváltozás hatására nagy áramokat képes átereszteni amit úgy is megfogalmazhatunk, hogy a dióda itt változatos nagyságú áramok áteresztésére képes, miközben feszültsége alig változik. A munkapontban a dióda nyitva van, rajta az annak megfelelő üzemi feszültség esik. Mivel e környezetben jó közelítéssel rövidzárként viselkedik, áramát mindössze Rs korlátozza. Azaz, ha a bemenet kissé változik, az ellenálláson eső feszültség és a kör árama is arányosan követi, de a dióda feszültsége (mely egyben a kimenet is) gyakorlatilag állandó marad. A kimenet olyannyira kis változékonyságú, hogy gyakran alkalmazzák más kapcsolások számára referenciafeszültségként is (természetesen a hőfüggést figyelembe kell venni). Néhány észrevétel mindezek alapján már most is tehető: - a stabilizálandó feszültségnek biztosan nagyobbnak kell lennie minden időpillanatban, mint a dióda záróirányú letörési feszültsége (Zener-feszültsége). - a nagyobb áramok esetén jelentkező, gyorsan halmozódó disszipált teljesítmény károssá válhat az adott célfeszültségre szánt feszültség-stabilizátorokat a rendeltetési értéket jóval meghaladó feszültség gyorsan felhevítheti, (ekkor növekszik a dióda saját zaja is) ezért szinte minden esetben javasolt a hűtőborda használata. Célszerű mindig olyan Zenerdiódát vagy feszültség-stabilizátort alkalmazni, melynek kimeneti (letörési) feszültsége közel esik a stabilizálandó szinthez (de a kezelendő jel minden értéke nagyobb annál). Kisteljesítményű Zener-dióda jelformáló referenciafeszültségek kialakításához
3 42 A Fourier-felbontás alapján tudjuk, hogy egy jelforma egyenáramú (DC) összetevője jól elkülönülő, önálló komponenst azonosít. Azaz egy tetszőleges jelforma mindig tekinthető egy teljesen konstans és egy csak váltakozó komponensekből álló (tisztán változó) jel szuperpozíciójaként. Feszültséggenerátorokra nézve ezt a következő módon szemléltethetjük: Az elsőként a terhelt viselkedést vizsgáljuk meg, a terheletlen állapot az ábra jelöléseivel az R t=szakadás esetnek felel meg. Felírva a Kirchhoff-egyenleteket: 84. Egy tetszőleges jelforma (Ube(t)) elvi megfeleltetése csak kisjelű (ube(t), tisztán változó) és csak nagyjelű (Ube, állandó feszültségű, DC) generátorok együttesének Korábban már értelmeztük a dióda kis- és nagyjelű helyettesítő képeit, melyekkel az előző felbontás értelmében lehetőség adódik a feszültségstabilizátor esetében is a kis- és nagyjelű viselkedését külön is elemezni. Egyenáramú, vagy nagyjelű vizsgálat A Zener-dióda munkaponti paramétereinek beállításához, vizsgálatához általában a dióda valamelyik nagyjelű (legtöbbször az üzemi) helyettesítő képét használjuk: 85. A Zener-diódás feszültségstabilizátor nagyjelű helyettesítő képe. Ube, Uki a be- és kimenet egyenáramú komponense; Rs a sönt ellenállás; ID az ideális dióda helyettesítő képe; UZ - a dióda Zener (záróirányú letörési) feszültsége; rd a választott munkapontot jellemző dinamikus ellenállás; Rt a kapcsolást követő terhelő áramkör bemeneti ellenállása A vizsgálatkor két esetet érdemes megnézni: hogyan viselkedik az áramkör, ha a kimenete terheletlen és hogyan, ha terhelt. 86. A Zener-diódás feszültségstabilizátor nagyjelű vizsgálata; körüljárási irányok és a csomópont felvétele Terheletlen esetben pedig (a második hurkot elhagyva, I S=I d figyelembe vételével):. 0 A kapott összefüggések elegendő paraméter és peremfeltétel mellett egyszerű behelyettesítéssel megoldhatók. Változóáramú, vagy kisjelű vizsgálat A kisjelű vizsgálatot arra használjuk, hogy a kapcsolás változóáramú viselkedését, átvitelét ( / arány) jellemezzük valamely munkapontban. A szuperpozíció elvén keresztül a váltakozó áramú komponenst szolgáltató generátor kimeneti járulékát kell meghatároznunk: ehhez a bemenetet előállító feszültséggenerátoron kívül minden más feszültséggenerátort rövidzárral, az alkatrészeket pedig a nekik megfelelő kisjelű helyettesítő képeikkel azonosítjuk. Terheletlen kimenet esetén (Rt=szakadás) esetén mindössze az Rs ellenállás és a dióda kisjelű helyettesítő képét azonosító r d van sorosan kötve, mely utóbbi jeleníti meg a kimenet feszültségét is (87. ábra).
4 A Zener-diódás feszültségstabilizátor kisjelű vizsgálata; a váltakozó kimeneti komponens kifejezése A kimenet feszültségosztással:! Azaz, mivel tipikusan a Zener-dióda munkapontjában a rd<<rs, a bemeneti váltakozó komponens elhanyagolhatóvá válik (!). Például, ha a bemeneten 2 V-nyi az ingadozás, Rs=100 Ω, rd=1 Ω, a kimeneti váltakozás csak 0.02 V ként jelenik meg. Terhelés esetén annak a diódával való párhuzamos kötése miatt az egyenirányítás minősége kis mértékben, de tovább javul: "! " 4.2. Vágókapcsolások A diódás vágókapcsolások jelformáló alkalmazások, melyek a jelek bizonyos szintmetszett alakjait képesek előállítani. Két alaptípusát tekintjük át, a soros diódás és a párhuzamos diódás vágókapcsolást. Soros diódás vágókapcsolás A dióda itt a jelvezetéken van, a vágófeszültség szintjét (mely a jel által felvett értékek között van) pedig az ellenállás alatti feszültséggenerátor állítja elő a közös földponthoz képest (88. ábra). A működés áttekintéséhez tegyük fel, hogy a dióda ideális, az anódját képező jelvezeték pedig elsőként pozitívabb, mint a vágófeszültség. Ha a diódát gondolatban eltávolítjuk, a kapcsolásban fellépő potenciálviszonyok könnyen láthatóvá válnak: A dióda anód oldalát a pozitív jelfeszültség, katód oldalát a most szakad vezetékként 88. A soros diódás vágókapcsolás azonosítható, terheletlen kimenetre is felkúszó vágófeszültség jellemzi. Amennyiben tehát a bemenet pozitívabb, mint a vágófeszültség, a dióda nyit (és a bemenetet rányitja a kimenetre). Ha a bemenet negatívabb, mint a vágófeszültség, a dióda zárva marad, s a kimeneten továbbra is a vágófeszültség mérhető. Példaként legyen a soros diódás vágókapcsolás a fentebbi elrendezésű, a vágófeszültség pozitív, mondjuk 2 V, a bemenet pedig egy 5 V csúcsértékű szinusz jel. Ekkor a kimeneten a vágófeszültség, illetve az azt meghaladó jelformák jelennek meg. 89. A soros vágókapcsolás kimenete ideális és valós diódák esetén. Bemenet vékony; kimenet vastag vonallal jelölve; Uv=2V.
5 44 Valódi diódák esetén azok nyitó/üzemi feszültsége levonódik a kimenetet alkotó bemeneti jel csúcsértékéből (89. ábra, alsó rajz). Jó gyakorlási lehetőség, ha végiggondoljuk, hogyan változik a kimenet alakulása, ha a vágófeszültség negatív, vagy ha a diódát megfordítjuk! fordított dióda miben változtat a kimenetet illetően. Párhuzamos diódás vágókapcsolás A dióda és az ezzel soros vágófeszültséget előállító generátor ebben a kivitelben a kimenettel párhuzamosan kötődik, a bemenettel soros ellenállás pedig a túláram elleni védelemről gondoskodik. 91. A párhuzamos diódás vágókapcsolás kimenete ideális és valós dióda esetén. Bemenet vékony, kimenet vastag vonallal jelölve (Uv=2V). 90. A párhuzamos diódás vágókapcsolás A működés elemzéséhez az előbbihez hasonló gondolatmenetet követünk. A bemeneti jel az ellenálláson keresztül éri el a dióda anódját, míg a katódon közvetlenül a vágófeszültség található. Ha a bemeneti jel pozitívabb, mint a vágófeszültség, a dióda nyitóirányú előfeszítést kap és a vágófeszültséget rányitja a kimenetre (a dióda rövidzárral helyettesíthető ilyenkor). Ha jelfeszültség kisebb, mint a nyitófeszültség, a dióda zárva marad, ekkor a bemeneti potenciál az ellenálláson keresztül eléri a kimenetet, azaz a kimeneten a bemenet látható. Az előző példa paramétereinél maradva, ebben az esetben a kimeneten a bemenet olyan alakja jelenik meg, amelyben a jelnek a vágófeszültség feletti része le van vágva (91. ábra). Ennél a kapcsolásnál is érdemes végiggondolni, hogy negatív vágófeszültség, illetve Ha a párhuzamos diódás vágókapcsolás diódás ágát egy olyan ággal egészítjük ki, amelyben a vágófeszültség és a dióda is fordított polaritással jelenik meg, a Limiter (határoló) áramkört kapjuk. 92. A határoló vágókapcsolás (Uv2<Uv1) Működése az előbb leírtak alapján már könnyen értelmezhető azzal a feltételezéssel, hogy U v2<u v1 (ekkor a két dióda nem lesz egyszerre nyitva soha).
6 45 Ha a bemeneti jel pozitívabb, mint az U v1 és Uv 2 vágófeszültség és U v2<u v1; a bal oldali dióda kinyit és levágja a bemenet U v1 szint feletti részét. Ha a bemenet negatívabb, mint az U v1 és Uv 2 vágófeszültség, és U v2<u v1; a bal oldali dióda kinyit és levágja a bemenet U v2 szint alatti részét. A többi esetben a két dióda zárva van, emiatt az ellenálláson keresztül a bemenet jelenik meg a kimeneten. 93. A határoló vágókapcsolás kimenete Uv1=2V, Uv2=-4V, és ideális diódák esetén. Bemenet vékony, kimenet vastag vonallal jelölve. A határoló kapcsolást leggyakrabban jelátalakításra vagy felesleges tüskék, zavarok levágására, jel feljavítására használják. Vegyünk ugyanis pl. egy négyszögjelet alapul, melyet 1/3 csúcsértéknyi zaj terhel ott, ahol a jel nem nulla. Majd kétszeres erősítést alkalmazva, s a négyszögjel felső felét levágva, jelentősen emelkedik a jelkondíció.
Hálózati egyenirányítók, feszültségsokszorozók Egyenirányító kapcsolások
Hálózati egyenirányítók, feszültségsokszorozók Egyenirányító kapcsolások Egyenirányítás: egyenáramú komponenst nem tartalmazó jelből egyenáramú összetevő előállítása. Nemlineáris áramköri elemet tartalmazó
RészletesebbenElektronika I. Gyakorló feladatok
Elektronika I. Gyakorló feladatok U I Feszültséggenerátor jelképe: Áramgenerátor jelképe: 1. Vezesse le a terheletlen feszültségosztóra vonatkozó összefüggést: 2. Vezesse le a terheletlen áramosztóra vonatkozó
RészletesebbenDiódás egyenirányítók
4. Fejezet. Diódás egyenirányítók 4 Diódás egyenirányítók Számos érv szól amellett, hogy a villamos energiát szinuszos váltakozó áramú hálózattal továbbítsuk: egyszerű előállíthatóság, átalakíthatóság
RészletesebbenGingl Zoltán, Szeged, szept. 1
Gingl Zoltán, Szeged, 08. 8 szept. 8 szept. 4 A 5 3 B Csomópontok feszültség Ágak (szomszédos csomópontok között) áram Áramköri elemek 4 Az elemeken eső feszültség Az elemeken átfolyó áram Ezek összefüggenek
RészletesebbenLineáris és kapcsoló üzemű feszültség növelő és csökkentő áramkörök
Lineáris és kapcsoló üzemű feszültség növelő és csökkentő áramkörök Buck, boost konverter Készítette: Támcsu Péter, 2016.10.09, Debrecen Felhasznált dokumentum : Losonczi Lajos - Analog Áramkörök 7 Feszültség
Részletesebben10.1. ANALÓG JELEK ILLESZTÉSE DIGITÁLIS ESZKÖZÖKHÖZ
101 ANALÓG JELEK ILLESZTÉSE DIGITÁLIS ESZKÖZÖKHÖZ Ma az analóg jelek feldolgozása (is) mindinkább digitális eszközökkel történik A feldolgozás előtt az analóg jeleket digitalizálni kell Rendszerint az
RészletesebbenGingl Zoltán, Szeged, :14 Elektronika - Hálózatszámítási módszerek
Gingl Zoltán, Szeged, 05. 05.09.9. 9:4 Elektronika - Hálózatszámítási módszerek 05.09.9. 9:4 Elektronika - Alapok 4 A G 5 3 3 B C 4 G Áramköri elemek vezetékekkel összekötve Csomópontok Ágak (szomszédos
RészletesebbenELEKTRONIKAI ALAPISMERETEK
Azonosító jel NSZI 0 6 0 6 OKTATÁSI MINISZTÉRIUM Szakmai előkészítő érettségi tantárgyi verseny 2006. április 19. ELEKTRONIKAI ALAPISMERETEK DÖNTŐ ÍRÁSBELI FELADATOK Az írásbeli időtartama: 240 perc 2006
Részletesebben1. konferencia: Egyenáramú hálózatok számítása
1. konferencia: Egyenáramú hálózatok számítása 1.feladat: 20 1 kω Határozzuk meg az R jelű ellenállás értékét! 10 5 kω R z ellenállás értéke meghatározható az Ohm-törvény alapján. Ehhez ismernünk kell
RészletesebbenElektronika 11. évfolyam
Elektronika 11. évfolyam Áramköri elemek csoportosítása. (Aktív-passzív, lineáris- nem lineáris,) Áramkörök csoportosítása. (Aktív-passzív, lineáris- nem lineáris, kétpólusok-négypólusok) Két-pólusok csoportosítása.
RészletesebbenElektronika 1. 4. Előadás
Elektronika 1 4. Előadás Bipoláris tranzisztorok felépítése és karakterisztikái, alapkapcsolások, munkapont-beállítás Irodalom - Megyeri János: Analóg elektronika, Tankönyvkiadó, 1990 - U. Tiecze, Ch.
Részletesebben2.Előadás ( ) Munkapont és kivezérelhetőség
2.lőadás (207.09.2.) Munkapont és kivezérelhetőség A tranzisztorokat (BJT) lineáris áramkörbe ágyazva "működtetjük" és a továbbiakban mindig követelmény, hogy a tranzisztor normál aktív tartományban működjön
RészletesebbenIII. félvezetők elméleti kérdések 1 1.) Milyen csoportokba sorolhatók az anyagok a fajlagos ellenállásuk alapján?
III. félvezetők elméleti kérdések 1 1.) Milyen csoportokba sorolhatók az anyagok a fajlagos ellenállásuk alapján? 2.) Mi a tiltott sáv fogalma? 3.) Hogyan befolyásolja a tiltott sáv szélessége az anyagok
RészletesebbenHármas tápegység Matrix MPS-3005L-3
Hármas tápegység Matrix MPS-3005L-3 Általános leírás Az MPS-3005L-3 tápegység egy fix 5V-os, 3A-rel terhelhető és két 0V-30V-között változtatható,legfeljebb 5A-rel terhelhető kimenettel rendelkezik. A
RészletesebbenELEKTRONIKA I. (KAUEL11OLK)
Félévi követelmények és beadandó feladatok ELEKTRONIKA I. (KAUEL11OLK) tárgyból a Villamosmérnöki szak levelező tagozat hallgatói számára Óbuda Budapest, 2005/2006. Az ELEKTRONIKA I. tárgy témaköre: Az
RészletesebbenElektronika alapjai. Témakörök 11. évfolyam
Elektronika alapjai Témakörök 11. évfolyam Négypólusok Aktív négypólusok. Passzív négypólusok. Lineáris négypólusok. Nemlineáris négypólusok. Négypólusok paraméterei. Impedancia paraméterek. Admittancia
RészletesebbenTranziens jelenségek rövid összefoglalás
Tranziens jelenségek rövid összefoglalás Átmenet alakul ki akkor, ha van energiatároló (kapacitás vagy induktivitás) a rendszerben, mert ezeken a feszültség vagy áram nem jelenik meg azonnal, mint az ohmos
RészletesebbenKÖZÖS EMITTERŰ FOKOZAT BÁZISOSZTÓS MUNKAPONTBEÁLLÍTÁSA
KÖZÖS EMITTERŰ FOKOZT BÁZISOSZTÓS MUNKPONTBEÁLLÍTÁS Mint ismeretes, a tranzisztor bázis-emitter diódájának jelentős a hőfokfüggése. Ugyanis a hőmérséklet növekedése a félvezetőkben megnöveli a töltéshordozók
RészletesebbenMAGYAR KERESKEDELMI ÉS IPARKAMARA. Országos Szakmai Tanulmányi Verseny. Elődöntő KOMPLEX ÍRÁSBELI FELADATSOR MEGOLDÁSA
MAGYAR KERESKEDELMI ÉS IPARKAMARA Országos Szakmai Tanulmányi Verseny Elődöntő KOMPLEX ÍRÁSBELI FELADATSOR MEGOLDÁSA Szakképesítés: SZVK rendelet száma: Komplex írásbeli: Számolási, áramköri, tervezési
RészletesebbenElektronika II. 5. mérés
Elektronika II. 5. mérés Műveleti erősítők alkalmazásai Mérés célja: Műveleti erősítővel megvalósított áramgenerátorok, feszültségreferenciák és feszültségstabilizátorok vizsgálata. A leírásban a kapcsolások
RészletesebbenLogaritmikus erősítő tanulmányozása
13. fejezet A műveleti erősítők Logaritmikus erősítő tanulmányozása A műveleti erősítő olyan elektronikus áramkör, amely a két bemenete közötti potenciálkülönbséget igen nagy mértékben fölerősíti. A műveleti
RészletesebbenBevezetés az analóg és digitális elektronikába. V. Félvezető diódák
Bevezetés az analóg és digitális elektronikába V. Félvezető diódák Félvezető dióda Félvezetőknek nevezzük azokat az anyagokat, amelyek fajlagos ellenállása a vezetők és a szigetelők közé esik. (Si, Ge)
RészletesebbenELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2014. május 20. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2014. május 20. 8:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK
RészletesebbenTételek Elektrotechnika és elektronika I tantárgy szóbeli részéhez 1 1. AZ ELEKTROSZTATIKA ALAPJAI AZ ELEKTROMOS TÖLTÉS FOGALMA 8 1.
Tételek Elektrotechnika és elektronika I tantárgy szóbeli részéhez 1 1. AZ ELEKTROSZTATIKA ALAPJAI 8 1.1 AZ ELEKTROMOS TÖLTÉS FOGALMA 8 1.2 AZ ELEKTROMOS TÉR 9 1.3 COULOMB TÖRVÉNYE 10 1.4 AZ ELEKTROMOS
RészletesebbenMűveleti erősítők. 1. Felépítése. a. Rajzjele. b. Belső felépítés (tömbvázlat) c. Differenciálerősítő
Műveleti erősítők A műveleti erősítők egyenáramú erősítőfokozatokból felépített, sokoldalúan felhasználható áramkörök, amelyek jellemzőit A u ', R be ', stb. külső elemek csatlakoztatásával széles határok
RészletesebbenEGYENÁRAMÚ TÁPEGYSÉGEK
dátum:... a mérést végezte:... EGYENÁRAMÚ TÁPEGYSÉGEK m é r é s i j e g y z k ö n y v 1/A. Mérje meg az adott hálózati szabályozható (toroid) transzformátor szekunder tekercsének minimálisan és maximálisan
RészletesebbenI. Félvezetődiódák. Tantárgy: Villamos mérések 2. Szakközépiskola 12. évfolyam számára. Farkas Viktor
I. Félvezetődiódák Tantárgy: Villamos mérések 2. Szakközépiskola 12. évfolyam számára Farkas Viktor Bevezetés Szilícium- és Germánium diódák A fénykibocsátó dióda (LED) Zener dióda Mérési elrendezések
RészletesebbenAttól függően, hogy a tranzisztor munkapontját melyik karakterisztika szakaszon helyezzük el, működése kétféle lehet: lineáris és nemlineáris.
Alapkapcsolások (Attól függően, hogy a tranzisztor három csatlakozási pontja közül melyiket csatlakoztatjuk állandó potenciálú pólusra, megkülönböztetünk): földelt emitteres földelt bázisú földelt kollektoros
RészletesebbenMilyen elvi mérési és számítási módszerrel lehet a Thevenin helyettesítő kép elemeit meghatározni?
1. mérés Definiálja a korrekciót! Definiálja a mérés eredményét metrológiailag helyes formában! Definiálja a relatív formában megadott mérési hibát! Definiálja a rendszeres hibát! Definiálja a véletlen
RészletesebbenALAPFOGALMIKÉRDÉSEK VILLAMOSSÁGTANBÓL 1. EGYENÁRAM
ALAPFOGALMIKÉRDÉSEK VILLAMOSSÁGTANBÓL INFORMATIKUS HALLGATÓK RÉSZÉRE 1. EGYENÁRAM 1. Vezesse le a feszültségosztó képletet két ellenállás (R 1 és R 2 ) esetén! Az összefüggésben szerepl mennyiségek jelölését
RészletesebbenTranzisztoros erősítő vizsgálata. Előzetes kérdések: Mire szolgál a bázisosztó az erősítőkapcsolásban? Mire szolgál az emitter ellenállás?
Tranzisztoros erősítő vizsgálata Előzetes kérdések: Mire szolgál a bázisosztó az erősítőkapcsolásban? Mire szolgál az emitter ellenállás? Mi az emitterkövető kapcsolás 3 jellegzetessége a földelt emitterűhöz
Részletesebbenfeszültség konstans áram konstans
Szélessávú Hírközlés és Villamosságtan Tanszék Űrtechnológia laboratórium Szabó József Egyszerű feszültség és áramszabályozó Űrtechnológia a gyakorlatban Budapest, 2014. április 10. Űrtetechnológia a gyakorlatban
RészletesebbenAz erősítés frekvenciafüggése: határfrekvenciák meghatározása ELEKTRONIKA_2
Az erősítés frekvenciafüggése: határfrekvenciák meghatározása ELEKTRONIKA_2 TEMATIKA A kapacitív ellenállás. Váltakozó áramú helyettesítő kép. Alsó határfrekvencia meghatározása. Felső határfrekvencia
RészletesebbenMAGYAR KERESKEDELMI ÉS IPARKAMARA. Országos Szakmai Tanulmányi Verseny. Elődöntő KOMPLEX ÍRÁSBELI FELADATSOR
MAGYAR KERESKEDELMI ÉS IPARKAMARA Országos Szakmai Tanulmányi Verseny Elődöntő KOMPLEX ÍRÁSBELI FELADATSOR Szakképesítés: SZVK rendelet száma: Komplex írásbeli: Számolási, áramköri, tervezési feladatok
RészletesebbenA 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III. 28.) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján.
A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III. 28.) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 54 481 03 Infokommunikációs hálózatépítő
RészletesebbenÁtmeneti jelenségek egyenergiatárolós áramkörökben
TARTALOM JEGYZÉK 1. Egyenergiatárolós áramkörök átmeneti függvényeinek meghatározása Példák az egyenergiatárolós áramkörök átmeneti függvényeinek meghatározására 1.1 feladat 1.2 feladat 1.3 feladat 1.4
RészletesebbenPN átmenet kivitele. (B, Al, Ga, In) (P, As, Sb) A=anód, K=katód
PN átmenet kivitele A pn átmenet: Olyan egykristályos félvezető tartomány, amelyben egymással érintkezik egy p és egy n típusú övezet. Egy pn átmenetből álló eszköz a dióda. (B, Al, Ga, n) (P, As, Sb)
RészletesebbenElektrotechnika- Villamosságtan
Elektrotechnika- Villamosságtan 1.Előadás Egyenáramú hálózatok 1 Magyar Attila Tömördi Katalin Villamos hálózat: villamos áramköri elemek tetszőleges kapcsolása. Reguláris hálózat: ha helyesen felírt hálózati
RészletesebbenAnalóg elektronika - laboratóriumi gyakorlatok
Analóg elektronika - laboratóriumi gyakorlatok. Mûveleti erõsítõk egyenáramú jellemzése és alkalmazásai. Elmélet Az erõsítõ fogalmát valamint az integrált mûveleti erõsítõk szerkezetét és viselkedését
RészletesebbenTeljesítményerősítők ELEKTRONIKA_2
Teljesítményerősítők ELEKTRONIKA_2 TEMATIKA Az emitterkövető kapcsolás. Az A osztályú üzemmód. A komplementer emitterkövető. A B osztályú üzemmód. AB osztályú erősítő. D osztályú erősítő. 2012.04.18. Dr.
RészletesebbenA 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III. 28.) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján.
A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III. 28.) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 54 523 01 Automatikai technikus
RészletesebbenÁramgenerátorok alapeseteinek valamint FET ekkel és FET bemenetű műveleti erősítőkkel felépített egyfokozatú erősítők vizsgálata.
El. II. 4. mérés. 1. Áramgenerátorok bipoláris tranzisztorral A mérés célja: Áramgenerátorok alapeseteinek valamint FET ekkel és FET bemenetű műveleti erősítőkkel felépített egyfokozatú erősítők vizsgálata.
RészletesebbenGingl Zoltán, Szeged, dec. 1
Gingl Zoltán, Szeged, 2017. 17 dec. 1 17 dec. 2 Egyenirányító (rectifier) Mint egy szelep deális dióda Nyitó irányban tökéletes vezető (rövidzár) Záró irányban tökéletes szigetelő (szakadás) Valódi dióda:
Részletesebben1. Egy lineáris hálózatot mikor nevezhetünk rezisztív hálózatnak és mikor dinamikus hálózatnak?
Ellenörző kérdések: 1. előadás 1/5 1. előadás 1. Egy lineáris hálózatot mikor nevezhetünk rezisztív hálózatnak és mikor dinamikus hálózatnak? 2. Mit jelent a föld csomópont, egy áramkörben hány lehet belőle,
RészletesebbenFizika A2E, 9. feladatsor
Fizika 2E, 9. feladatsor Vida György József vidagyorgy@gmail.com 1. feladat: hurokáramok módszerével határozzuk meg az ábrán látható kapcsolás ágaiban folyó áramokat! z áramkör két ablakból áll, így két
RészletesebbenELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI ÉRETTSÉGI VIZSGA VIZSGA 2009. 2006. május 22. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2009. május 22. 8:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati
RészletesebbenÖsszefüggő szakmai gyakorlat témakörei
Összefüggő szakmai gyakorlat témakörei Villamosipar és elektronika ágazat Elektrotechnika gyakorlat 10. évfolyam 10 óra Sorszám Tananyag Óraszám Forrasztási gyakorlat 1 1.. 3.. Forrasztott kötés típusai:
RészletesebbenAdatok: R B1 = 100 kω R B2 = 47 kω. R 2 = 33 kω. R E = 1,5 kω. R t = 3 kω. h 22E = 50 MΩ -1
1. feladat R B1 = 100 kω R B2 = 47 kω R C = 3 kω R E = 1,5 kω R t = 4 kω A tranzisztor paraméterei: h 21E = 180 h 22E = 30 MΩ -1 a) Számítsa ki a tranzisztor kollektor áramát, ha U CE = 6,5V, a tápfeszültség
RészletesebbenA 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján.
A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 54 523 02 Elektronikai technikus
RészletesebbenELEKTROTECHNIKA-ELEKTRONIKA ELEKTROTECHNIKA
ELEKTROTECHNIKA-ELEKTRONIKA ELEKTROTECHNIKA 1. Egyenáramú körök Követelmények, matematikai alapok, prefixumok Töltés, áramerősség Feszültség Ellenállás és vezetés. Vezetők, szigetelők Áramkör fogalma Áramköri
RészletesebbenNégyszög - Háromszög Oszcillátor Mérése Mérési Útmutató
ÓBUDAI EGYETEM Kandó Kálmán Villamosmérnöki Kar Híradástechnika Intézet Négyszög - Háromszög Oszcillátor Mérése Mérési Útmutató A mérést végezte: Neptun kód: A mérés időpontja: A méréshez szükséges eszközök:
RészletesebbenELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2007. október 24. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2007. október 24. 14:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS
RészletesebbenÁRAMKÖRÖK SZIMULÁCIÓJA
ÁRAMKÖRÖK SZIMULÁCIÓJA Az áramkörök szimulációja révén betekintést nyerünk azok működésébe. Meg tudjuk határozni az áramkörök válaszát különböző gerjesztésekre, különböző üzemmódokra. Végezhetők analóg
RészletesebbenGingl Zoltán, Szeged, :44 Elektronika - Diódák, tranzisztorok
Gingl Zoltán, Szeged, 2016. 2016. 12. 13. 7:44 Elektronika - Diódák, tranzisztorok 1 2016. 12. 13. 7:44 Elektronika - Diódák, tranzisztorok 2 Egyenirányító (rectifier) Mint egy szelep deális dióda Nyitó
RészletesebbenHobbi Elektronika. Bevezetés az elektronikába: Tápegységek, feszültségstabilizátorok
Hobbi Elektronika Bevezetés az elektronikába: Tápegységek, feszültségstabilizátorok 1 Felhasznált irodalom 1. Pataky István Híradásipari és Informatikai Szakközépiskola: Érettségi tételek (5.B, 20.B) 2.
RészletesebbenELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2015. május 19. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2015. május 19. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK
RészletesebbenElektronika II. 4. mérés. Szimmetrikus differencia erősítő mérése
Elektronika II. 4. mérés Szimmetrikus differencia erősítő mérése 07.0.30. Mérés célja: Bipoláris tranzisztoros szimmetrikus erősítő működésének tanulmányozása, paramétereinek mérése. A mérésre való felkészülés
RészletesebbenELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2016. október 17. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2016. október 17. 14:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK
RészletesebbenELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2015. május 19. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2015. május 19. 8:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK
RészletesebbenHobbi Elektronika. Bevezetés az elektronikába: Ohm törvény, Kirchoff törvényei, soros és párhuzamos kapcsolás
Hobbi Elektronika Bevezetés az elektronikába: Ohm törvény, Kirchoff törvényei, soros és párhuzamos kapcsolás 1 Felhasznált irodalom Hodossy László: Elektrotechnika I. Torda Béla: Bevezetés az Elektrotechnikába
RészletesebbenELEKTRONIKAI ALAPISMERETEK
Azonosító jel NSZI 0 6 0 6 OKTATÁSI MINISZTÉRIUM Szakmai előkészítő érettségi tantárgyi verseny 2006. február 23. ELEKTRONIKAI ALAPISMERETEK ELŐDÖNTŐ ÍRÁSBELI FELADATOK Az írásbeli időtartama: 180 perc
RészletesebbenELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2011. október 17. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2011. október 17. 14:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS
RészletesebbenELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2010. október 18. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2010. október 18. 1:00 Az írásbeli vizsga időtartama: 20 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS
RészletesebbenÁramkörök számítása, szimulációja és mérése próbapaneleken
Áramkörök számítása, szimulációja és mérése próbapaneleken. Munkapontbeállítás Elektronika Tehetséggondozás Laboratóriumi program 207 ősz Dr. Koller István.. NPN rétegtranzisztor munkapontjának kiszámítása
RészletesebbenBevezető fizika (infó), 8. feladatsor Egyenáram, egyenáramú áramkörök 2.
evezető fizika (infó), 8 feladatsor Egyenáram, egyenáramú áramkörök 04 november, 3:9 mai órához szükséges elméleti anyag: Kirchhoff törvényei: I Minden csomópontban a befolyó és kifolyó áramok előjeles
RészletesebbenDIÓDÁS ÉS TIRISZTOROS KAPCSOLÁSOK MÉRÉSE
M I S K O C I E G Y E T E M GÉPÉSZMÉNÖKI ÉS INFOMATIKAI KA EEKTOTECHNIKAI ÉS EEKTONIKAI INTÉZET Összeállította D. KOVÁCS ENŐ DIÓDÁS ÉS TIISZTOOS KAPCSOÁSOK MÉÉSE MECHATONIKAI MÉNÖKI BSc alapszak hallgatóinak
RészletesebbenBevezetés a méréstechnikába és jelfeldolgozásba. Tihanyi Attila április 17.
Bevezetés a méréstechnikába és jelfeldolgozásba Tihanyi Attila 2007. április 17. ALAPOK Töltés 1 elektron töltése 1,602 10-19 C 1 C (coulomb) = 6,24 10 18 elemi elektromos töltés. Áram Feszültség I=Q/t
RészletesebbenPéldaképpen állítsuk be az alábbi értékek eléréséhez szükséges alkatrészértékeket. =40 és =2
Pioneer tervei alapján készült, és v2.7.2 verziószámon emlegetett labor-tápegységnél, adott határadatok beállításához szükséges alkatrész értékek meghatározása. 6/1 oldal Igyekeztem figyelembe venni a
Részletesebben13.B 13.B. 13.B Tranzisztoros alapáramkörök Többfokozatú erısítık, csatolások
3.B Tranzisztoros alapáramkörök Többfokozatú erısítık, csatolások Ismertesse a többfokozatú erısítık csatolási lehetıségeit, a csatolások gyakorlati vonatkozásait és azok alkalmazási korlátait! Rajzolja
RészletesebbenELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2012. május 25. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2012. május 25. 8:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS
RészletesebbenELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2016. május 18. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2016. május 18. 8:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK
RészletesebbenElektronika laboratóriumi mérőpanel elab panel NEM VÉGLEGES VÁLTOZAT! Óbudai Egyetem
Elektronika laboratóriumi mérőpanel elab panel NEM VÉGLEGES VÁLTOZAT! 1 Óbudai Egyetem 2 TARTALOMJEGYZÉK I. Bevezetés 3 I-A. Beüzemelés.................................. 4 I-B. Változtatható ellenállások...........................
RészletesebbenJelgenerátorok ELEKTRONIKA_2
Jelgenerátorok ELEKTRONIKA_2 TEMATIKA Jelgenerátorok osztályozása. Túlvezérelt erősítők. Feszültségkomparátorok. Visszacsatolt komparátorok. Multivibrátor. Pozitív visszacsatolás. Oszcillátorok. RC oszcillátorok.
Részletesebben1 kérdés. Személyes kezdőlap Villamos Gelencsér Géza Simonyi teszt május 13. szombat Teszt feladatok 2017 Előzetes megtekintés
Személyes kezdőlap Villamos Gelencsér Géza Simonyi teszt 2017. május 13. szombat Teszt feladatok 2017 Előzetes megtekintés Kezdés ideje 2017. május 9., kedd, 16:54 Állapot Befejezte Befejezés dátuma 2017.
Részletesebben4. /ÁK Adja meg a villamos áramkör passzív építő elemeit!
Áramkörök 1. /ÁK Adja meg a mértékegységek lehetséges prefixumait (20db)! 2. /ÁK Értelmezze az ideális feszültség generátor fogalmát! 3. /ÁK Mit ért valóságos feszültség generátor alatt? 4. /ÁK Adja meg
RészletesebbenVILLAMOSIPAR ÉS ELEKTRONIKA ISMERETEK
ÉRETTSÉGI VIZSGA 2017. október 20. VILLAMOSIPAR ÉS ELEKTRONIKA ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2017. október 20. 8:00 I. Időtartam: 60 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK
RészletesebbenELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2015. október 12. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2015. október 12. 14:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK
RészletesebbenElektrotechnika példatár
Elektrotechnika példatár Langer Ingrid Tartalomjegyzék Előszó... 2 1. Egyenáramú hálózatok... 3 1.1. lapfogalmak... 3 1.2. Példák passzív hálózatok eredő ellenállásának kiszámítására... 6 1.3. Impedanciahű
RészletesebbenElektrotechnika. 1. előad. Budapest Műszaki Főiskola Bánki Donát Gépész és Biztonságtechnikai Kar Mechatronikai és Autechnikai Intézet
Budapest Műszaki Főiskola Bánki Donát Gépész és Biztonságtechnikai Kar Mechatronikai és Autechnikai ntézet Elektrotechnika. előad adás Összeállította: Langer ngrid főisk. adjunktus A tárgy t tematikája
RészletesebbenElektromos áramerősség
Elektromos áramerősség Két különböző potenciálon lévő fémet vezetővel összekötve töltések áramlanak amíg a potenciál ki nem egyenlítődik. Az elektromos áram iránya a pozitív töltéshordozók áramlási iránya.
RészletesebbenElektronika Előadás. Műveleti erősítők táplálása, alkalmazása, alapkapcsolások
Elektronika 2 2. Előadás Műveleti erősítők táplálása, alkalmazása, alapkapcsolások Irodalom - Megyeri János: Analóg elektronika, Tankönyvkiadó, 1990 - U. Tiecze, Ch. Schenk: Analóg és digitális áramkörök,
RészletesebbenElektronika Előadás. Műveleti erősítők felépítése, ideális és valós jellemzői
Elektronika 2 1. Előadás Műveleti erősítők felépítése, ideális és valós jellemzői Irodalom - Megyeri János: Analóg elektronika, Tankönyvkiadó, 1990 - U. Tiecze, Ch. Schenk: Analóg és digitális áramkörök,
RészletesebbenTantárgy: ANALÓG ELEKTRONIKA Tanár: Dr. Burány Nándor
Tantárgy: ANALÓG ELEKTRONIKA Tanár: Dr. Burány Nándor 3. félév Óraszám: 2+2 1 2.4. RÉSZ A NEMLINEÁRIS KAPCSOLÁSOK A cél: az átviteli jelleggörbe nemlineáris részének hasznosítása. A feldolgozandó témák:
RészletesebbenÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA TÁVKÖZLÉSI ISMERETEK KÖZÉPSZINTŰ GYAKORLATI VIZSGA MINTAFELADATOK
TÁVKÖZLÉSI ISMERETEK KÖZÉPSZINTŰ GYAKORLATI VIZSGA MINTAFELADATOK 1. Egyenáramú hálózat számítása 13 pont Az ábrán egy egyenáramú ellenállás hálózat látható, melyre Ug = 12 V feszültséget kapcsoltak. a)
RészletesebbenELEKTRONIKAI ALAPISMERETEK
Elektronikai alapismeretek középszint 06 ÉRETTSÉGI VIZSG 007. május 5. ELEKTRONIKI LPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSG JVÍTÁSI-ÉRTÉKELÉSI ÚTMTTÓ OKTTÁSI ÉS KLTRÁLIS MINISZTÉRIM Teszt jellegű
RészletesebbenElektronika Oszcillátorok
8. Az oszcillátorok periodikus jelet előállító jelforrások, generátorok. Olyan áramkörök, amelyeknek csak kimenete van, bemenete nincs. Leggyakoribb jelalakok: - négyszög - szinusz A jelgenerálás alapja
RészletesebbenAUTOMATIKAI ÉS ELEKTRONIKAI ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MINTAFELADATOKHOZ
ATOMATKA ÉS ELEKTONKA SMEETEK KÖZÉPSZNTŰ ÍÁSBEL VZSGA JAVÍTÁS-ÉTÉKELÉS ÚTMTATÓ A MNTAFELADATOKHOZ Egyszerű, rövid feladatok Maximális pontszám: 40. Egy A=,5 mm keresztmetszetű alumínium (ρ= 0,08 Ω mm /m)
RészletesebbenDióda. 2. Fejezet. A dióda működése, helyettesítő képei. Később a p-n átmenetet a félvezető szerkezeten belül alakították
2. Fejezet. A dióda működése, helyettesítő képei 2 Dióda A dióda szó a di-ode görög kifejezésből ered, melynek jelentése két út. Az elnevezés a diódaműködésre utal: az eszköz ugyanis csak az egyik irányban
RészletesebbenELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2014. október 13. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2014. október 13. 14:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK
RészletesebbenAnalóg áramkörök Műveleti erősítővel épített alapkapcsolások
nalóg áramkörök Műveleti erősítővel épített alapkapcsolások Informatika/Elektronika előadás encz Márta/ess Sándor Elektronikus Eszközök Tanszék 07-nov.-22 Témák Műveleti erősítőkkel kapcsolatos alapfogalmak
RészletesebbenMérési útmutató Periodikus, nem szinusz alakú jelek értékelése, félvezetős egyenirányítók
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁYI EGYETEM VILLAMOSMÉRÖKI ÉS IFORMATIKAI KAR VILLAMOS EERGETIKA TASZÉK Mérési útmutató Periodikus, nem szinusz alakú jelek értékelése, félvezetős egyenirányítók vizsgálata
RészletesebbenFoglalkozási napló a 20 /20. tanévre
Foglalkozási napló a 20 /20. tanévre Elektronikai műszerész szakma gyakorlati oktatásához OKJ száma: 34 522 03 A napló vezetéséért felelős: A napló megnyitásának dátuma: A napló lezárásának dátuma: Tanulók
RészletesebbenELKON S-304 autó villamossági mőszer áramköri leírása
ELKON S-304 autó villamossági mőszer áramköri leírása 7.1 Tápegység A mérımőszer tápegysége a T 105, T 106 tranzisztorokból, a D 111, 115 diódákból, a C 131, 132 kondenzátorokból és az R 145 ellenállásokból
RészletesebbenVILLAMOSIPAR ÉS ELEKTRONIKA ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Villamosipar és elektronika ismeretek középszint 7 ÉRETTSÉGI VIZSG 07. október 0. VILLMOSIPR ÉS ELEKTRONIK ISMERETEK KÖZÉPSZINTŰ ÍRÁSELI VIZSG JVÍTÁSI-ÉRTÉKELÉSI ÚTMUTTÓ EMERI ERŐFORRÁSOK MINISZTÉRIUM
RészletesebbenMûveleti erõsítõk I.
Mûveleti erõsítõk I. 0. Bevezetés - a mûveleti erõsítõk mûködése A következõ mérésben az univerzális analóg erõsítõelem, az un. "mûveleti erõsítõ" mûködésének alapvetõ ismereteit sajátíthatjuk el. A nyílthurkú
RészletesebbenVILLAMOSIPAR ÉS ELEKTRONIKA ISMERETEK
ÉRETTSÉGI VIZSGA 2018. május 16. VILLAMOSIPAR ÉS ELEKTRONIKA ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2018. május 16. 8:00 I. Időtartam: 60 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA
RészletesebbenELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2013. október 14. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2013. október 14. 14:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK
RészletesebbenELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2012. október 15. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2012. október 15. 1:00 Az írásbeli vizsga időtartama: 20 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK
RészletesebbenFöldelt emitteres erősítő DC, AC analízise
Földelt emitteres erősítő DC, AC analízise Kapcsolási vázlat: Az ábrán egy kisjelű univerzális felhasználású tranzisztor (tip: 2N3904) köré van felépítve egy egyszerű, pár alkatrészből álló erősítő áramkör.
RészletesebbenBevezetés a méréstechnikába és jelfeldolgozásba. Tihanyi Attila 2007 március 27
Bevezetés a méréstechnikába és jelfeldolgozásba Tihanyi Attila 2007 március 27 Ellenállások R = U I Fajlagos ellenállás alapján hosszú vezeték Nagy az induktivitása Bifiláris Trükkös tekercselés Nagy mechanikai
Részletesebben