A Gólem. Hová lettek a napneutrínók? A Gólem BME Filozófia és Tudománytörténet Tanszék

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "A Gólem. Hová lettek a napneutrínók? A Gólem BME Filozófia és Tudománytörténet Tanszék"

Átírás

1 A Gólem Hová lettek a napneutrínók?

2 Miről lesz szó? kérdések és fogalmak Kérdések: Mi történik, ha egy igen összetett elmélet jóslata nem válik be? Fogalmak: Anomália Aluldetermináltság A kísérletek elméletfüggése

3 Miről lesz szó? egy esettanulmány Egy kísérlet, amely a várakozások ellenére nem talált elegendő Napból jövő neutrínót Mi történik ilyenkor? Keressük a hibát! Hol a hiba? a számolásban? a készülékben? a világűrben? a Napban?...pontosabban: a Napról szóló elképzeléseinkben? az elemi kölcsönhatások elméletében? Hogyan keressük, hogyan találjuk meg?

4 A Nap sugarainak forrása Igen sok mindent tudunk a Napról: magfúzió útján termel energiát ennek során a tömegének 75%-át kitevő hidrogént fogyasztja, és héliumot termel ez a folyamat a Nap magjában megy végbe, amelynek sugara nagyjából a csillag rádiuszának negyede a magban több mint 15 millió fok a hőmérséklet Honnan tudjuk mindezt?

5 A Nap sugarainak forrása Van néhány globális adatunk: tömeg kiterjedés összes leadott energia Majdnem minden közvetlen mérési technikánk a Nap felszínéről ad csak információt: hőmérséklet anyagi összetétel A Nap belsejéről elsősorban elméleti modelljeink vannak amelyeknek illeszkedniük kell az általános fizikai ismereteinkhet és a fenti peremfeltételekhez Honnan tudjuk, hogy jók ezek a modellek?

6 A Nap sugarainak forrása A nukleáris reakciók felismerése óta egyre komplexebb csillagfejlődés-elméleteink vannak...

7 A Nap sugarainak forrása...amelyek jól illeszkednek a csillagok megfigyelhető eloszlásaihoz ez az úgynevezett Hertzsprung Russell diagram a Nap útja a diagramon:

8 A Nap sugarainak forrása Mindezeken kívül még egy fontos jóslata van a csillagmodelleknek: az elmélet szerint a fúzió folyamatában óriási mennyiségű neutrínó keletkezik a Nap belsejében, amelyek szinte háborítatlanul ki is jutnak onnan, minden irányban nagyjából egyenletesen, alig kölcsönhatva az anyaggal (bolygónkat is beleértve) Becslések szerint a Föld minden Nap felé néző négyzetcentiméterét 65 milliárd neutrínó szeli át másodpercenként! Bár a neutrínó nagyon-nagyon nehezen, de azért detektálható, és ez az óriási szám a hatvanas évek eszközeivel már mérhető volt

9 Mi az a neutrínó? elektromosan semleges, kizárólag gyengén kölcsönható részecske, nagyon-nagyon kis tömeggel 1930-ban vetette fel Wolfgang Pauli a létezését a radioaktív bomlások során hiányzott némi energia _ n 0 p + + e +??? ν e 1933-ban Enrico Fermi nevezte el, és alkotta meg a bétabomlás (később az ún. gyenge kölcsönhatás ) első elméletét 1956-ban Clyde Cowan és Frederick Reines kísérletileg is megtalálta Reines 40 évvel(!) később, 1995-ben kapott Nobel-díjat 1962-ben kimutatták, hogy több fajtája létezik elektron-, müon- és tau-neutrínó

10 A napneutrínók nyomában Főszereplőnk, Ray Davis Jr. ifjú vegyész korában a Brookhaven Laboratóriumban kifejlesztett egy detektort: egy klóros vizet tartalmazó, neutrínóknak kitett tartályban nagy ritkán történik egy-egy reakció, aminek során egy klóratomból argonatom keletkezik az argont tartalmazó molekulákat ki lehet vonni a tartályból mivel a keletkezett argonatomok radioaktívak, viszonylag könnyen mérhető a mennyiségük Természetesen ez is háborús eredetű ötlet volt... ilyen elven próbáltak nukleáris jelek után kutatni német területek felett

11 A napneutrínók nyomában Sajnos a detektor nem volt jó arra, amire tervezte: atomreaktorok jellemzőinek mérésére az 1954-ben elvégzett kísérlete semmit sem mért a reaktorok közelében, a reaktorban ugyanis (ma már tudjuk) antineutrínók keletkeznek, az ő készüléke pedig azokat nem észlelhette így Cowan és Reines lett az a szerencsés, akik két évvel később, ugyanannál(!) a reaktornál elvégzett hasonló kísérletükért (ami más elemi reakción alapult, és történetesen antineutrínókra volt érzékeny) elnyerték a Nobel-díjat a részecske első kísérleti kimutatásáért Davis kísérlete pedig utólag bizonyíték lett arra, hogy a neutrínónak létezik egy antirészecskepárja is

12 A napneutrínók nyomában Mihez kezdjen akkor a készülékével? William Fowler, az egyik legnevesebb asztrofizikus javasolta Davisnek, hogy eljárását a Napból érkező neutrínók mérésére lehetne használni, és azzal tesztelni lehetne a csillagmodelleket, ott ugyanis valóban rendes neutrínók keletkeznek Fowler egyik tanítványa, John Bahcall, Davis mellé szegődött elméleti fizikusnak 1967-re, évtizedes munkával összeállt a kor léptéke szerint óriási kísérlet

13 A kísérlet tervezése Számos megoldandó probléma akadt: A készüléket a lehető legjobban el kell zárni a kozmikus sugárzás háttérzajától ezért minél mélyebbre kell tenni, lehetőleg egy bányába Minden egyéb argonforrást gondosan ki kell szűrni A jósolt eredmény becsléséhez nagyon sok fizikai elméletet, szakterületet kellett mozgósítani

14 A kísérlet tervezése De mindenekelőtt természetesen pénz kellett! Kb. $ , ami akkori árak mellett elég tetemes, főleg egy olyan kísérletre, ami csak egyetlen mérésre használható! Cikkeket írtak a legjobb lapokba, Fowler minden tekintélyét bevetette, meggyőző levelet írt volt kollégájának, az állami pénzeket osztó Atomenergetikai Bizottság elnökének A korszak tekintélyes részecskefizikusai így is húzódoztak egy drága és nem túl megbízható kísérlet finanszírozásától az ábrán jól látható, hogy Bahcall számításai jóval markánsabb jóslatokat tettek a pályázás éveiben, mint azután!

15 A kísérlet tervezése Végül meglett a szükséges pénz és támogatás, már csak egy megfelelő helyszín kellett: egy év tárgyalás után Davis talált egy bányavállalatot, amelyik beadta a derekát (valószínűleg azért, hogy kedvében járjon a projektet támogató Atomenergetikai Bizottságnak, amely potenciális megrendelő volt a számára...) A Homestake-kísérlet paraméterei: uszodányi, 380 m 3 tisztítófolyadék (tetraklór-etilén), amelyet kölcsönkértek a gyártó cégtől, 1500 méterrel a föld alatt, Dél-Dakotában, a Homestake Mining Co. vállalat egy használaton kívüli aranybányájában A kísérlet 1967 nyarán kezdődött egy hónap akkumuláció után Davis átszűrte a tartályt, megmérte a benne lévő argont, és...

16 Az eredmények...határozottan kevesebbet talált a jósolt eredménynél Fél év gondos ellenőrzés, független szakértői vizsgálat és újrakalibráció után Davis publikálta, hogy a várt események kb. harmada, kevesebb mint napi két átalakuló atom volt megfigyelhető Davis kísérletező tekintélye csorbítatlan maradt, Bahcallt azonban nagyon megviselte az eltérés egy évtized gondosan felépített elméleti épülete forgott veszélyben! Eleinte megpróbálta úgy alakítani a számításokat, hogy közelebb kerüljön a mérésekhez, de ezzel számos kolléga támadásának került a kereszttüzébe Végül Bahcall is elfogadta az eltérést könnyen lehet, hogy Feynman tanácsára, aki szerint egy felfedezett anomália nagyobb dobás, mint egy megerősítő eredmény

17 Az eredmények Ezzel megszületett a hiányzó napneutrínók problémája, ami több mint három évtizedig az asztro- és részecskefizika egyik legfőbb megoldatlan rejtélye maradt A Gólem írásakor még bőven az is volt, Trevor Pinch és Harry Collins nyitottként mutatják be az esetet Ma már a fizikusok egyértelműen megoldottnak látják a problémát, ezért mi itt bemutatjuk ezt a végkifejletet Ez azonban nem csökkenti a szerzők azon meglátását, hogy ez a Nap mélyébe néző kísérlet, és a negatív eredményt követő viták a tudomány mélyébe nyújtanak bepillantást!

18 Megoldások a problémára A jóslat nem teljesülésének elismerése után a figyelem a kísérlet részletei felé fordult Davis eljárását és kalibrációs technikáját egyre kifinomultabb kritikák érték aki viszont ezekre nagyon türelmesen és lelkiismeretesen válaszolt, végrehajtva a kért módosításokat és óvintézkedéseket a negatív eredmények egyre inkább stabilaknak tűntek a 70-es évek végére már mint tudományos hősre, a kísérletező ideáltípusára tekintettek pályatársai A 80-as évek közepétől újabb, független és sokszor más elveken nyugvó kísérletek születnek, kizárva további potenciális hibaforrásokat és elméleti lehetőségeket

19 Megoldások a problémára A kísérletek stabilitását látva pedig a különféle részterületek képviselői egymásra mutogattak Egy asztrofizikus szerint például a keletkezett argon egy része bizonyára csapdázódik egy kémiai folyamat következtében, és ezért nem tudja Davis rendesen megszámolni azokat A legtöbben a Napmodelleket kritizálták: lehet, hogy több benne a nehézfém? Vagy több benne az áramlás? Esetleg korábban ütközött egy nagyobb égitesttel, ami átalakította az összetételét? És mi van, ha a neutrínók útközben elfogynak, átalakulnak valami mássá? Sőt: lehet, hogy nem is hidrogénfúzió folyik a Napban! 1978-ig több mint 400 tudományos cikk született, a legkülönfélébb megoldási javaslatokkal

20 Megoldások a problémára A kilencvenes évek elejére két lehetőségre szűkítették a probléma megoldásait vagy a Nap belső hőmérséklete tér el a modellek által feltételezettől (6% eltérés már illeszkedne az eredményekhez!) vagy pedig egy ismeretlen fizikai mechanizmus lecsökkenti a neutrínók számát az idevezető 150 millió kilométeres út során Az előbbi eshetőséget 1998 körül már elég biztosan ki lehetett zárni a legújabb naprengés -vizsgálatok fényében a Nap felszínén megfigyelhető lökéshullámok nagy pontossággal egyeztek a modell eredményeivel

21 A megoldás Maradt végül a második opció, ahol is egyre inkább kiemelkedett egy konkrét megoldási lehetőség, a neutronoszcilláció jelensége ez annyit tesz, hogy a kibocsátás és az észlelés között a neutrínók egy része más részecskévé (másfajta neutrínókká) alakul, ami a detektorok számára már nem észlelhető Ezt a jelenséget 2001 és 2003 között sikerült a Nap neutrínóitól függetlenül kimutatni, az elméleti jóslatokkal nagy pontossággal egyező mértékben A tudományos közösség ezek után nagyon gyorsan konszenzusra jutott a legújabb kísérletek már ezen folyamat részleteinek a kimérését célozzák

22 Neutrínódetektorok és -kísérletek Homestake Mine, USA HS-Chlorine ( ), Majorana (2011 ) Kamioka, Japán KamiokaNDE I II III ( ), Super-K I II III (1996 ), K2K ( ) KamLAND (2002 ) Baksan-völgy, Oroszország SAGE ( ) Gran Sasso, Olaszország GALLEX ( ), GNO ( ), BOREXINO (2007 ), OPERA (2008 ) Fermilab, USA LSND ( ), DONUT (1997), MINOS (2005 ), MiniBooNE (2002 ), SciBooNE ( ), NOvA (2010 ) Sudbury Neutrino Observatory, Kanada SNO ( ), SNO+ (2011 ) Chooz, Franciaország CHOOZ, Double CHOOZ (2011 ) Daya Bay, Kína Daya Bay Reactor Neutrino Experiment (2011 )

23 Konklúziók Van olyan eset, hogy egy-egy mérés eredménye alátámaszt egy elméletet, azonban soha nem igazolja azt egyértelműen Épp így (a falszifikácionizmus ideáljával szemben) a cáfolat sem egyértelmű, hiszen a cáfolat iránya aluldeterminált: nem tudhatjuk bizonyosan, hogy az elméletnek vagy a kísérletnek higgyünk inkább, illetve melyiknek mely elemét korrigáljuk Ha egy mérés egy elmélet igazolásának vagy cáfolatának is látszik, akkor is még számos emberi tényezőt kell számításba vennünk, hogy megértsük a következményeit, és semmiképpen sem érdemes véglegesnek tekintenünk az eredményeket Fel kell adnunk a döntő kísérlet mítoszát, hiszen jól látszik, hogy az ilyen kísérletek nagyon sokféleképpen értelmezhetők, döntővé nyilvánításuk és népszerűségük pedig számos külső tényezőtől is függ

Határtalan neutrínók

Határtalan neutrínók Határtalan neutrínók Trócsányi Zoltán Eötvös Loránd Tudományegyetem és MTA-DE Részecskefizikai Kutatócsoport HTP utótalálkozó Budapest 218. december 8 Mottó A tudománynak azonban, hogy el ne satnyuljon,

Részletesebben

Neutrínó oszcilláció kísérletek

Neutrínó oszcilláció kísérletek Elméleti bevezető Homestake kísérlet Super-Kamiokande KamLAND Nobel-díj 2015 Töltött lepton oszcilláció Neutrínó oszcilláció kísérletek Kasza Gábor Modern fizikai kísérletek szeminárium 2017. április 3.

Részletesebben

A Lederman-Steinberger-Schwartz-f ele k et neutrn o ks erlet

A Lederman-Steinberger-Schwartz-f ele k et neutrn o ks erlet A Lederman-Steinberger-Schwartz-f ele k et neutrn o ks erlet Modern zikai ks erletek szemin arium Kincses D aniel E otv os Lor and Tudom anyegyetem 2017. február 21. Kincses Dániel (ELTE) A két neutrínó

Részletesebben

Hogyan tegyük láthatóvá a láthatatlant?

Hogyan tegyük láthatóvá a láthatatlant? Hogyan tegyük láthatóvá a láthatatlant? Trócsányi Zoltán Eötvös Loránd Tudományegyetem és MTA-DE Részecskefizikai Kutatócsoport Bolyai Kollégium Budapest 2019. április 24 2015. évi Fizikai Nobel-díj Takaaki

Részletesebben

Neutrínók interferenciája

Neutrínók interferenciája Neutrínók interferenciája! Trócsányi Zoltán! Debreceni Egyetem és MTA-DE Részecskefizikai Kutatócsoport!!!!! Magyar fizikatanárok találkozója Budapest, 2016. november 12 Csikai-Szalay kísérlet (1956) láthatatlan

Részletesebben

Bevezetés a részecskefizikába

Bevezetés a részecskefizikába Bevezetés a részecskefizikába Kölcsönhatások Az atommag felépítése Az atommag pozitív töltésű protonokból (p) és semleges neutronokból (n) áll. A protonok és neutronok kvarkokból + gluonokból állnak. A

Részletesebben

Részecskefizika 3: neutrínók

Részecskefizika 3: neutrínók Horváth Dezső: Bevezetés a részecskefizikába III CERN, 2014. augusztus 20. p. 1 Részecskefizika 3: neutrínók Előadássorozat fizikatanárok részére (CERN, 2014) Horváth Dezső Horvath.Dezso@wigner.mta.hu

Részletesebben

Sugárzások kölcsönhatása az anyaggal

Sugárzások kölcsönhatása az anyaggal Radioaktivitás Biofizika előadások 2013 december Sugárzások kölcsönhatása az anyaggal PTE ÁOK Biofizikai Intézet, Orbán József Összefoglaló radioaktivitás alapok Nukleononkénti kötési energia (MeV) Egy

Részletesebben

Részecskefizika kérdések

Részecskefizika kérdések Részecskefizika kérdések Hogyan ad a Higgs- tér tömeget a Higgs- bozonnak? Milyen távla= következménye lesznek annak, ha bebizonyosodik a Higgs- bozon létezése? Egyszerre létezhet- e a H- bozon és a H-

Részletesebben

Neutrínótömeg: a részecskefizika megoldatlan rejtélye

Neutrínótömeg: a részecskefizika megoldatlan rejtélye Horváth Dezső: Rejtélyes neutrínótömeg Ortvay, ELTE, 2014 p. 1/39 Neutrínótömeg: a részecskefizika megoldatlan rejtélye Ortvay kollokvium, ELTE, 2014.02.20. Horváth Dezső Horvath.Dezso@wigner.mta.hu MTA

Részletesebben

Magfizika szeminárium

Magfizika szeminárium Paritássértés a Wu-kísérletben Körtefái Dóra Magfizika szeminárium 2019. 03. 25. Áttekintés Szimmetriák Paritás Wu-kísérlet Lederman-kísérlet Szimmetriák Adott transzformációra invaráns mennyiségek. Folytonos

Részletesebben

Neutrínótömeg: mérjük meg!

Neutrínótömeg: mérjük meg! Horváth Dezső: Neutrínótömeg Atomki, Debrecen, 2014 p. 1/42 Neutrínótömeg: mérjük meg! Atomki kollokvium, Debrecen, 2014.03.06. Horváth Dezső Horvath.Dezso@wigner.mta.hu MTA Wigner Fizikai Kutatóközpont

Részletesebben

Az expanziós ködkamra

Az expanziós ködkamra A ködkamra Mi az a ködkamra? Olyan nyomvonaljelző detektor, mely képes ionizáló sugárzások és töltött részecskék útját kimutatni. A kamrában túlhűtött gáz található, mely a részecskék által keltett ionokon

Részletesebben

NEUTRÍNÓ DETEKTOROK. A SzUPER -KAMIOKANDE példája

NEUTRÍNÓ DETEKTOROK. A SzUPER -KAMIOKANDE példája NEUTRÍNÓ DETEKTOROK A SzUPER -KAMIOKANDE példája Kamiokande = Kamioka bánya Nucleon Decay Experiment = nukleon bomlás kísérlet 1 TÉMAKÖRÖK A Szuper-Kamiokande mérőberendezés A Nap-neutrínó rejtély Legújabb

Részletesebben

Paritássértés FIZIKA BSC III. MAG- ÉS RÉSZECSKEFIZIKA SZEMINÁRIUM PARITÁSSÉRTÉS 1

Paritássértés FIZIKA BSC III. MAG- ÉS RÉSZECSKEFIZIKA SZEMINÁRIUM PARITÁSSÉRTÉS 1 Paritássértés SZEGEDI DOMONKOS FIZIKA BSC III. MAG- ÉS RÉSZECSKEFIZIKA SZEMINÁRIUM 2013.11.27. PARITÁSSÉRTÉS 1 Tartalom 1. Szimmetriák 2. Paritás 3. P-sértés 1. Lee és Yang 2. Wu kísérlet 3. Lederman kísérlet

Részletesebben

Bevezetés a részecskefizikába

Bevezetés a részecskefizikába Bevezetés a részecskefizikába Előadássorozat fizikatanárok részére (CERN, 2007) Horváth Dezső horvath@rmki.kfki.hu. MTA KFKI Részecske és Magfizikai Kutatóintézet, Budapest és ATOMKI, Debrecen Horváth

Részletesebben

A tau lepton felfedezése

A tau lepton felfedezése A tau lepton felfedezése Szabó Attila András ELTE TTK Kísérleti mag- és részecskefizikai szeminárium 2014.12.04. Tartalom 1 Előzmények(-1973) e-μ probléma e+e- annihiláció kísérletekhez vezető út 2 Felfedezés(1973-1976)

Részletesebben

NEUTRÍNÓK INTERFERENCIÁJA

NEUTRÍNÓK INTERFERENCIÁJA NEUTRÍNÓK INTERFERENCIÁJA Trócsányi Zoltán Debreceni Egyetem Reményeim szerint kellôen felcsigázza olvasóim érdeklôdését a címben szereplô két szó szerepeltetése egyetlen összefüggésben. Ha neutrínókra

Részletesebben

A Borexino napneutrínó-kisérlet. Counting Test Facility (CTF)

A Borexino napneutrínó-kisérlet. Counting Test Facility (CTF) A Borexino napneutrínó-kisérlet és a Counting Test Facility (CTF) I. Manno December 10, 2012 1 Tartalom Csendes fizika (Underground Physics) I Laboratori Nazionali del Gran Sasso (LNGS) A neutrínók A Nap

Részletesebben

Megmérjük a láthatatlant

Megmérjük a láthatatlant Megmérjük a láthatatlant (részecskefizikai detektorok) Hamar Gergő MTA Wigner FK 1 Tartalom Mik azok a részecskék? mennyi van belőlük? miben különböznek? Részecskegyorsítók, CERN mire jó a gyorsító? hogy

Részletesebben

Atomfizika. Az atommag szerkezete. Radioaktivitás Biofizika, Nyitrai Miklós

Atomfizika. Az atommag szerkezete. Radioaktivitás Biofizika, Nyitrai Miklós Atomfizika. Az atommag szerkezete. Radioaktivitás. 2010. 10. 13. Biofizika, Nyitrai Miklós Összefoglalás Atommag alkotói, szerkezete; Erős vagy magkölcsönhatás; Tömegdefektus. A kölcsönhatások világképe

Részletesebben

JÁTSSZUNK RÉSZECSKEFIZIKÁT!

JÁTSSZUNK RÉSZECSKEFIZIKÁT! JÁTSSZUNK RÉSZECSKEFIZIKÁT! Dr. Oláh Éva Mária Bálint Márton Általános Iskola és Középiskola, Törökbálint MTA Wigner FK, RMI, NFO ELTE, Fizikatanári Doktori Iskola, Fizika Tanítása Program PhD olaheva@hotmail.com

Részletesebben

Magfizika tesztek. 1. Melyik részecske nem tartozik a nukleonok közé? a) elektron b) proton c) neutron d) egyik sem

Magfizika tesztek. 1. Melyik részecske nem tartozik a nukleonok közé? a) elektron b) proton c) neutron d) egyik sem 1. Melyik részecske nem tartozik a nukleonok közé? a) elektron b) proton c) neutron d) egyik sem 2. Mit nevezünk az atom tömegszámának? a) a protonok számát b) a neutronok számát c) a protonok és neutronok

Részletesebben

KVANTUMJELENSÉGEK KOZMIKUS MÉRETEKBEN: A ÉVI FIZIKAI NOBEL-DÍJ ÉS HÁTTERE Király Péter MTA Wigner Kutatóközpont RMI

KVANTUMJELENSÉGEK KOZMIKUS MÉRETEKBEN: A ÉVI FIZIKAI NOBEL-DÍJ ÉS HÁTTERE Király Péter MTA Wigner Kutatóközpont RMI KVANTUMJELENSÉGEK KOZMIKUS MÉRETEKBEN: A 2015. ÉVI FIZIKAI NOBEL-DÍJ ÉS HÁTTERE Király Péter MTA Wigner Kutatóközpont RMI A 2015. évi fizikai Nobel-díjat fele-fele arányban két nagy kutatócsoport vezetôje

Részletesebben

Radiokémia vegyész MSc radiokémia szakirány Kónya József, M. Nagy Noémi: Izotópia I és II. Debreceni Egyetemi Kiadó, 2007, 2008.

Radiokémia vegyész MSc radiokémia szakirány Kónya József, M. Nagy Noémi: Izotópia I és II. Debreceni Egyetemi Kiadó, 2007, 2008. Radiokémia vegyész MSc radiokémia szakirány Kónya József, M. Nagy Noémi: Izotópia I és II. Debreceni Egyetemi Kiadó, 2007, 2008. Kiss István,Vértes Attila: Magkémia (Akadémiai Kiadó) Nagy Lajos György,

Részletesebben

A sötét anyag nyomában. Krasznahorkay Attila MTA Atomki, Debrecen

A sötét anyag nyomában. Krasznahorkay Attila MTA Atomki, Debrecen A sötét anyag nyomában Krasznahorkay Attila MTA Atomki, Debrecen Látható és láthatatlan világunk A levegő Túl kicsi dolgok Mikroszkóp Túl távoli dolgok távcső, teleszkópok Gravitációs vonzás, Mágneses

Részletesebben

Pósfay Péter. ELTE, Wigner FK Témavezetők: Jakovác Antal, Barnaföldi Gergely G.

Pósfay Péter. ELTE, Wigner FK Témavezetők: Jakovác Antal, Barnaföldi Gergely G. Pósfay Péter ELTE, Wigner FK Témavezetők: Jakovác Antal, Barnaföldi Gergely G. A Naphoz hasonló tömegű csillagok A Napnál 4-8-szor nagyobb tömegű csillagok 8 naptömegnél nagyobb csillagok Vörös óriás Szupernóva

Részletesebben

Axion sötét anyag. Katz Sándor. ELTE Elméleti Fizikai Tanszék

Axion sötét anyag. Katz Sándor. ELTE Elméleti Fizikai Tanszék Az axion mint sötét anyag ELTE Elméleti Fizikai Tanszék Borsányi Sz., Fodor Z., J. Günther, K-H. Kampert, T. Kawanai, Kovács T., S.W. Mages, Pásztor A., Pittler F., J. Redondo, A. Ringwald, Szabó K. Nature

Részletesebben

EGYSZERŰ, SZÉP ÉS IGAZ

EGYSZERŰ, SZÉP ÉS IGAZ EGYSZERŰ, SZÉP ÉS IGAZ AVAGY EGY FIZIKUS (FIZIKATANÁR?) VILÁGKÉPE Trócsányi Zoltán Eötvös Loránd Tudományegyetem és MTA-DE Részecskefizikai Kutatócsoport 62. Országos Fizikatanári Ankét és Eszközbemutató,

Részletesebben

Tartalom. Történeti áttekintés A jelenség és mérése Modellek

Tartalom. Történeti áttekintés A jelenség és mérése Modellek Szonolumineszcencia Tartalom Történeti áttekintés A jelenség és mérése Modellek Történeti áttekintés 1917 Lord Rayleigh - kavitáció Történeti áttekintés 1917 Lord Rayleigh - kavitáció 1934-es ultrahang

Részletesebben

8. AZ ATOMMAG FIZIKÁJA

8. AZ ATOMMAG FIZIKÁJA 8. AZ ATOMMAG FIZIKÁJA Az atommag szerkezete (40-44 oldal) A tömegspektrométer elve Az atommag komponensei Izotópok Tömeghiány, kötési energia, stabilitás Magerők Magmodellek Az atommag stabilitásának

Részletesebben

Az atombomba története

Az atombomba története Az atombomba története Szegedi Péter TTK Tudománytörténet és Tudományfilozófia Tanszék Déli Tömb 1-111-es szoba 372-2990 vagy 6670-es mellék pszegedi@caesar.elte.hu és http://hps.elte.hu Tematika 1. A

Részletesebben

FIZIKA. Radioaktív sugárzás

FIZIKA. Radioaktív sugárzás Radioaktív sugárzás Atommag összetétele: Hélium atommag : 2 proton + 2 neutron 4 He 2 A He Z 4 2 A- tömegszám proton neutron együttesszáma Z- rendszám protonok száma 2 Atommag összetétele: Izotópok: azonos

Részletesebben

NAGY Elemér Centre de Physique des Particules de Marseille

NAGY Elemér Centre de Physique des Particules de Marseille Korai CERN együtműködéseink a kísérleti részecskefizika terén Az EMC és L3 kísérletek NAGY Elemér Centre de Physique des Particules de Marseille Előzmények A 70-es évektől kezdve a CERN meghatározó szerephez

Részletesebben

Wolfgang Ernst Pauli életútja. Gáti József

Wolfgang Ernst Pauli életútja. Gáti József Wolfgang Ernst Pauli életútja Gáti József Wolfgang Ernst Pauli 1900. április 25-én Bécsben született. 2 évesen Apja Wolfgang Joseph Pauli orvos és biokémia professzor, anyja Berta Camilla Schütz volt.

Részletesebben

fizikai szemle fizikai 2006/1

fizikai szemle fizikai 2006/1 fizikai szemle 2006/1 Az Eötvös Loránd Fizikai Társulat havonta megjelenô folyóirata. Támogatók: A Magyar Tudományos Akadémia Fizikai Tudományok Osztálya, az Oktatási Minisztérium, a Magyar Biofizikai

Részletesebben

Elektromágneses sugárözönben élünk

Elektromágneses sugárözönben élünk Elektromágneses sugárözönben élünk Az Életet a Nap, a civilizációnkat a Tűz sugarainak köszönhetjük. - Ha anya helyett egy isten nyitotta föl szemed, akkor a halálos éjben mindenütt tűz, tűz lobog fel,

Részletesebben

Nemlineáris szállítószalag fúziós plazmákban

Nemlineáris szállítószalag fúziós plazmákban Nemlineáris szállítószalag fúziós plazmákban Pokol Gergő BME NTI BME TTK Kari Nyílt Nap 2018. november 16. Hogyan termeljünk villamos energiát? Bőséges üzemanyag: Amennyit csak akarunk, egyenletesen elosztva!

Részletesebben

Maghasadás, láncreakció, magfúzió

Maghasadás, láncreakció, magfúzió Maghasadás, láncreakció, magfúzió Maghasadás 1938-ban hoztak létre először maghasadást úgy, hogy urán atommagokat bombáztak neutronokkal. Ekkor az urán két közepes méretű atommagra bomlott el, és újabb

Részletesebben

Magyarok a CMS-kísérletben

Magyarok a CMS-kísérletben Magyarok a CMS-kísérletben LHC-klubdélután, ELFT, 2007. ápr. 16. Horváth Dezső MTA KFKI Részecske és Magfizikai Kutatóintézet, Budapest és ATOMKI, Debrecen Horváth Dezső: Magyarok a CMS-kísérletben LHC-klubdélután,

Részletesebben

Csendes fizika. Manno István. KFKI, Részecske- és Magfizikai Kutatóintézet 2007. május 4. Csendes fizika p.1/77

Csendes fizika. Manno István. KFKI, Részecske- és Magfizikai Kutatóintézet 2007. május 4. Csendes fizika p.1/77 Csendes fizika Manno István KFKI, Részecske- és Magfizikai Kutatóintézet 2007. május 4. Csendes fizika p.1/77 Az előadás tartalma Bevezetés Csendes fizika A csendes fizika kisérletei Ritka események Ritka

Részletesebben

Csillagászat. A csillagok születése, fejlődése. A világegyetem kialakulása 12/C. -Mészáros Erik -Polányi Kristóf

Csillagászat. A csillagok születése, fejlődése. A világegyetem kialakulása 12/C. -Mészáros Erik -Polányi Kristóf Csillagászat. A csillagok születése, fejlődése. A világegyetem kialakulása 12/C -Mészáros Erik -Polányi Kristóf - Vöröseltolódás - Hubble-törvény: Edwin P. Hubble (1889-1953) - Ősrobbanás-elmélete (Big

Részletesebben

A részecskefizika eszköztára: felfedezések és detektorok

A részecskefizika eszköztára: felfedezések és detektorok A részecskefizika eszköztára: felfedezések és detektorok Varga Dezső MTA WIGNER FK, RMI NFO Az évszázados kirakójáték: az elemi részecskék rendszere A buborékkamrák kora: a látható részecskék Az elektronikus

Részletesebben

egyetemi állások a relativitáselmélet általánosítása (1915) napfogyatkozás (1919) az Einstein-mítosz (1920-tól) emigráció 1935: Einstein-Podolsky-

egyetemi állások a relativitáselmélet általánosítása (1915) napfogyatkozás (1919) az Einstein-mítosz (1920-tól) emigráció 1935: Einstein-Podolsky- egyetemi állások a relativitáselmélet általánosítása (1915) napfogyatkozás (1919) az Einstein-mítosz (1920-tól) emigráció 1935: Einstein-Podolsky- Rosen cikk törekvés az egységes térelmélet létrehozására

Részletesebben

Reakciókinetika. aktiválási energia. felszabaduló energia. kiindulási állapot. energia nyereség. végállapot

Reakciókinetika. aktiválási energia. felszabaduló energia. kiindulási állapot. energia nyereség. végállapot Reakiókinetika aktiválási energia kiindulási állapot energia nyereség felszabaduló energia végállapot Reakiókinetika kinetika: mozgástan reakiókinetika (kémiai kinetika): - reakiók időbeli leírása - reakiómehanizmusok

Részletesebben

Trícium ( 3 H) A trícium ( 3 H) a hidrogén hármas tömegszámú izotópja, egy protonból és két neutronból áll.

Trícium ( 3 H) A trícium ( 3 H) a hidrogén hármas tömegszámú izotópja, egy protonból és két neutronból áll. Trícium ( 3 H) A trícium ( 3 H) a hidrogén hármas tömegszámú izotópja, egy protonból és két neutronból áll. Bomláskor lágy - sugárzással stabil héliummá alakul át: 3 1 H 3 He 2 A trícium koncentrációját

Részletesebben

-A radioaktivitás a nem stabil (úgynevezett radioaktív) atommagok bomlásának folyamata. -Nagyenergiájú ionizáló sugárzást kelt Az elnevezés: - radio

-A radioaktivitás a nem stabil (úgynevezett radioaktív) atommagok bomlásának folyamata. -Nagyenergiájú ionizáló sugárzást kelt Az elnevezés: - radio -A radioaktivitás a nem stabil (úgynevezett radioaktív) atommagok bomlásának folyamata. -Nagyenergiájú ionizáló sugárzást kelt Az elnevezés: - radio (sugároz) - activus (cselekvő) Különféle foszforeszkáló

Részletesebben

http://www.flickr.com Az atommag állapotait kvantummechanikai állapotfüggvénnyel írjuk le. A mag paritását ezen fv. paritása adja meg. Paritás: egy állapot tértükrözéssel szemben mutatott viselkedését

Részletesebben

Az atommag összetétele, radioaktivitás

Az atommag összetétele, radioaktivitás Az atommag összetétele, radioaktivitás Az atommag alkotórészei proton: pozitív töltésű részecske, töltése egyenlő az elektron töltésével, csak nem negatív, hanem pozitív: 1,6 10-19 C tömege az elektron

Részletesebben

Úton az elemi részecskék felé. Atommag és részecskefizika 2. előadás február 16.

Úton az elemi részecskék felé. Atommag és részecskefizika 2. előadás február 16. Úton az elemi részecskék felé Atommag és részecskefizika 2. előadás 2010. február 16. A neutron létének következményei I. 1. Az atommag alkotórészei Z db proton + N db neutron, A=N+Z az atommag tömege

Részletesebben

Izotóp geológia: Elemek izotópjainak használata geológiai folyamatok értelmezéséhez.

Izotóp geológia: Elemek izotópjainak használata geológiai folyamatok értelmezéséhez. Radioaktív izotópok Izotópok Egy elem különböző tömegű (tömegszámú - A) formái; Egy elem izotópjainak a magjai azonos számú protont (rendszám - Z) és különböző számú neutront (N) tartalmaznak; Egy elem

Részletesebben

Z bozonok az LHC nehézion programjában

Z bozonok az LHC nehézion programjában Z bozonok az LHC nehézion programjában Zsigmond Anna Julia MTA Wigner FK Max Planck Institut für Physik Fizikus Vándorgyűlés Szeged, 2016 augusztus 24-27. Nehézion-ütközések az LHC-nál A-A és p-a ütközések

Részletesebben

Neutrínócsillagászat

Neutrínócsillagászat Neutrínócsillagászat Manno István KFKI, Részecske- és Magfizikai Kutató Intézet 2007. május 9. Neutr ınócsillagászat p.1/66 Az előadás tartalma A csillagászat fejlődése Elektromágneses sugárzás Történelem

Részletesebben

Európai Nukleáris Kutatási Szervezet Európai Részecskefizikai Laboratórium. 58 év a részecskefizikai kutatásban

Európai Nukleáris Kutatási Szervezet Európai Részecskefizikai Laboratórium. 58 év a részecskefizikai kutatásban Európai Nukleáris Kutatási Szervezet Európai Részecskefizikai Laboratórium 58 év a részecskefizikai kutatásban CERN Európai Nukleáris Kutatási Szervezet Európai Részecskefizikai Laboratórium 1954-ben 12

Részletesebben

A sugárzások és az anyag fizikai kölcsönhatásai

A sugárzások és az anyag fizikai kölcsönhatásai A sugárzások és az anyag fizikai kölcsönhatásai A kölcsönhatásban résztvevő partner 1. Atommag 2. Az atommag erőtere 3. Elektron (szabad, kötött) 4. Elektromos erőtér 5. Molekulák 6. Makroszkopikus rendszerek

Részletesebben

FIZIKA. Atommag fizika

FIZIKA. Atommag fizika Atommag összetétele Fajlagos kötési energia Fúzió, bomlás, hasadás Atomerőmű működése Radioaktív bomlástörvény Dozimetria 2 Atommag összetétele: Hélium atommag : 2 proton + 2 neutron 4 He 2 He Z A 4 2

Részletesebben

Elemi részecskék, kölcsönhatások. Atommag és részecskefizika 4. előadás március 2.

Elemi részecskék, kölcsönhatások. Atommag és részecskefizika 4. előadás március 2. Elemi részecskék, kölcsönhatások Atommag és részecskefizika 4. előadás 2010. március 2. Az elektron proton szóródás E=1MeVλ=hc/(sqrt(E 2 -mc 2 )) 200fm Rutherford-szórás relativisztikusan Mott-szórás E=10MeVλ

Részletesebben

Az ismert elemi részecskék legtünékenyebb

Az ismert elemi részecskék legtünékenyebb PATKÓS ANDRÁS Túl a részecskefizikai Standard Modellen Az ismert elemi részecskék legtünékenyebb családjának, a neutrínók fizikájának különleges jelenségeihez tért vissza a fizikai Nobel-díjat odaítél

Részletesebben

SCHWARTZ 2012 Emlékverseny

SCHWARTZ 2012 Emlékverseny SCHWARTZ 2012 Emlékverseny A TRIÓDA díjra javasolt feladat ADY Endre Líceum, Nagyvárad, Románia 2012. november 10. Befejezetlen kísérlet egy fecskendővel és egy CNC hőmérővel A kísérleti berendezés. Egy

Részletesebben

5. Laboratóriumi gyakorlat

5. Laboratóriumi gyakorlat 5. Laboratóriumi gyakorlat HETEROGÉN KÉMIAI REAKCIÓ SEBESSÉGÉNEK VIZSGÁLATA A CO 2 -nak vízben történő oldódása és az azt követő egyensúlyra vezető kémiai reakció az alábbi reakcióegyenlettel írható le:

Részletesebben

Bemutatkozik a CERN Fodor Zoltán

Bemutatkozik a CERN Fodor Zoltán Bemutatkozik a CERN Fodor Zoltán 1 CERN Európai Nukleáris Kutatási Szervezet Európai Részecskefizikai Laboratórium 1954-ben 12 ország alapította, ma 21 tagország (2015: Románia) +Szerbia halad + Ciprus,

Részletesebben

Geofizika alapjai. Bevezetés. Összeállította: dr. Pethő Gábor, dr Vass Péter ME, Geofizikai Tanszék

Geofizika alapjai. Bevezetés. Összeállította: dr. Pethő Gábor, dr Vass Péter ME, Geofizikai Tanszék Geofizika alapjai Bevezetés Összeállította: dr. Pethő Gábor, dr Vass Péter ME, Geofizikai Tanszék Geofizika helye a tudományok rendszerében Tudományterületek: absztrakt tudományok, természettudományok,

Részletesebben

Milyen színűek a csillagok?

Milyen színűek a csillagok? Milyen színűek a csillagok? A fényesebb csillagok színét szabad szemmel is jól láthatjuk. Az egyik vörös, a másik kék, de vannak fehéren villódzók, sárga, narancssárga színűek is. Vajon mi lehet az eltérő

Részletesebben

Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (limitációk) Fókusz Légzsák (Air-Bag Systems) kémiája

Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (limitációk) Fókusz Légzsák (Air-Bag Systems) kémiája Gázok 5-1 Gáznyomás 5-2 Egyszerű gáztörvények 5-3 Gáztörvények egyesítése: Tökéletes gáz egyenlet és általánosított gáz egyenlet 5-4 A tökéletes gáz egyenlet alkalmazása 5-5 Gáz halmazállapotú reakciók

Részletesebben

Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (korlátok) Fókusz: a légzsák (Air-Bag Systems) kémiája

Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (korlátok) Fókusz: a légzsák (Air-Bag Systems) kémiája Gázok 5-1 Gáznyomás 5-2 Egyszerű gáztörvények 5-3 Gáztörvények egyesítése: Tökéletes gázegyenlet és általánosított gázegyenlet 5-4 A tökéletes gázegyenlet alkalmazása 5-5 Gáz reakciók 5-6 Gázkeverékek

Részletesebben

Elektromos áram. Vezetési jelenségek

Elektromos áram. Vezetési jelenségek Elektromos áram. Vezetési jelenségek Emlékeztető Elektromos áram: töltéshordozók egyirányú áramlása Áramkör részei: áramforrás, vezető, fogyasztó Áramköri jelek Emlékeztető Elektromos áram hatásai: Kémiai

Részletesebben

FIZIKAI NOBEL-DÍJ, Az atomoktól a csillagokig dgy Fizikai Nobel-díj 2013 a Higgs-mezôért 10

FIZIKAI NOBEL-DÍJ, Az atomoktól a csillagokig dgy Fizikai Nobel-díj 2013 a Higgs-mezôért 10 FIZIKAI NOBEL-DÍJ, 2013 Az atomoktól a csillagokig dgy 2013. 10. 10. Fizikai Nobel-díj 2013 a Higgs-mezôért 10 A tömeg eredete és a Higgsmező avagy a 2013. évi fizikai Nobel-díj Az atomoktól a csillagokig

Részletesebben

CERN: a szubatomi részecskék kutatásának európai központja

CERN: a szubatomi részecskék kutatásának európai központja CERN: a szubatomi részecskék kutatásának európai központja 1954-ben alapította 12 ország Ma 20 tagország 2007-ben több mint 9000 felhasználó (9133 user ) ~1 GCHF éves költségvetés (0,85%-a magyar Ft) Az

Részletesebben

Rádioaktív anyagok vizsgálata: sugárzás közben sokkal nagyobb energia szabadul fel, mint a hagyományos kémiai folyamatokban (pl. égés).

Rádioaktív anyagok vizsgálata: sugárzás közben sokkal nagyobb energia szabadul fel, mint a hagyományos kémiai folyamatokban (pl. égés). Atomenergia Rádioaktív anyagok vizsgálata: sugárzás közben sokkal nagyobb energia szabadul fel, mint a hagyományos kémiai folyamatokban (pl. égés). Kutatók: vizsgálták az atomenergia felszabadításának

Részletesebben

A csillagközi anyag. Interstellar medium (ISM) Bonyolult dinamika. turbulens áramlások MHD

A csillagközi anyag. Interstellar medium (ISM) Bonyolult dinamika. turbulens áramlások MHD A csillagközi anyag Interstellar medium (ISM) gáz + por Ebből jönnek létre az újabb és újabb csillagok Bonyolult dinamika turbulens áramlások lökéshullámok MHD Speciális kémia porszemcsék képződése, bomlása

Részletesebben

Modern Fizika Labor. 2. Az elemi töltés meghatározása. Fizika BSc. A mérés dátuma: nov. 29. A mérés száma és címe: Értékelés:

Modern Fizika Labor. 2. Az elemi töltés meghatározása. Fizika BSc. A mérés dátuma: nov. 29. A mérés száma és címe: Értékelés: Modern Fizika Labor Fizika BSc A mérés dátuma: 2011. nov. 29. A mérés száma és címe: 2. Az elemi töltés meghatározása Értékelés: A beadás dátuma: 2011. dec. 11. A mérést végezte: Szőke Kálmán Benjamin

Részletesebben

AAT Fit-010. Elektrokémiai alkoholszonda. Használati utasítás

AAT Fit-010. Elektrokémiai alkoholszonda. Használati utasítás AAT Fit-010 Elektrokémiai alkoholszonda Használati utasítás 1 Mérés A Fit-010 elsősorban személyes használatra szánt professzionális alkoholszonda. Az elektrokémiai érzékelő a platina és az alkohol molekulák

Részletesebben

A légköri sugárzás. Sugárzási törvények, légköri veszteségek, energiaháztartás

A légköri sugárzás. Sugárzási törvények, légköri veszteségek, energiaháztartás A légköri sugárzás Sugárzási törvények, légköri veszteségek, energiaháztartás Sugárzási törvények I. 0. Minden T>0 K hőmérsékletű test sugároz 1. Planck törvény: minden testre megadható egy hőmérséklettől

Részletesebben

A modern fizika születése

A modern fizika születése MODERN FIZIKA A modern fizika születése Eddig: Olyan törvényekkel ismerkedtünk meg melyekhez tapasztalatokat a mindennapi életből is szerezhettünk. Klasszikus fizika: mechanika, hőtan, elektromosságtan,

Részletesebben

Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei

Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Gazdálkodási modul Gazdaságtudományi ismeretek I. Közgazdasá Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei KÖRNYEZETGAZDÁLKODÁSI

Részletesebben

RÉSZECSKÉK AZ UNIVERZUMBAN

RÉSZECSKÉK AZ UNIVERZUMBAN Fizikai Szemle honlap Tartalomjegyzék Fizikai Szemle 2007/5. 165.o. RÉSZECSKÉK AZ UNIVERZUMBAN Patkós András ELTE Atomfizikai Tanszék Hosszú évek tapasztalata, hogy a fizika felsõfokú tanulását választó

Részletesebben

NA61/SHINE: Az erősen kölcsönható anyag fázisdiagramja

NA61/SHINE: Az erősen kölcsönható anyag fázisdiagramja NA61/SHINE: Az erősen kölcsönható anyag fázisdiagramja László András Wigner Fizikai Kutatóintézet, Részecske- és Magfizikai Intézet 1 Kivonat Az erősen kölcsönható anyag és fázisai Megfigyelések a fázisszerkezettel

Részletesebben

A Föld helye a Világegyetemben. A Naprendszer

A Föld helye a Világegyetemben. A Naprendszer A Föld helye a Világegyetemben A Naprendszer Mértékegységek: Fényév: az a távolság, amelyet a fény egy év alatt tesz meg. (A fény terjedési sebessége: 300.000 km.s -1.) Egy év alatt: 60.60.24.365.300 000

Részletesebben

9. évfolyam. Osztályozóvizsga tananyaga FIZIKA

9. évfolyam. Osztályozóvizsga tananyaga FIZIKA 9. évfolyam Osztályozóvizsga tananyaga A testek mozgása 1. Egyenes vonalú egyenletes mozgás 2. Változó mozgás: gyorsulás fogalma, szabadon eső test mozgása 3. Bolygók mozgása: Kepler törvények A Newtoni

Részletesebben

Módszer az ASEA-ban található reaktív molekulák ellenőrzésére

Módszer az ASEA-ban található reaktív molekulák ellenőrzésére Módszer az ASEA-ban található reaktív molekulák ellenőrzésére Az ASEA-ban található reaktív molekulák egy komplex szabadalmaztatott elektrokémiai folyamat, mely csökkenti és oxidálja az alap sóoldatot,

Részletesebben

Hogyan termelik a csillagok az energiát?

Hogyan termelik a csillagok az energiát? Hogyan termelik a csillagok az energiát? Nagyon tanulságosak azok a gondolatok, amelyeket Dr. Kulin György fogalmazott meg Az ember kozmikus lény című könyvében: A Nap másodpercenként 3,86. 10 26 J energiát

Részletesebben

Atommodellek. Ha nem tudod egy pincérnőnek elmagyarázni a fizikádat, az valószínűleg nem nagyon jó fizika. Rausch Péter kémia-környezettan tanár

Atommodellek. Ha nem tudod egy pincérnőnek elmagyarázni a fizikádat, az valószínűleg nem nagyon jó fizika. Rausch Péter kémia-környezettan tanár Atommodellek Ha nem tudod egy pincérnőnek elmagyarázni a fizikádat, az valószínűleg nem nagyon jó fizika. Ernest Rutherford Rausch Péter kémia-környezettan tanár Modellalkotás A modell a valóság nagyított

Részletesebben

Hogyan mérünk neutrínó-sebességet?

Hogyan mérünk neutrínó-sebességet? Horváth Dezső: Hogyan mérünk neutrínó-sebességet? ELTE, 2011.10.26 p. 1/30 Hogyan mérünk neutrínó-sebességet? Részecskefizikai szeminárium, ELTE, 2011.10.26 Horváth Dezső MTA KFKI RMKI, Budapest és MTA

Részletesebben

BEVEZETÉS A RÉSZECSKEFIZIKÁBA 3.

BEVEZETÉS A RÉSZECSKEFIZIKÁBA 3. BEVEZETÉS A RÉSZECSKEFIZIKÁBA 3. Gabriella.Pasztor@cern.ch CERN Hungarian Teachers Programme 2015. augusztus 17-21. HTP2015 Pásztor: Bevezetés a részecskefizikába 151 3. RÉSZ Neutrínók Neutrínó emlékeztető:

Részletesebben

Fúziós plazmafizika ma Magyarországon

Fúziós plazmafizika ma Magyarországon Fúziós plazmafizika ma Magyarországon Pokol Gergő BME NTI MAFIHE TDK és Szakdolgozat Hét 2015. november 9. Fúziós energiatermelés A csillagokban is fúziós reakciók zajlanak, azonban ezek túl kis energiasűrűséggel

Részletesebben

Részecskefizikai gyorsítók

Részecskefizikai gyorsítók Részecskefizikai gyorsítók 2010.12.09. Kísérleti mag- és részecskefizikai szeminárium Márton Krisztina Hogyan látunk különböző méreteket? 2 A működés alapelve az elektromos tér gyorsítja a részecskét különböző

Részletesebben

a gyengekölcsönhatásban vesz részt, ezért nagyon nehéz detektálni. A neutrínó már számos esetben meglepte a

a gyengekölcsönhatásban vesz részt, ezért nagyon nehéz detektálni. A neutrínó már számos esetben meglepte a Neutrínó I. Manno November 6, 2006 A neutrínó a leptonok 1 családjába tartozó elektromosan semleges részecske, a gravitációskölcsönhatáson kívül csak a gyengekölcsönhatásban vesz részt, ezért nagyon nehéz

Részletesebben

A diplomaterv keretében megvalósítandó feladatok összefoglalása

A diplomaterv keretében megvalósítandó feladatok összefoglalása A diplomaterv keretében megvalósítandó feladatok összefoglalása Diplomaterv céljai: 1 Sclieren résoptikai módszer numerikus szimulációk validálására való felhasználhatóságának vizsgálata 2 Lamináris előkevert

Részletesebben

A tudomány mint szociális tudás: a tudomány mint társas gyakorlat

A tudomány mint szociális tudás: a tudomány mint társas gyakorlat A tudomány mint szociális tudás: a tudomány mint társas gyakorlat Tudományfilozófia, 2007.05.03 Esettanulmányok tobzódása Kezdeti tudományfilozófiai szövegek: nagy elméleti humbug, alig-alig utalás a tudomány

Részletesebben

Földünk a világegyetemben

Földünk a világegyetemben Földünk a világegyetemben A Tejútrendszer a Lokális Galaxiscsoport egyik küllős spirálgalaxisa, melyben a Naprendszer és ezen belül Földünk található. 200-400 milliárd csillag található benne, átmérője

Részletesebben

Bemutatkozik a CERN. Fodor Zoltán. 2015.08.14 HTP2015, Fodor Zoltán: Bemutatkozik a CERN

Bemutatkozik a CERN. Fodor Zoltán. 2015.08.14 HTP2015, Fodor Zoltán: Bemutatkozik a CERN Bemutatkozik a CERN Fodor Zoltán 1 CERN Európai Nukleáris Kutatási Szervezet Európai Részecskefizikai Laboratórium 1954-ben 12 ország alapította, ma 21 tagország (2015: Románia) +Szerbia halad + Ciprus,

Részletesebben

fizikai szemle 2016/6

fizikai szemle 2016/6 fizikai szemle 2016/6 POSZTEREINKET KERESD A FIZIKAISZEMLE.HU MELLÉKLETEK MENÜPONTJÁBAN! A poszterek szabadon letölthetõk, kinyomtathatók és oktatási célra, nonprofit felhasználhatók. Kereskedelmi forgalomba

Részletesebben

Kísérlettervezés alapfogalmak

Kísérlettervezés alapfogalmak Kísérlettervezés alapfogalmak Rendszermodellezés Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék Kísérlettervezés Cél: a modell paraméterezése a valóság alapján

Részletesebben

Al-Mg-Si háromalkotós egyensúlyi fázisdiagram közelítő számítása

Al-Mg-Si háromalkotós egyensúlyi fázisdiagram közelítő számítása l--si háromalkotós egyensúlyi fázisdiagram közelítő számítása evezetés Farkas János 1, Dr. Roósz ndrás 1 doktorandusz, tanszékvezető egyetemi tanár Miskolci Egyetem nyag- és Kohómérnöki Kar Fémtani Tanszék

Részletesebben

Általános Kémia, BMEVESAA101

Általános Kémia, BMEVESAA101 Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár, csonkagi@gmail.com 1 Jegyzet Dr. Csonka Gábor http://web.inc.bme.hu/csonka/ Óravázlatok:

Részletesebben

Modern fizika vegyes tesztek

Modern fizika vegyes tesztek Modern fizika vegyes tesztek 1. Egy fotonnak és egy elektronnak ugyanakkora a hullámhossza. Melyik a helyes állítás? a) A foton lendülete (impulzusa) kisebb, mint az elektroné. b) A fotonnak és az elektronnak

Részletesebben

A nap- és szélerőművek integrálásának kérdései Európában. Dr. habil Göőz Lajos professor emeritus egyetemi magántanár

A nap- és szélerőművek integrálásának kérdései Európában. Dr. habil Göőz Lajos professor emeritus egyetemi magántanár A nap- és szélerőművek integrálásának kérdései Európában Dr. habil Göőz Lajos professor emeritus egyetemi magántanár A Nap- és szél alapú megújuló energiaforrások nagyléptékű integrálása az országos és

Részletesebben

Compton-effektus. Zsigmond Anna. jegyzıkönyv. Fizika BSc III.

Compton-effektus. Zsigmond Anna. jegyzıkönyv. Fizika BSc III. Compton-effektus jegyzıkönyv Zsigmond Anna Fizika BSc III. Mérés vezetıje: Csanád Máté Mérés dátuma: 010. április. Leadás dátuma: 010. május 5. Mérés célja A kvantumelmélet egyik bizonyítékának a Compton-effektusnak

Részletesebben

nem kezelt 1.29, 1.60, 2.27, 1.31, 1.81, 2.21 kezelt 0.96, 1.14, 1.59

nem kezelt 1.29, 1.60, 2.27, 1.31, 1.81, 2.21 kezelt 0.96, 1.14, 1.59 1. feladat Egy szer rákellenes hatását vizsgálták úgy, hogy 9 egér testébe rákos sejteket juttattak be. Közülük 3 véletlenszerűen kiválasztott egérnek kezelésként beadták a vizsgálandó szert, 6-nak pedig

Részletesebben

Energetikai mérnökasszisztens Mérnökasszisztens

Energetikai mérnökasszisztens Mérnökasszisztens A 10/07 (II. 27.) SzMM rendelettel módosított 1/06 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,

Részletesebben