Zóna- és cellamodellek alkalmazásának gyakorlati tapasztalatai hő- és füstterjedés modellezésében

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Zóna- és cellamodellek alkalmazásának gyakorlati tapasztalatai hő- és füstterjedés modellezésében"

Átírás

1 Zóna- és cellamodellek alkalmazásának gyakorlati tapasztalatai hő- és füstterjedés modellezésében Összefoglaló DR.TAKÁCS Lajos Gábor egyetemi adjunktus (1) SZIKRA Csaba tudományos munkatárs (2) Budapesti Műszaki és Gazdaságtudományi Egyetem Építészmérnöki Kar (1) Épületszerkezettani Tanszék (2) Épületenergetikai és Épületgépészeti Tanszék Az elmúlt 0 évben a tűzvédelem mérnöki módszerei világszerte egyre nagyobb szerepet kapnak az épülettervezésben. Ezek közül a legnagyobb jelentőségűvé a hő- és füst szétterjedését leíró modellek, módszerek váltak. Az egyszerű, de matematikailag kellő pontossággal leírható zónamodellektől napjainkra eljutottunk a cellamodellekig, amelyek a tűzből felszabaduló hő teljesítményéből, annak időbeli alakulásából, csúcsértékéből és az ennek során keletkező füst mennyiségéből és optikai sajátosságaiból indulnak ki, de a hő- és füstelvezető és a légpótló eszközök működésének vizsgálata mellett alkalmasak egyéb aktív tűzvédelmi berendezések, különösen a tűzjelző rendszerek és a beépített oltóberendezések hatékonyságának, egymásra hatásainak modellezésére is. Segítségükkel az eddigi módszerekhez képest pontosabb képet kaphatunk egyre komplexebbé váló épületeink tűzeseti viselkedéséről. 1. AZ ORSZÁGOS TŰZVÉDELMI SZABÁLYZAT PRESZKRIPTÍV ELVEI A gravitációs rendszerek esetén általában az alapterület százalékában határozza meg a hatásos elvezető- és légpótló nyílások méreteit: Nem füstmentes lépcsőházak esetében az alapterület 5%-a, de legalább 1 m 2 Átriumok esetében az alapterület %-a, de legalább 1 m 2 A menekülésre számításba vett közlekedők esetében az alapterület 1%-a, de legalább 0, m 2 Pinceszinti helyiségek esetében az alapterület 1%-a. Csarnok jellegű építmények helyiségei esetén a számítási belmagasságtól, az elérni kívánt füstmentes levegőréteg magasságától, valamint az épület, helyiség rendeltetésétől függően, az OTSZ 24. mellékletének 5. táblázatából határozhatjuk meg a füstszakaszonként szükséges hatásos nyílások méretét. A füstmentes levegőréteg minimális magassága 6 m számítási belmagasságig m, 6 m-nél nagyobb belmagasság esetében annak legalább a fele. A tárolt anyagok alapján az épületet rendeltetés szerint négy csoportba lehet sorolni (a 24. melléklet 2 4. táblázatai szerint). A minimális füstmentes légréteg tartományán belül, a méretezéshez használt füstmentes levegőréteg magasságát a raktározási, tárolási, használati magasság alapján kell meghatározni. Csarnok jellegű épületek hő- és füstelvezetésének tűzvédelmi problémái a következők: OTSZ előírások merevsége (a preszkriptív előírásokra egyébként is jellemző) Korlátozott tűzszakasz-terület (pl. C tv.o., 6000 MJ/m 2 fölötti tűzterhelés és II. tűzállósági fokozatú csarnoképületek esetén 000 m 2, amely automatikus tűzjelző- és oltóberendezés rendszer telepítésével 6000 m 2 -re növelhető) Füstkötény alsó éle fölötti anyagtárolás nem megengedett Különleges épületméreteket nem kezeli, a szélső értékekben (nagy alapterület, nagy belmagasság stb.) pontatlan Megoldás: eseti eltérési engedélyezési eljárás lefolytatása, zóna-, illetve cellamodellek segítségével történő méretezés. Ezek részleteivel foglalkozunk a továbbiakban.

2 2. ZÁRT TÉRI TÜZEK LEFOLYÁSÁNAK VIZSGÁLATA A zárt téri tüzek lefolyásának ismeretére azért van szükség, mert az itt fejlődő tüzek jellemzésére a tűz teljesítményének és a tűztér hőmérsékletének időbeli változását használhatjuk. A tűz teljesítménye modellezhető, a hőmérséklet-eloszlás esetében azonban rögzített eloszlásfüggvényeket használunk. Az eloszlásfüggvények használatának az oka, hogy a tűztérben kialakuló ok-okozati elvek szerint igen nehezen lehet modellkapcsolatokat találni, a paraméterek száma és a jellemzők bizonytalansága miatt Hőmérséklet időbeli alakulása A tűztér jellemzésére igen gyakran a hőmérséklet időbeli változása használjuk (1. ábra), mely tulajdonképp egy indikátor, amelyet számos tűztéri paraméter befolyásol. A paraméterek közül az egyik legmeghatározóbb a tűz teljesítménye. A teljesítmény mellett azonban a helyiségtérfogat, az épületszerkezet, illetve a levegőcsere szintén hatással van a tűztérben kialakuló hőmérsékletre. A levegőcserének kettős hatása is van: az érkező környezeti levegő keveredve a tűztérben lévő gázkeverékkel azt hűti, illetve az égés teljesítményére is hatással van az oxigénellátáson keresztül. Az oxigénhiányos égésnek kisebb a teljesítménye, így a tűztér hőmérséklete is alacsonyabb. Hő- és füstelvezetés méretezésére egy-, illetve kétzónás modellek használhatók. Közös jellemzőjük, hogy a zónán belül a hőmérsékletet és a gázkeverék sűrűségét állandónak tekintjük. A tűztér hőmérsékletmodelljei az egyzónás modell számára kiválóan használhatók. 1.ábra A tűztér hőmérsékletének időbeli változása A mérnöki módszerekben alkalmazott modellek szempontjából a tűzfejlődés korai szakasza a számunkra leginkább izgalmas Tűz teljesítményének időbeli változása A tűztér legfontosabb jellemzője a keletkezett tűz teljesítményének időbeli változása (2. ábra), ami számos mérnöki módszerben alkalmazott modell bemenő paramétere. Mivel a tűz teljesítménye szempontjából a korai (parázsló szakasz) elhagyható, a legegyszerűbb modellek szerint a tűz teljesítményének időbeli alakulása három szakaszra bontható (a fejlődő, a stabil és a hanyatló égés szakasza). Mindhárom szakasz modellezhető. A fejlődő szakasz időbeli változása négyzetes függvénnyel közelíthető ( ), a négyzetes függvény együtthatója (α) a fejlődő szakaszra jellemző paraméter. A nemzetközi szakirodalomban kétféle közelítés találunk: A.: Adott éghető anyagok,

3 objektumok (pl. egy összetett anyagokból készülő bútor karosszék, fotel stb.) esetében méréssel megállapítható az együttható. B.: Mivel egy helyiségen belül számos összetett anyagú objektum található, nehezen határozható meg a fejlődő szakasz együtthatója, ezért az égés korai szakaszának jellemzésére kategóriákat alkotunk. Az egyes kategóriák a következők: nagyon gyors (α=0.190), gyors (α=0.047), közepes (α=0.012), lassú (α =0.0). A vizsgált helyiséget a használati módja alapján soroljuk a fenti kategóriák egyikébe. Tapasztalataink szerint pl.: a lakás a közepes kategóriába tartozik. A stabil égés szakaszának teljesítményét az éghető anyagok tömegveszteségével modellezhetjük. Ennek a szakasznak a jellemzői a közel állandó teljesítmény, illetve a stabil égés szakaszának ideje. A tömegveszteség sebességéből, a teljes égéshez tartozó hőfelszabadulás mértékéből és az égés hatékonyságából a felszabaduló teljesítmény és az égési idő is egyszerűen számítható ( ). Az irodalomban a folyékony anyagok tüzeinek felülete és a tömegveszteség sebessége között is találunk összefüggést ( ). Mivel a hanyatló szakasz általában már nem képezi a mérnöki vizsgálatok tárgyát, ezért a legegyszerűbb modell, ha a stabil égés maximális teljesítményével számolunk tovább ebben a tartományban is. Fejlődő Stabil égés Hanyatló égés Módszerek: (1) Éghető anyagok alapján (táblázatok) (2) Ajánlások: tipikus α értékekre (pl.: lakások közepes; szállodai szoba gyors stb.) α (kw/s 2 ) Nagyon gyors Gyors Közepes Lassú 0.00 Jellemzői: Q max, t s Függ: Éghető anyag mennyiségétől, összetételétől, rendelkezésre álló oxigén mennyiségétől Módszerek: számítás Jellemzői: Csökkenő teljesítmény, általában az éghető anyag csökkenő mennyisége vezérli az égést Módszerek: Mivel a vizsgálatok során leginkább az első 10-0perc a lényeges, ennek a szakasznak a vizsgálata már nem szükséges, továbbra is Q feltételezéssel max élünk 2.ábra A tűz teljesítményének időbeli változása Mivel a későbbi számítások bemenő paramétere a tűz teljesítménye, illetve annak időbeli eloszlása, ezért különösen fontos a mértékadó tűzteljesítmény és annak időbeli lefutásának meghatározása. Mivel nincs általános kidolgozott módszer, ezért a mérnöki módszerek alkalmazásának legelső lépése a mértékadó tűzteljesítmény helyes megválasztása. A mérnöknek döntésekor mérlegelni kell, amelyhez többek között az épületszerkezetek jellemzőit, az épület használati módját, a helyiségben lévő éghető anyagokat kell figyelembe vennie. Az előző bekezdésben leírt módszerek segítik döntését. A modellalkotás végén érzékenységvizsgálatnak kell alávetni az égés teljesítményét, melyben azt vizsgáljuk, hogy a választott égésteljesítmény, vagy annak pontatlansága milyen hatással van a végeredményre (hő- és füstelvezetés esetén a füstelvezető nyílás méretére, vagy a füstmentes levegőréteg magasságára).. LÁNGMAGASSÁG MODELLEK A lángmagasságot egy adott felületen égő tűz esetén a hőfelszabadulás mértéke és a tűz felületének kiterjedtsége határozza meg. Származtatása turbulens (fluktuáló) lángok esetében tapasztalati úton, a hasonlóságelmélet felhasználásával lehetséges. Ha a relatív

4 2 lángmagasságot (L/D) a dimenziótlan lángteljesítmény Q* Q/ ( ρ c T g D ) 5 / p = függvényében ábrázoljuk logaritmikus skálán általánosabb érvényű összefüggés alkotható. Az egyenletben ρ, c p, T a tűz keletkezése előtt a környezeti levegő jellemzői (sűrűség, fajhő, hőmérséklet), a láng teljesítménye. A tűz geometriai jellemzőiből is alkothatunk dimenziótlan mennyiséget a jellemző átmérő és a közepes lángmagasság hányadosaként: L/D.. ábra. Relatív lángmagasság (L/D) a dimenziótlan lángteljesítmény függvényében Kihasználva, hogy a dimenziótlan lángteljesítmény 10 0 és 10 4 tartományban a logaritmikus skálán lineáris, a közepes lángmagasság 2 / 5 ( m) = 0.25 Q 1.02 D L egyenlettel számítható. Érdemes megjegyezni, hogy szabadfelszíni tüzekre jellemző. az égés jellegét is jelenti, kisebb értékei a A közepes lángmagasság egy példája a mérnöki módszerek alkalmazásának, hiszen a modell egyenletének fejlesztéséhez a hasonlóságelméletet hívtuk segítségül. A közepes lángmagasság használható a szerkezeti integritás vizsgálatokhoz, illetve bemenő paramétere a későbbi számításoknak (pl.: csóva egyenleteinek érvényesség tartomány vizsgálatához). 4. CSÓVAMODELLEK A közepes lángmagasság mellett fontos ismernünk a csóva hőmérsékletét és a feláramló tömeget. A feláramló tömeg a tűzből kilépő és a környezet hígító levegőjével keveredő tömegek összessége (4. ábra).

5 4. ábra. A korlátozás nélküli csóva viselkedése 4.1. Ideális csóvamodell Az ideális csóvamodell mérnöki gyakorlatban is használható eredményei a tűz környezetében felfelé haladó tömegáram és a tömeggel szállított teljesítmény egyenletei. Hő- és füst terjedésének modelljeiben a füstmentes levegőréteg határán vizsgáljuk a füsttel telített rétegbe lépő tömegáramot. A csóva átlaghőmérséklete ezen a magasságon a kétzónás modellek hőmérsékletének számításához szükséges: 2 ρ p m 1 1 g = 0.20 Q z c p T 5 T 1 2 T = 5.0 Q z 2 2 g c p ρ 5 Az egyenletekből látszik, hogy a környezet jellemzői mellett a csóvában haladó tömegáram ( m p ) és átlaghőmérséklet ( T ) a láng előző fejezetben tárgyalt teljesítményétől függ. Az alapvető fizikai princípiumok felhasználásával lehetett alkotni egy modellt, melynek segítségével a csóva fontosabb fizikai jellemzői közelíthetők. A kapott függvények, ha nem is pontosak, de a csóva fizikai jellemzőinek magasság szerinti változását jellegre helyesen mutatják. Az ideális csóvamodellből származó egyenletek alkalmasak, hogy mérésekkel, az elhanyagolások számának csökkentésével pontosabb modelleket alkothassunk a csóvában uralkodó sebesség, hőmérséklet és tömegáram viszonyainak leírására Valóságos csóvamodellek A valóságos csóvamodellek a mérnöki gyakorlatban számos feladatra használhatók, ezért érdemes megismerni őket. Az ideális csóvamodellhez képest jelentős előrelépést figyelhetünk meg. Gyakran Heskestad [2] modelljét használjuk, mely a pontszerű forrás helyett bevezeti a padló síkja alatt definiált látszólagos pontszerű forrást. A tűz síkján, pontszerű forrás helyett a tűznek valódi kiterjedése van. A konvektív lángteljesítménnyel (Q c ), tovább pontosítható a csóva viselkedése. Az átlagos hőmérséklet helyett, az egyenletek, a valóságnak megfelelően, adott síkban a sebesség- és hőmérséklet eloszlását modellezik. A feláramlási jellemzők maximumait a feláramlás tengelyében találjuk. A pontszerű hőforrás látszólagos helyzetét (z 0 ) a tűz egyenértékű átmérője és a lángteljesítmény 2 / 5 ismeretében a z ( m) = 0.08 Q 1.02 D 0 egyenlettel határozhatjuk meg. A csóva termikus jellemzői szempontjából a konvektív hőáram ( ) a meghatározó, hisz épp a konvektív hőáram a

6 felhajtó erő forrása. A szokványos tüzekben a láng sugárzási vesztesége 20-40%, mely alapján a konvektív hányad meghatározható. A csóva tengelyében a környezethez viszonyított hőmérsékletemelkedést az alábbi összefüggés írja le: A csóva tömegáramát a szokásos környezeti jellemzőkkel az 1 5 p = Qc z Qc egyenlet írja le, de csak a közepes lángmagasság fölött. A m közepes lángmagasság szintjéig a tömegáramot az m p = Qc z / L egyenlettel számíthatjuk. A csóvamodellek a mérnöki modellek egymásra épülésére tanítanak. Az ideális és valóságos csóvamodellek a mérnöki gyakorlatban számos feladatra használhatók, többek között a hőérzékelők viselkedésének tanulmányozására, a csóva útjában lévő szerkezeti elemek átmelegedésének számítására és nem utolsó sorban a gravitációs hő- és füstelvezető berendezések méretezésére. 5. A HŐ- ÉS FÜSTELVEZETÉS MÉRETEZÉSÉHEZ ALKALMAZHATÓ ZÓNAMODELL A mennyezeten elhelyezett hő-és füstelvezető kupolák esete átvezet minket a kétzónás modellek területére. A kétzónás modellek alapfeltételezése, hogy a zónán belül állandó a hőmérséklet és a sűrűség. A légkör egyensúlyi feltételéből, a környezet és a tűztér nyomáseloszlásának egyenletei származtathatóak. A füstkupolán eláramló gázkeverék tömege megegyezik a légpótló nyílásokon a tűztérbe érkező levegő tömegével. A két zóna a füsttel telített és a füstmentes levegőréteg. A füstmentes levegőréteg magassága H D, a belmagasság H. A két zóna sűrűségének segítségével a helyiségbe áramló levegő ( P l ) és a füstkupolán távozó gázok ( P c ) hajtóereje (nyomáskülönbsége) számítható. A hajtóerőkből a tömegáramegyenletek meghatározhatók. A tömegáram azonosságából H N természetes zóna magassága számítható. A természetes zóna magasságában a külső környezet nyomása egyezik a tűztér nyomásával. A természetes zóna felett túlnyomás, alatta alulnyomás uralkodik. 5. ábra. Mennyezeti hő- és füstelvezetők esetében használt modell jelölései A számításokhoz szükségünk van a beáramló levegő tömegáram egyenletére, illetve az eláramló égéstermék egyenletére:

7 A két zóna sűrűségét az ideális gáztörvényből számíthatjuk. A modell egyenleteiben C d a keresztmetszeti tényező. 6. ábra. Adott füstszegény levegőréteghez tartozó szükséges elvezető felület (Ac) a füstgázhőmérséklet függvényében, különböző tűzteljesítmények (Q) esetében (balra). A tűz teljesítménye (Q), és a szükséges felület (Ac) összefüggése (jobbra) Ugyan a fenti egyenletek számos elhanyagolást tartalmaznak, ennek ellenére alkalmasak vízszintes hő- és füstelvezető kupolák és függőleges légutánpótló nyílások esetén mérnöki számítások elvégzésére. Alapvetően két lehetséges feladatcsoport méretezési feladatait segítik a fenti egyenletek: 1. Adott a csarnok belmagassága (H), a tűz teljesítménye, a légutánpótló nyílások mérete (A l ). A követelmény a füstmentes levegőréteg magassága (H D ), amely adott feladat esetén nem egyezik az OTSZ által előírtakkal. Keressük a füstelvezető nyílás szükséges (névleges) méretét. A feladat végrehajtásához feltételt használjuk, amely azt jelenti, hogy a füstmentes levegőréteg határán a csóva tömege lép a füsttel telített zónába. Továbbra is szükséges feltétel, hogy a légutánpótló nyílásokon távozó tömegáram megegyezik a kupolákon távozó tömegárammal. A zónák sűrűségét az ideális gáztörvénnyel számíthatjuk. A számítási modell pontosítható a tűzből a csarnokba lépő tömeg modellbe építésével. A feladat a két fenti egyenlet segítségével egyértelműen megoldható. 2. Adottak a füstelvezető kupolák geometriai méretei, a légutánpótló nyílások méretei, a csarnok magassága, tűz teljesítménye, keressük a füstmentes levegőréteg határát. A feladat nem oldható meg egyértelműen, mivel a csóva egyenleteiből számítjuk a füstmentes levegőréteg határán a tömegáramot, ezért kezdetben feltételezzük, hogy a füstmentes levegőréteg határa a csarnok magasságának felénél van. Evvel a feltételezéssel számíthatjuk a csóva tömegáramát. A csóva tömegáramának segítségével a valós füstmentes magasság már számítható. Az eljárást addig ismételjük, amíg a füstmentes magasság már nem változik számottevően. A mérnöki számítások utolsó eleme az eredmények értékelése, a modell által szolgáltatott eredmény pontosságának vizsgálata. Ehhez az érzékenység analízis módszerét választhatjuk. Hő- és füstelvezető nyílások esetén ez azt jelenti, hogy a kupolák mérete hogyan változik a környezeti hőmérséklet, a lángteljesítmény, vagy a füsttel telített réteg hőmérsékletének hatására. A módszerrel feltárhatók a modell esetleges hibái, illetve megmutatják, hogy mely jellemzők precízebb meghatározása szükséges a végeredmény pontosítása érdekében. 6. CELLAMODELLEK A cellamodellek általában a dimenziós térben egy véges kiterjedésű cellára felírt mozgás, hő- és anyagátadási egyenletek numerikus megoldása. Ennek részleteivel jelen cikkünkben nem foglalkozunk. A tűzvédelemben alkalmazott CFD modellek általában kis sebességű

8 turbulens és lamináris áramlások kezelésére alkalmasak, de a modelleket kiegészítik a tűzvédelemben szokásos feladatok végrehajtására, melyek az alábbiak Tűz, ismert hőfejlődéssel (W/m 2 ), Tűzgörbék modellezése, Gravitációs és gépi szellőzés (hő és füstelvezetés), Füstterjedés, Sugárzással szétterjedő hő és tűz, Pirolízis modellek, Eltűnő éghető anyagok, Lebegő és hulló részecskék a levegőben: o Füst o Vízcsepp o Éghető cseppek, Aktív eszközök a tűzben o Oltóberendezések o Tűzjelző berendezések Oltás, lángelfojtás Eszközök vezérlése (pl.: füstelvezetők, légpótlók) A CFD szimulációs technika hátránya a leíró (preszkriptív) módszerrel szemben, hogy igen részletes háromdimenziós geometriai, épületszerkezeti, hőtani, áramlástani modellre van szükség, amelynek tartalma röviden: Épületszerkezet (anyagok hőtani tulajdonságaival), Pontos geometria, Tárolt anyagok ábrázolása (kubus, összetétel), Passzív tűzvédelmi eszközök, Tűzjelző berendezés parametrizált elemekkel, Oltó berendezés parametrizált elemekkel, Tűzvédelmi terv, o o o o o Kiürítési idő, Passzív védelmi, eszközök (hő- és füstelvezetés vezérlése), Oltóberendezések vezérlései Gépi hő- és füstelvezetők vagy légpótlók és vezérlései Mértékadó tűzteljesítmény-görbe

9 Mivel időben változó (tranziens) szimulációról van szó, jelentős számítási kapacitás szükséges, ennek megfelelően a szimulációs időt a minimumon kell tartani. A szimulációs idő számítása például a beavatkozás várható idejének számításán alapulhat. Nyilván a cellamodellek számos többletinformációt szolgáltatnak. A teljesség igénye nélkül néhány ezek közül a következő: Kvantitatív elemzésre kiválóan alkalmas a tűzből kilépő füstszemcsék szétterjedésének vizsgálata. A füstszemcsék az alkalmazott modellben tömegnélküli, de valós geometriai eloszlású részecskék, melyekre a térben kialakuló hő- és áramlási viszonyok hatnak. Kvalitatív elemzésre számos lehetőségünk van, de a szimuláció kezdetén definiálni kell kétdimenziós vizsgálati síkokat, melyek lehetnek: sebesség, hőmérséklet, extinció, látótávolság, széndioxid koncentráció, szénmonoxid koncentráció akár vektorosan akár skalárisan megjelenítve. Természetesen ezen kívül számos jellemző ábrázolható, mely a tűzvédelemi szempontból kisebb fontossággal bír. Példaként az alábbi ábrán a tartózkodók síkjában a belátható távolságot ábrázoltuk. A fekete vonal a 10m-hez tartozó láthatósági tartományt jelenti: 7. ábra. Láthatóság a tartózkodók síkjában

10 A sprinklerek és az érzékelők megfelelő paraméterezésével további értékes információkat szerezhetünk a zártérben feltételezett tűz lefolyásáról. Tanulmányozhatjuk a sprinklerek reagálási idejét, hatását a füst terjedésére, a kialakuló hőmérsékletre, illetve a tűzjelzők jelzés idejéről is nyerhetünk adatokat. A kialakuló hőmérsékletmező tanulmányozásával a tárolt anyagok gyulladási hőmérsékletét összevethetjük a kialakuló gázhőmérséklettel például a füstkötények feletti tárolás esetén: 8. ábra. Hőmérséklet mező 7. ÖSSZEFOGLALÁS Az alábbiakban összevetjük a cikkben részletesen kifejtett preszkriptív, zóna- és cellamodellek alkalmazásának előnyeit, hátrányait, jellemző alkalmazásait: Előnyök Hátrányok Jellemző alkalmazás OTSZ (preszkriptív módszer) Egyszerű méretezés Nem igényel különleges szoftvert és speciális ismereteket 1600 m 2 füstszakaszra optimalizálva Legfeljebb 15 m belmagasságig Kis- és közepes méretű csarnokoknál alkalmazzuk

11 Zónamodellek Nem igényelnek különleges szoftvereket A preszkriptív módszereknél pontosabb eredményt adnak Bonyolultabb számítás Alapos mérnöki tudást igényelnek (a szakirodalom angol nyelvű) Egyszerű belső terű épületekre alkalmasak Nem alkalmasak az egyéb aktív tűzvédelmi berendezések működésének figyelembe vételére Ma már csak egyszerű épületeknél és a hőés füstelvezetés elméleti alapjainak megértésére alkalmazzák őket (Magyarországon nem terjedtek el) Cellamodellek Tetszőleges épület modellezhető velük Alkalmasak az aktív tűzvédelmi berendezések működésének modellezésére Alapos mérnöki tudást igényelnek (a szakirodalom angol nyelvű) Speciális hardver- és szoftverigény, hosszú futási idő Előzőek miatt költségesek Nagyméretű, nagy belmagasságú vagy egyéb okokból különleges épületeknél alkalmazzuk 6. IRODALMI HIVATKOZÁSOK [1] McCaffrey, B., Flame Height, SFPE Handbook of Fire Protection Engineering, 2nd ed., National Fire Protection Association, Quincy, MA, [2] Heskestad, G., Fire Plumes, SFPE Handbook of Fire Protection Engineering, 2nd ed., National Fire Protection Association, Quincy, MA, [] Blair J. Stratton, Determining Flame Height And Flame Pulsation Frequency And Estimating Heat Release Rate From D Flame Reconstruction, Fire Engineering Research Report 05/2, July ( [4] Zukoski, E.E., Kubota, T., and Cetegen, B., Entrainment in Fire Plumes, Fire Safety Journal, Vol., pp , 1980.

A mérnöki módszerek alkalmazásának lehetőségei a hő- és füstelvezetésben

A mérnöki módszerek alkalmazásának lehetőségei a hő- és füstelvezetésben A mérnöki módszerek alkalmazásának lehetőségei a hő- és füstelvezetésben Szikra Csaba tudományos munkatárs BME Építészmérnöki Kar Épületenergetikai és Épületgépészeti Tanszék szikra@egt.bme.hu, 2013. Zárt

Részletesebben

Hő- és füstelvezetés, elmélet-gyakorlat

Hő- és füstelvezetés, elmélet-gyakorlat Hő- és füstelvezetés, elmélet-gyakorlat Mérnöki módszerek alkalmazásának lehetőségei Szikra Csaba tudományos munkatárs BME Építészmérnöki Kar Épületenergetikai és Épületgépészeti Tanszék szikra@egt.bme.hu

Részletesebben

Hő- és füstelvezetés, elmélet-gyakorlat

Hő- és füstelvezetés, elmélet-gyakorlat Hő- és füstelvezetés, elmélet-gyakorlat Mérnöki módszerek alkalmazásának lehetőségei Szikra Csaba tudományos munkatárs BME Építészmérnöki Kar Épületenergetikai és Épületgépészeti Tanszék szikra@egt.bme.hu

Részletesebben

MÉRNÖKI MÓDSZEREK A TŰZVÉDELMI TERVEZÉSBEN. Dr. Takács Lajos Gábor Okl. építészmérnök, egyetemi docens BME Épületszerkezettani Tanszék

MÉRNÖKI MÓDSZEREK A TŰZVÉDELMI TERVEZÉSBEN. Dr. Takács Lajos Gábor Okl. építészmérnök, egyetemi docens BME Épületszerkezettani Tanszék MÉRNÖKI MÓDSZEREK A TŰZVÉDELMI TERVEZÉSBEN Dr. Takács Lajos Gábor Okl. építészmérnök, egyetemi docens BME Épületszerkezettani Tanszék WEIMAR, ANNA AMÁLIA KÖNYVTÁR TŰZESETE, 2004. SZEPTEMBER 2. WEIMAR,

Részletesebben

MÉRNÖKI MÓDSZEREK TŰZVÉDELMI ALKAMAZÁSAINAK GYAKORLATI KÉRDÉSEI

MÉRNÖKI MÓDSZEREK TŰZVÉDELMI ALKAMAZÁSAINAK GYAKORLATI KÉRDÉSEI MÉRNÖKI MÓDSZEREK TŰZVÉDELMI ALKAMAZÁSAINAK GYAKORLATI KÉRDÉSEI Dr. Takács Lajos Gábor Okl. építészmérnök, egyetemi docens BME Épületszerkezettani Tanszék Email: ltakacs@epsz.bme.hu Szikra Csaba Okl. gépészmérnök,

Részletesebben

A hő- és füstelvezetés méretezésének alapelvei

A hő- és füstelvezetés méretezésének alapelvei A hő- és füstelvezetés méretezésének alapelvei Szikra Csaba tudományos munkatárs BME Építészmérnöki Kar Épületenergetikai és Épületgépészeti Tanszék szikra@egt.bme.hu 2012. Bevezető OTSZ Preambulum (célok

Részletesebben

FÜSTÖLHET! A FÜST ÖLHET! HŐ ÉS FÜSTELVEZETÉS A GYAKORLATBAN, KÜLÖNÖSEN A MEGLÉVŐ ÉPÜLETEK HIÁNYOSSÁGAIRA, SZÁMÍTÓGÉPES TŰZ- SZIMULÁCIÓVAL

FÜSTÖLHET! A FÜST ÖLHET! HŐ ÉS FÜSTELVEZETÉS A GYAKORLATBAN, KÜLÖNÖSEN A MEGLÉVŐ ÉPÜLETEK HIÁNYOSSÁGAIRA, SZÁMÍTÓGÉPES TŰZ- SZIMULÁCIÓVAL FÜSTÖLHET! A FÜST ÖLHET! HŐ ÉS FÜSTELVEZETÉS A GYAKORLATBAN, KÜLÖNÖSEN A MEGLÉVŐ ÉPÜLETEK HIÁNYOSSÁGAIRA, SZÁMÍTÓGÉPES TŰZ- SZIMULÁCIÓVAL SZIKRA CSABA Okl. épületgépész mérnök, épületgépész tűzvédelmi

Részletesebben

7. ábraa csóva tömegáram-mérésének elve A szokásos környezeti jellemzőket használva, a Zukoski által pontosított tömegáram egyenlet a következő:

7. ábraa csóva tömegáram-mérésének elve A szokásos környezeti jellemzőket használva, a Zukoski által pontosított tömegáram egyenlet a következő: Szikra Csaba Zárt téri tüzek modelljei II. A Védelem - Katasztrófavédelmi Szemle 2011/4. számában a zárt téri tüzek elemzésére alkalmazott ideális csóvamodellből származtatott egyenletek, a lángmagasság,

Részletesebben

Hő- és füstelvezetés az új OTSZ tükrében. Öt kérdés - egy válasz. Vagy több?

Hő- és füstelvezetés az új OTSZ tükrében. Öt kérdés - egy válasz. Vagy több? Hő- és füstelvezetés az új OTSZ tükrében. Öt kérdés - egy válasz. Vagy több? TSZVSZ Magyar Tűzvédelmi Szövetség Szakmai nap Siófok, 2011. 11. 17. Nagy Katalin Füsthőmérséklet Tűz keletkezése Teljesen kifejlődött

Részletesebben

Hő és füst elleni védelem, TvMI szerint. az új OTSZ és. Nagy Katalin TMKE elnöke Visegrád, TSZVSZ - Országos Tűzvédelmi Konferencia

Hő és füst elleni védelem, TvMI szerint. az új OTSZ és. Nagy Katalin TMKE elnöke Visegrád, TSZVSZ - Országos Tűzvédelmi Konferencia Hő és füst elleni védelem, az új OTSZ és TvMI szerint Nagy Katalin TMKE elnöke Visegrád, 2014. 10. 02. TSZVSZ - Országos Tűzvédelmi Konferencia Szabályozási elv OTSZ kötelező követelmény TvMI önkéntes

Részletesebben

Szikra Csaba A tűz modellezésének lehetőségei

Szikra Csaba A tűz modellezésének lehetőségei Szikra Csaba A tűz modellezésének lehetőségei A termodinamika és az áramlástan alapegyenletei segítségével különböző esetekben elemzi szerzőnk a tűztér és környezete között kialakuló nyomás, hőmérséklet

Részletesebben

Számítógépes szimulációkkal kapcsolatos hatósági tapasztalatok

Számítógépes szimulációkkal kapcsolatos hatósági tapasztalatok Számítógépes szimulációkkal kapcsolatos hatósági tapasztalatok Hidas Zoltán tű. őrnagy 2015. november 26. Kecskemét Alkalmazási lehetőségek Országos Tűzvédelmi Szabályzat (54/2014. (XII. 5.) BM rendelet)

Részletesebben

A hő- és füstelvezetés építészeti vonatkozásai Szikra Csaba BME Építészmérnöki Kar Épületenergetikai és Épületgépészeti Tanszék

A hő- és füstelvezetés építészeti vonatkozásai Szikra Csaba BME Építészmérnöki Kar Épületenergetikai és Épületgépészeti Tanszék A hő- és füstelvezetés építészeti vonatkozásai Szikra Csaba BME Építészmérnöki Kar Épületenergetikai és Épületgépészeti Tanszék Dr. Takács Lajos Gábor BME Építészmérnöki Kar Épületszerkezettani Tanszék

Részletesebben

A hő- és füstelvezető rendszerek hatékonyságának vizsgálata a kiürítés során (gépjárműtároló, csarnok épület, rendezvényterületek)

A hő- és füstelvezető rendszerek hatékonyságának vizsgálata a kiürítés során (gépjárműtároló, csarnok épület, rendezvényterületek) A hő- és füstelvezető rendszerek hatékonyságának vizsgálata a kiürítés során (gépjárműtároló, csarnok épület, rendezvényterületek) Balogh Richárd Tűzvédelmi szakreferens Tel.:0630/619-3663 Szimuláció jogszabályi

Részletesebben

Szikra Csaba. Épületenergetikai és Épületgépészeti Tsz. www.egt.bme.hu

Szikra Csaba. Épületenergetikai és Épületgépészeti Tsz. www.egt.bme.hu Szikra Csaba Épületenergetikai és Épületgépészeti Tsz. www.egt.bme.hu Alapelvek: A füstvédett térhez tartozó fajlagos felület értéke Zárt lépcsıház esetén: 5 %. Kiürítési út vízszintes szakasza (közlekedı,

Részletesebben

HFR a tűzvédelmi dokumentációban, kapcsolódási pontok a társtervezőkkel

HFR a tűzvédelmi dokumentációban, kapcsolódási pontok a társtervezőkkel HFR a tűzvédelmi dokumentációban, kapcsolódási pontok a társtervezőkkel V. LAKITELEKI TŰZVÉDELMI NAPOK 2016. szeptember 14. Fenyvesi Zsolt Tűzvédelmi mérnök F.S.Z. Mérnökiroda Kft. Hő- és füstelleni védelem

Részletesebben

A MÉRNÖKI ALAPÚ TŰZVÉDELMI TERVEZÉS LEHETSÉGES FŐ IRÁNYAI ÉS A SZAKMÉRNÖK KÉPZÉS TAPASZTALATAI

A MÉRNÖKI ALAPÚ TŰZVÉDELMI TERVEZÉS LEHETSÉGES FŐ IRÁNYAI ÉS A SZAKMÉRNÖK KÉPZÉS TAPASZTALATAI A MÉRNÖKI ALAPÚ TŰZVÉDELMI TERVEZÉS LEHETSÉGES FŐ IRÁNYAI ÉS A SZAKMÉRNÖK KÉPZÉS TAPASZTALATAI Dr. Takács Lajos Gábor Okl. építészmérnök, egyetemi docens BME Épületszerkezettani Tanszék Email: ltakacs@epsz.bme.hu

Részletesebben

Hő és füst elleni védelem

Hő és füst elleni védelem Főigazgató-helyettesi Szervezet Országos Tűzoltósági Főfelügyelőség Tűzvédelmi Főosztály Hő és füst elleni védelem Badonszki Csaba tű. alezredes főosztályvezető-helyettes Definíció hő és füst elleni védelem:

Részletesebben

Új j OTSZ (28/2011. (IX. 06.)) BM rend. stelvezetés, s, valamint a letek

Új j OTSZ (28/2011. (IX. 06.)) BM rend. stelvezetés, s, valamint a letek Új j OTSZ (28/2011. (IX. 06.)) BM rend. Hő-és s füstelvezetf stelvezetés, s, valamint a hasadó és s hasadó-ny nyíló felületek letek új j szabályoz lyozása Dr. Zoltán n Ferenc (Ph.D) ZOFE-FIRE FIRE Kft.,

Részletesebben

Hő-és füstelvezetés Tervezni kell az új OTSZ szerint! Tervezni kell 11 paragrafusból álló X. fejezet

Hő-és füstelvezetés Tervezni kell az új OTSZ szerint! Tervezni kell 11 paragrafusból álló X. fejezet Nagy Katalin Hő-és füstelvezetés Tervezni kell az új OTSZ szerint! A tűz két fő károsító tényezője a hőmérsékletemelkedés és a füst toxikussága és korrozív hatása. Az emberi élet szempontjából a fő veszélytényező

Részletesebben

TŰZVÉDELEM. Győr Tánc- és Képzőművészeti Általános Iskola, Szakközépiskola és Kollégium

TŰZVÉDELEM. Győr Tánc- és Képzőművészeti Általános Iskola, Szakközépiskola és Kollégium TŰZVÉDELEM Győr Tánc- és Képzőművészeti Általános Iskola, Szakközépiskola és Kollégium 2014. december 5.-én kiadásra került az új 54/2014 BM rendelet, az új Országos Tűzvédelmi Szabályzat. A jogszabály

Részletesebben

MÉRNÖKI MÓDSZEREK ALKALMAZÁSA A TŰZVÉDELMI TERVEZÉSBEN

MÉRNÖKI MÓDSZEREK ALKALMAZÁSA A TŰZVÉDELMI TERVEZÉSBEN MÉRNÖKI MÓDSZEREK ALKALMAZÁSA A TŰZVÉDELMI TERVEZÉSBEN TSZVSZ Magyar Tűzvédelmi Szövetség Országos Tűzvédelmi Konferencia, 2012. október 18-19. Dr. Takács Lajos Gábor Okl. építészmérnök, egyetemi docens

Részletesebben

Dr. Takács Lajos Gábor Mérnöki módszerek alkalmazása a tűzvédelmi tervezésben

Dr. Takács Lajos Gábor Mérnöki módszerek alkalmazása a tűzvédelmi tervezésben Dr. Takács Lajos Gábor Mérnöki módszerek alkalmazása a tűzvédelmi tervezésben Cikkünk célja a tűzvédelmi tervezés hagyományos és mérnöki módszereinek összefoglaló bemutatása és osztályozása. A tervezési

Részletesebben

Dr. Zoltán Ferenc tű. alezredes

Dr. Zoltán Ferenc tű. alezredes Hő és s füst f elleni védelem v Dr. Zoltán Ferenc tű. alezredes Siófok, 2008. április 16-18. 18. 2008.04.30. 1 Copyright 1996-99 Dale Carnegie & Associates, Inc. A 2/2002. (I. 23.) BM rendelethez képest

Részletesebben

HÍDTARTÓK ELLENÁLLÁSTÉNYEZŐJE

HÍDTARTÓK ELLENÁLLÁSTÉNYEZŐJE HÍDTARTÓK ELLENÁLLÁSTÉNYEZŐJE Csécs Ákos * - Dr. Lajos Tamás ** RÖVID KIVONAT A Budapesti Műszaki és Gazdaságtudományi Egyetem Hidak és Szerkezetek Tanszéke megbízta a BME Áramlástan Tanszékét az M8-as

Részletesebben

A tervezés menete felmérés, egyeztetés, konzultáció

A tervezés menete felmérés, egyeztetés, konzultáció A tervezés menete felmérés, egyeztetés, konzultáció Balatonföldvár, 2017. április 27-28. Fenyvesi Zsolt F.S.Z. Mérnökiroda Kft. A tervezés kezdeti lépései Felmérés: A tervezés során előzetesen tisztázni

Részletesebben

RWA - Hő- és füst elvezető rendszerek Gyakorlati megoldások az új Tűzvédelmi Műszaki Irányelvek szerint 2015.07.08.

RWA - Hő- és füst elvezető rendszerek Gyakorlati megoldások az új Tűzvédelmi Műszaki Irányelvek szerint 2015.07.08. ASSA ABLOY is the global leader in door opening solutions, dedicated to satisfying end-user needs for security, safety and convenience RWA - Hő- és füst elvezető rendszerek Gyakorlati megoldások az új

Részletesebben

A diplomaterv keretében megvalósítandó feladatok összefoglalása

A diplomaterv keretében megvalósítandó feladatok összefoglalása A diplomaterv keretében megvalósítandó feladatok összefoglalása Diplomaterv céljai: 1 Sclieren résoptikai módszer numerikus szimulációk validálására való felhasználhatóságának vizsgálata 2 Lamináris előkevert

Részletesebben

1. ábra Modell tér I.

1. ábra Modell tér I. 1 Veres György Átbocsátó képesség vizsgálata számítógépes modell segítségével A kiürítés szimuláló számítógépes modellek egyes apró, de igen fontos részletek vizsgálatára is felhasználhatóak. Az átbocsátóképesség

Részletesebben

V. Lakiteleki Tűzvédelmi Szakmai Napok Kísérleti tapasztalatok, különböző működési elvű, csarnok épületben felszerelt tűzjelző érzékelők füsttel

V. Lakiteleki Tűzvédelmi Szakmai Napok Kísérleti tapasztalatok, különböző működési elvű, csarnok épületben felszerelt tűzjelző érzékelők füsttel V. Lakiteleki Tűzvédelmi Szakmai Napok Kísérleti tapasztalatok, különböző működési elvű, csarnok épületben felszerelt tűzjelző érzékelők füsttel történő vizsgálata Szikra Csaba tudományos munkatárs BME

Részletesebben

A tűzvédelmi osztályba sorolás és a kockázati osztályok viszonya. Decsi György Egerszegi Zsuzsanna tű. őrnagy

A tűzvédelmi osztályba sorolás és a kockázati osztályok viszonya. Decsi György Egerszegi Zsuzsanna tű. őrnagy A tűzvédelmi osztályba sorolás és a kockázati osztályok viszonya Decsi György Egerszegi Zsuzsanna tű. őrnagy Futura - 'a jövendő' Jövő OTSZ 5.0 Jelen 28/2011 (IX.6.) OTSZ Funkció (tűzveszélyesség, tűzterhelés)

Részletesebben

ÉPÜLETEK TŰZBIZTONSÁGA ÉS A KIÜRÍTÉS

ÉPÜLETEK TŰZBIZTONSÁGA ÉS A KIÜRÍTÉS Szent István Egyetem Ybl Miklós Építéstudományi Kar Tűzvédelmi és Biztonságtechnikai Intézet Dr. Beda László intézetigazgató, főiskolai tanár ÉPÜLETEK TŰZBIZTONSÁGA ÉS A KIÜRÍTÉS 2010 ÉPÜLETBIZTONSÁG Egy

Részletesebben

TU 7 NYOMÁSSZABÁLYZÓ ÁLLOMÁSOK ROBBANÁSVESZÉLYES TÉRSÉGÉNEK MEGHATÁROZÁSA ÉS BESOROLÁSA AZ MSZ EN 60079-10:2003 SZABVÁNY SZERINT.

TU 7 NYOMÁSSZABÁLYZÓ ÁLLOMÁSOK ROBBANÁSVESZÉLYES TÉRSÉGÉNEK MEGHATÁROZÁSA ÉS BESOROLÁSA AZ MSZ EN 60079-10:2003 SZABVÁNY SZERINT. TU 7 NYOMÁSSZABÁLYZÓ ÁLLOMÁSOK ROBBANÁSVESZÉLYES TÉRSÉGÉNEK MEGHATÁROZÁSA ÉS BESOROLÁSA AZ MSZ EN 60079-10:2003 SZABVÁNY SZERINT. Előterjesztette: Jóváhagyta: Doma Géza koordinációs főmérnök Posztós Endre

Részletesebben

Hogyan égnek a szendvicspanel falak? Heizler György Kecskemét, 2014.12.17.

Hogyan égnek a szendvicspanel falak? Heizler György Kecskemét, 2014.12.17. Hogyan égnek a szendvicspanel falak? Heizler György Kecskemét, 2014.12.17. Mi marad belőlük? Raktár Gyomaendrőd Mátészalka ipari csarnok Szendvics szerkezet, PUR hab hőszigetelés Fa kalodákban tárolt papírcsomagoló

Részletesebben

Al-Mg-Si háromalkotós egyensúlyi fázisdiagram közelítő számítása

Al-Mg-Si háromalkotós egyensúlyi fázisdiagram közelítő számítása l--si háromalkotós egyensúlyi fázisdiagram közelítő számítása evezetés Farkas János 1, Dr. Roósz ndrás 1 doktorandusz, tanszékvezető egyetemi tanár Miskolci Egyetem nyag- és Kohómérnöki Kar Fémtani Tanszék

Részletesebben

TŰZESETEK VIZSGÁLATA FDS SZIMULÁCIÓ ALKALMAZÁSÁVAL

TŰZESETEK VIZSGÁLATA FDS SZIMULÁCIÓ ALKALMAZÁSÁVAL TŰZESETEK VIZSGÁLATA FDS SZIMULÁCIÓ ALKALMAZÁSÁVAL Szikra Csaba BME Épületenergetikai és Épületgépészeti Tanszék Dr. Takács Lajos Gábor BME Építészmérnöki Kar Épületszerkezettani Tanszék ELŐZMÉNYEK: WTC

Részletesebben

LOCAFI+ 4. Analítikus módszer és ellenőrzés. Lokális tűznek kitett függőleges acélelem hőmérséklet vizsgálata, disszemináció. Szerződésszám n

LOCAFI+ 4. Analítikus módszer és ellenőrzés. Lokális tűznek kitett függőleges acélelem hőmérséklet vizsgálata, disszemináció. Szerződésszám n Acélszerkezetek tűzvédelmi tervezése workshop Dr. Jármai Károly Miskolci Egyetem LOCAFI+ Lokális tűznek kitett függőleges acélelem hőmérséklet vizsgálata, disszemináció Szerződésszám n 754072 4. Analítikus

Részletesebben

AZ ÉPÜLETEK ENERGETIKAI JELLEMZŐINEK MEGHATÁROZÁSA ENERGETIKAI SZÁMÍTÁS A HŐMÉRSÉKLETELOSZLÁS JELENTŐSÉGE

AZ ÉPÜLETEK ENERGETIKAI JELLEMZŐINEK MEGHATÁROZÁSA ENERGETIKAI SZÁMÍTÁS A HŐMÉRSÉKLETELOSZLÁS JELENTŐSÉGE AZ ÉPÜLETEK ENERGETIKAI JELLEMZŐINEK MEGHATÁROZÁSA Három követelményszint: az épületek összesített energetikai jellemzője E p = összesített energetikai jellemző a geometriai viszonyok függvénye (kwh/m

Részletesebben

Menekülési lépcsőházak, szabadlépcsők kialakítása - hő-és füstelvezetése

Menekülési lépcsőházak, szabadlépcsők kialakítása - hő-és füstelvezetése Menekülési lépcsőházak, szabadlépcsők kialakítása - hő-és füstelvezetése Balatonföldvár, 2018. március 22-23. Nagy Katalin- Ludor Kft. Életvédelem, mint OTSZ prioritás Hő-és füstelvezetés menekülési útvonal

Részletesebben

Szeretettel köszönti Önöket a

Szeretettel köszönti Önöket a Szeretettel köszönti Önöket a A tevékenységi köre - Tűzgátló- és egyéb technikai fém nyílászárók fejlesztése, gyártása - Tűzgátló üvegek gyártása (EI30, EI60, EI90) - Voest Alpine típusú szerkezetek gyártása

Részletesebben

A VÍZKÖDDEL OLTÓK ALKALMAZHATÓSÁGÁNAK FELTÉTELEI

A VÍZKÖDDEL OLTÓK ALKALMAZHATÓSÁGÁNAK FELTÉTELEI A VÍZKÖDDEL OLTÓK ALKALMAZHATÓSÁGÁNAK FELTÉTELEI Beépített oltóberendezések konferencia, 2014. 06. 04. Görög Máté, projektvezető, Ventor Tűzvédelmi Kft. Jukka Vaari, VTT, 2007 TARTALOM 1. Mi a vízköd?

Részletesebben

TERVEZŐI KÉPZÉS, TERVEZŐI GYAKORLAT EURÓPÁBAN (EGYESÜLT KIRÁLYSÁG)

TERVEZŐI KÉPZÉS, TERVEZŐI GYAKORLAT EURÓPÁBAN (EGYESÜLT KIRÁLYSÁG) TERVEZŐI KÉPZÉS, TERVEZŐI GYAKORLAT EURÓPÁBAN (EGYESÜLT KIRÁLYSÁG) 1 ISKOLAI KÉPZÉSI RENDSZER Szintek: -Alapképzés (Bachelor ) -Mester (Master) -Doktori (PhD) A végzettségek: -Fire Safety Engineer (Fire

Részletesebben

Tűzvédelmi ismeretek 2013. OMKT

Tűzvédelmi ismeretek 2013. OMKT Tűzvédelmi ismeretek 2013. OMKT Tűzvédelem Tűzmegelőzés Tűzoltás Tűzvizsgálat Az égés feltétele Oxigén Gyulladási hőmérséklet Éghető anyag Az oxigén szerepe az égésben A levegő oxigéntartalma 21 % 21-18

Részletesebben

Akusztikai tervezés a geometriai akusztika módszereivel

Akusztikai tervezés a geometriai akusztika módszereivel Akusztikai tervezés a geometriai akusztika módszereivel Fürjes Andor Tamás BME Híradástechnikai Tanszék Kép- és Hangtechnikai Laborcsoport, Rezgésakusztika Laboratórium 1 Tartalom A geometriai akusztika

Részletesebben

LAKÓÉPÜLETEK KÖZLEKEDŐIVEL KAPCSOLATOS ELŐÍRÁSOK ÉRTELMEZÉSE. A közlekedők kialakítása

LAKÓÉPÜLETEK KÖZLEKEDŐIVEL KAPCSOLATOS ELŐÍRÁSOK ÉRTELMEZÉSE. A közlekedők kialakítása LAKÓÉPÜLETEK KÖZLEKEDŐIVEL KAPCSOLATOS ELŐÍRÁSOK ÉRTELMEZÉSE A közlekedők kialakítása Az országos településrendezési és építési követelményekről szóló 253/1997. (XII. 20.) Korm. rendelet (a továbbiakban:

Részletesebben

11. rész. Metró tűzvédelem. Metrók, metró biztonsága Oktatási vázlat

11. rész. Metró tűzvédelem. Metrók, metró biztonsága Oktatási vázlat BME Közlekedésautomatikai Tanszék Metrók, metró biztonsága Oktatási vázlat 11. rész Metró tűzvédelem Tervezés Tűzjelző rendszer Oltóberendezések Szellőző berendezések Tűzi-víz hálózat Jármű tűzvédelem

Részletesebben

A gépi hő-és füstelvezetés tervezési lépései

A gépi hő-és füstelvezetés tervezési lépései A gépi hő-és füstelvezetés tervezési lépései Balatonföldvár, 2017. április 27-28. Kovács István Kamleithner Budapest Kft. A gépi hő-és füstelvezetés tervezési lépései Követelmények: a jogszabály és a TvMI

Részletesebben

Szabadentalpia nyomásfüggése

Szabadentalpia nyomásfüggése Égéselmélet Szabadentalpia nyomásfüggése G( p, T ) G( p Θ, T ) = p p Θ Vdp = p p Θ nrt p dp = nrt ln p p Θ Mi az a tűzoltó autó? A tűz helye a világban Égés, tűz Égés: kémiai jelenség a levegő oxigénjével

Részletesebben

ÉPÍTÉSZETI TŰZVÉDELEM MÉRNÖKI MÓDSZEREKKEL

ÉPÍTÉSZETI TŰZVÉDELEM MÉRNÖKI MÓDSZEREKKEL ÉPÍTÉSZETI TŰZVÉDELEM MÉRNÖKI MÓDSZEREKKEL Tűz - VÉDELEM Szeminárium 2010. október 13. Dr. Takács Lajos Gábor Egyetemi adjunktus, BME Épületszerkezettani Tanszék email: ltakacs@epsz.bme.hu TŰZVÉDELMI TERVEZÉS

Részletesebben

HŐ- ÉS FÜSTELVEZETÉS. Dr. Takács Lajos Gábor Okl. építészmérnök, egyetemi docens BME Épületszerkezettani Tanszék Email: ltakacs@epsz.bme.

HŐ- ÉS FÜSTELVEZETÉS. Dr. Takács Lajos Gábor Okl. építészmérnök, egyetemi docens BME Épületszerkezettani Tanszék Email: ltakacs@epsz.bme. HŐ- ÉS FÜSTELVEZETÉS Dr. Takács Lajos Gábor Okl. építészmérnök, egyetemi docens BME Épületszerkezettani Tanszék Email: ltakacs@epsz.bme.hu Szikra Csaba Okl. gépészmérnök, tudományos munkatárs BME Épületenergetikai

Részletesebben

V. Országos Kéménykonferencia Kecskemét, március

V. Országos Kéménykonferencia Kecskemét, március A kémény szerepe és helye a felsőoktatásban Dr. Barna Lajos Budapesti Műszaki és Gazdaságtudományi Egyetem Épületgépészeti és Gépészeti Eljárástechnika Tanszék V. Országos Kéménykonferencia Kecskemét,

Részletesebben

PASSZÍVHÁZAK TŰZVÉDELMI KÉRDÉSEI DR. TAKÁCS LAJOS GÁBOR okl. építészmérnök, egyetemi adjunktus BME Épületszerkezettani Tanszék Email: ltakacs@epsz.bme.hu SZIKRA CSABA Okl. épületgépész mérnök, tanszéki

Részletesebben

III. TŰZVÉDELMI KONFERENCIA

III. TŰZVÉDELMI KONFERENCIA III. TŰZVÉDELMI KONFERENCIA 2013. március 21-22. Balatonföldvár III. TŰZVÉDELMI KONFERENCIA A TŰZVÉDELMI TERVEZÉSBEN a PROJEKT -nél Mi számít(ható) mérnöki módszernek? D1 9/2008-as ÖTM r.: nincs definíció

Részletesebben

Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (limitációk) Fókusz Légzsák (Air-Bag Systems) kémiája

Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (limitációk) Fókusz Légzsák (Air-Bag Systems) kémiája Gázok 5-1 Gáznyomás 5-2 Egyszerű gáztörvények 5-3 Gáztörvények egyesítése: Tökéletes gáz egyenlet és általánosított gáz egyenlet 5-4 A tökéletes gáz egyenlet alkalmazása 5-5 Gáz halmazállapotú reakciók

Részletesebben

KÖZEG. dv dt. q v. dm q m. = dt GÁZOK, GŐZÖK ÉS FOLYADÉKOK ÁRAMLÓ MENNYISÉGÉNEK MÉRÉSE MÉRNI LEHET:

KÖZEG. dv dt. q v. dm q m. = dt GÁZOK, GŐZÖK ÉS FOLYADÉKOK ÁRAMLÓ MENNYISÉGÉNEK MÉRÉSE MÉRNI LEHET: GÁZOK, GŐZÖK ÉS FOLYADÉKOK ÁRAMLÓ MENNYISÉGÉNEK MÉRÉSE MÉRNI LEHET: AZ IDŐEGYSÉG ALATT ÁTÁRAMLÓ MENNYISÉG TÉRFOGATÁT TÉRFOGATÁRAM MÉRÉS q v = dv dt ( m 3 / s) AZ IDŐEGYSÉG ALATT ÁTÁRAMLÓ MENNYISÉG TÖMEGÉT

Részletesebben

Új vizsgálatmetodikai fejlesztések az építési tűzvédelmi szakterületen

Új vizsgálatmetodikai fejlesztések az építési tűzvédelmi szakterületen Új vizsgálatmetodikai fejlesztések az építési tűzvédelmi szakterületen Előadó: Dr. Bánky Tamás 1 A vizsgálati módszerek fejlesztésének és továbbfejlesztésének alapvető indokai: rendező elv: a nemzeti (MSZ),

Részletesebben

Modern Fizika Labor. 2. Elemi töltés meghatározása

Modern Fizika Labor. 2. Elemi töltés meghatározása Modern Fizika Labor Fizika BSC A mérés dátuma: 2011.09.27. A mérés száma és címe: 2. Elemi töltés meghatározása Értékelés: A beadás dátuma: 2011.10.11. A mérést végezte: Kalas György Benjámin Németh Gergely

Részletesebben

Az OTSZ használati szabályainak főbb változásai

Az OTSZ használati szabályainak főbb változásai Az OTSZ használati szabályainak főbb változásai Országos Tűzvédelmi Konferencia Visegrád, 2011. szeptember 16. 2011. szeptember 16. Borsos Tibor tűzvédelmi szakértő 1 Tűzveszélyességi osztályba sorolás:

Részletesebben

Gázkészülékek levegőellátásának biztosítása a megváltozott műszaki környezetben

Gázkészülékek levegőellátásának biztosítása a megváltozott műszaki környezetben Gázkészülékek levegőellátásának biztosítása a megváltozott műszaki környezetben Dr. Barna Lajos Budapesti Műszaki és Gazdaságtudományi Egyetem Épületgépészeti Tanszék A gázkészülékek elhelyezésével kapcsolatos

Részletesebben

Főigazgató-helyettesi Szervezet. Az új OTSZ-ről. Érces Ferenc tű. ezredes főosztályvezető

Főigazgató-helyettesi Szervezet. Az új OTSZ-ről. Érces Ferenc tű. ezredes főosztályvezető Főigazgató-helyettesi Szervezet Országos TűzoltT zoltósági FőfelF felügyelőség Tűzvédelmi FőosztF osztály Az új OTSZ-ről Érces Ferenc tű. ezredes főosztályvezető Felépítés Jogszabály: követelmények Tűzvédelmi

Részletesebben

Helyszínen épített vegyes-tüzelésű kályhák méretezése Tartalomjegyzék

Helyszínen épített vegyes-tüzelésű kályhák méretezése Tartalomjegyzék Helyszínen épített vegyes-tüzelésű kályhák méretezése Tartalomjegyzék 1. Bevezetés 2. Szakkifejezések és meghatározásuk 3. Mértékadó alapadatok 4. Számítások 4.1. A szükséges tüzelőanyag mennyiség 4.2.

Részletesebben

4. Az M1. A rendeltetés besorolása táblázat kiegészült újabb 10 létesítmény típus felsorolásával, melyek az 1/A táblázatban találhatóak.

4. Az M1. A rendeltetés besorolása táblázat kiegészült újabb 10 létesítmény típus felsorolásával, melyek az 1/A táblázatban találhatóak. Nagy Katalin Nekünk mindegy? Változások a csarnoképületek természetes hő- és füstelvezetésében az új OTSZ alapján Az új OTSZ 11+1 változást tartalmaz a csarnoképületek természetes hő- és füstelvezető rendszereire.

Részletesebben

Folyadékok áramlása Folyadékok. Folyadékok mechanikája. Pascal törvénye

Folyadékok áramlása Folyadékok. Folyadékok mechanikája. Pascal törvénye Folyadékok áramlása Folyadékok Folyékony halmazállapot nyíróerő hatására folytonosan deformálódik (folyik) Folyadék Gáz Plazma Talián Csaba Gábor PTE ÁOK, Biofizikai Intézet 2012.09.12. Folyadék Rövidtávú

Részletesebben

Égés és oltáselmélet I. (zárójelben a helyes válaszra adott pont)

Égés és oltáselmélet I. (zárójelben a helyes válaszra adott pont) Égés és oltáselmélet I. (zárójelben a helyes válaszra adott pont) 1. "Az olyan rendszereket, amelyek határfelülete a tömegáramokat megakadályozza,... rendszernek nevezzük" (1) 2. "Az olyan rendszereket,

Részletesebben

Az új OTSZ-ről. Főigazgató-helyettesi Szervezet. Létesítés, kockázat. TSZVSZ Országos Tűzvédelmi Konferencia 2013. november 21.

Az új OTSZ-ről. Főigazgató-helyettesi Szervezet. Létesítés, kockázat. TSZVSZ Országos Tűzvédelmi Konferencia 2013. november 21. Főigazgató-helyettesi Szervezet Országos TűzoltT zoltósági FőfelF felügyelőség Tűzvédelmi FőosztF osztály Az új OTSZ-ről Létesítés, kockázat TSZVSZ Országos Tűzvédelmi Konferencia 2013. november 21. Wagner

Részletesebben

Folyadékok és gázok áramlása

Folyadékok és gázok áramlása Folyadékok és gázok áramlása Hőkerék készítése házilag Gázok és folyadékok áramlása A meleg fűtőtest vagy rezsó felett a levegő felmelegszik és kitágul, sűrűsége kisebb lesz, mint a környezetéé, ezért

Részletesebben

Wagner Károly, Takács Lajos. Átmeneti védett terek alkalmazása és kialakítása

Wagner Károly, Takács Lajos. Átmeneti védett terek alkalmazása és kialakítása Wagner Károly, Takács Lajos Átmeneti védett terek alkalmazása és kialakítása Rövid tanulmányunkban azt vizsgáltuk meg, hogy a 9/2008 (II.22.) ÖTM rendelettel megjelent Országos Tűzvédelmi Szabályzatban

Részletesebben

Tájékoztató levél és tematika Tűzvédelmi tervezési szakmérnöki képzés

Tájékoztató levél és tematika Tűzvédelmi tervezési szakmérnöki képzés Tájékoztató levél és tematika Tűzvédelmi tervezési szakmérnöki képzés A Budapesti Műszaki és Gazdaságtudományi Egyetem Épületenergetikai és Épületgépészeti Tanszéke és e 2015. februári kezdéssel indítja

Részletesebben

Tartószerkezetek tervezése tűzhatásra - az Eurocode szerint

Tartószerkezetek tervezése tűzhatásra - az Eurocode szerint Tartószerkezetek tervezése tűzhatásra - az Eurocode szerint Dr. Horváth László egyetemi docens Budapesti Műszaki és Gazdaságtudományi Egyetem Hidak és Szerkezetek Tanszék Tartalom Mire ad választ az Eurocode?

Részletesebben

KIÜRÍTÉS TvMI. Lakitelek, 2014. szeptember 10. Lengyelfi László

KIÜRÍTÉS TvMI. Lakitelek, 2014. szeptember 10. Lengyelfi László KIÜRÍTÉS TvMI Lakitelek, 2014. szeptember 10. Lengyelfi László ELŐZMÉNY 2014. április 10-én ülés az OKF-en, ahol megkaptuk a Brüsszelbe kiküldött OTSZ 5.0 tervezetet OTSZ tervezet tanulmányozása (sok mindent

Részletesebben

3 Technology Ltd Budapest, XI. Hengermalom 14 3/24 1117. Végeselem alkalmazások a tűzvédelmi tervezésben

3 Technology Ltd Budapest, XI. Hengermalom 14 3/24 1117. Végeselem alkalmazások a tűzvédelmi tervezésben 1117 Végeselem alkalmazások a tűzvédelmi tervezésben 1117 NASTRAN végeselem rendszer Általános végeselemes szoftver, ami azt jelenti, hogy nem specializálták, nincsenek kimondottam valamely terület számára

Részletesebben

Példák magyarázattal (lakóépületre vonatkoztatva)

Példák magyarázattal (lakóépületre vonatkoztatva) LAKÁSSZÖVETKEZETEK ÉS TÁRSASHÁZAK ÉRDEKKÉPVISELETI SZAKMAI SZÖVETSÉGE Tárgy: Országos Tűzvédelmi Szabályzat (OTSZ) lakóépületek közlekedőivel kapcsolatos előírások értelmezése. Az Országos Tűzvédelmi Szabályzatról

Részletesebben

Előadó Zsákai Lajos tű. alez. Hatósági osztályvezető Fejér Megyei Katasztrófavédelmi Igazgatóság Dunaújvárosi Katasztrófavédelmi Kirendeltség

Előadó Zsákai Lajos tű. alez. Hatósági osztályvezető Fejér Megyei Katasztrófavédelmi Igazgatóság Dunaújvárosi Katasztrófavédelmi Kirendeltség Ma Előadó Zsákai Lajos tű. alez. Hatósági osztályvezető Fejér Megyei Katasztrófavédelmi Igazgatóság Dunaújvárosi Katasztrófavédelmi Kirendeltség Vonatkozó előírások I. 1996. évi XXXI. törvény a tűz elleni

Részletesebben

Tűzvédelmi Műszaki Megfelelőségi Kézikönyv

Tűzvédelmi Műszaki Megfelelőségi Kézikönyv Tűzvédelmi Műszaki Megfelelőségi Kézikönyv Tűzvédelmi Műszaki Irányelv Nagy Katalin TMKE elnöke Visegrád, 2014. 10. 02. TSZVSZ - Országos Tűzvédelmi Konferencia Szabályozási célok TMMK a jogszabály követelményeit

Részletesebben

Könnyűszerkezetes épületek tűzvédelmi minősítése. Geier Péter okl. építészmérnök az ÉMI Kht. tudományos főmunkatársa

Könnyűszerkezetes épületek tűzvédelmi minősítése. Geier Péter okl. építészmérnök az ÉMI Kht. tudományos főmunkatársa Könnyűszerkezetes épületek tűzvédelmi minősítése Geier Péter okl. építészmérnök az ÉMI Kht. tudományos főmunkatársa 1. Építmények tűzvédelmi követelményei OTÉK Tűzbiztonság c. fejezete összhangban az 89/106

Részletesebben

KIÜRÍTÉS TvMI. Visegrád, 2015. február 27. Lengyelfi László

KIÜRÍTÉS TvMI. Visegrád, 2015. február 27. Lengyelfi László KIÜRÍTÉS TvMI Visegrád, 2015. február 27. Lengyelfi László ELŐZMÉNY 2014. április 10-én ülés az OKF-en, ahol megkaptuk a Brüsszelbe kiküldött OTSZ 5.0 tervezetet OTSZ tervezet tanulmányozása (sok mindent

Részletesebben

Technikai áttekintés SimDay 2013. H. Tóth Zsolt FEA üzletág igazgató

Technikai áttekintés SimDay 2013. H. Tóth Zsolt FEA üzletág igazgató Technikai áttekintés SimDay 2013 H. Tóth Zsolt FEA üzletág igazgató Next Limit Technologies Alapítva 1998, Madrid Számítógépes grafika Tudományos- és mérnöki szimulációk Mottó: Innováció 2 Kihívás Technikai

Részletesebben

Vízködös oltástechnológia. a korszerű tűzvédelem fontos eszköze

Vízködös oltástechnológia. a korszerű tűzvédelem fontos eszköze Vízködös oltástechnológia a korszerű tűzvédelem fontos eszköze Ventor Tűzvédelmi Kft., 2014 Miről lesz szó? A vízködös oltás alapelve Mik a vízködös oltórendszerek alkalmazásának szabályai A vízködös oltórendszerek

Részletesebben

Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( )

Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( ) Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel: 463-6-80 Fa: 463-30-9 http://www.vizgep.bme.hu Alap-ötlet:

Részletesebben

Anyagjellemzők változásának hatása a fúróiszap hőmérsékletére

Anyagjellemzők változásának hatása a fúróiszap hőmérsékletére Anyagjellemzők változásának hatása a fúróiszap hőmérsékletére Kis László, PhD. hallgató, okleveles olaj- és gázmérnök Miskolci Egyetem, Műszaki Földtudományi Kar Kőolaj és Földgáz Intézet Kulcsszavak:

Részletesebben

Tűzjelző rendszerek, valamint a természetes hőés füstelvezetés kapcsolata

Tűzjelző rendszerek, valamint a természetes hőés füstelvezetés kapcsolata Tűzjelző rendszerek, valamint a természetes hőés füstelvezetés kapcsolata gyakorlati tapasztalatok Nagy Katalin tűzvédelmi szakmérnök Tűzjelző Tervezők Szakmai Napja Lakitelek, 2013. 12. 10. Alapkérdések,

Részletesebben

igazgató-helyettesi Szervezet

igazgató-helyettesi Szervezet Főigazgat igazgató-helyettesi Szervezet Országos Tűzolt T zoltósági Főfel F felügyel gyelőség Tűzv zvédelmi Főoszt F osztály A tűzvt zvédelmi szabályoz lyozás s aktualitásai IV. Lakiteleki Tűzvédelmi Szakmai

Részletesebben

(Solid modeling, Geometric modeling) Testmodell: egy létező vagy elképzelt objektum digitális reprezentációja.

(Solid modeling, Geometric modeling) Testmodell: egy létező vagy elképzelt objektum digitális reprezentációja. Testmodellezés Testmodellezés (Solid modeling, Geometric modeling) Testmodell: egy létező vagy elképzelt objektum digitális reprezentációja. A tervezés (modellezés) során megadjuk a objektum geometria

Részletesebben

1. számú ábra. Kísérleti kályha járattal

1. számú ábra. Kísérleti kályha járattal Kísérleti kályha tesztelése A tesztsorozat célja egy járatos, egy kitöltött harang és egy üres harang hőtároló összehasonlítása. A lehető legkisebb méretű, élére állított téglából épített héjba hagyományos,

Részletesebben

III. Rockwool Építészeti Tűzvédelmi Konferencia. A családi háztól a SkyCourtig.

III. Rockwool Építészeti Tűzvédelmi Konferencia. A családi háztól a SkyCourtig. III. Rockwool Építészeti Tűzvédelmi Konferencia Construma 2001. április 7. A családi háztól a SkyCourtig. Az épületek felújításának tűzvédelmi tervezése és a dokumentáció követelményei. III. Rockwool Építészeti

Részletesebben

A TERVEZETT M0 ÚTGYŰRŰ ÉSZAKI SZEKTORÁNAK 11. ÉS 10. SZ. FŐUTAK KÖZÖTTI SZAKASZÁN VÁRHATÓ LÉGSZENNYEZETTSÉG

A TERVEZETT M0 ÚTGYŰRŰ ÉSZAKI SZEKTORÁNAK 11. ÉS 10. SZ. FŐUTAK KÖZÖTTI SZAKASZÁN VÁRHATÓ LÉGSZENNYEZETTSÉG Budapesti Műszaki és Gazdaságtudományi Egyetem Áramlástan Tanszék A TERVEZETT M0 ÚTGYŰRŰ ÉSZAKI SZEKTORÁNAK 11. ÉS 10. SZ. FŐUTAK KÖZÖTTI SZAKASZÁN VÁRHATÓ LÉGSZENNYEZETTSÉG Balczó Márton tudományos segédmunkatárs

Részletesebben

Acélszerkezetek tervezése tűzhatásra Analízis és méretezés

Acélszerkezetek tervezése tűzhatásra Analízis és méretezés Előadás /6 2015. március 11., szerda, 9 50-11 30, B-2 terem Acélszerkezetek tervezése tűzhatásra Analízis és méretezés Detroit Marseille előadó: Dr. habil Papp Ferenc eg. docens Szabvánok MSZ EN 1990:2005

Részletesebben

Egy háromszintes irodaépület kiürítése

Egy háromszintes irodaépület kiürítése Egy háromszintes irodaépület kiürítése Az épület kialakítása, a geometriai viszonyok, a jelenlévők száma mind meghatározza az épület, tűzszakasz elhagyásához szükséges időtartamot. A kiürítési számításnál

Részletesebben

V. Lakitelki Tűzvédelmi Szakmai Napok szeptember Lakitelek

V. Lakitelki Tűzvédelmi Szakmai Napok szeptember Lakitelek V. Lakitelki Tűzvédelmi Szakmai Napok 2016. szeptember 14-15. Lakitelek HFR és a beépített tűzoltó berendezések kapcsolata Csízi Béla Minimax Hungária Kft H-1138 Budapest Madarász Viktor utca 47-49. E-mail:

Részletesebben

Optika gyakorlat 2. Geometriai optika: planparalel lemez, prizma, hullámvezető

Optika gyakorlat 2. Geometriai optika: planparalel lemez, prizma, hullámvezető Optika gyakorlat. Geometriai optika: planparalel lemez, prizma, hullámvezető. példa: Fényterjedés planparalel lemezen keresztül A plánparalel lemezen történő fényterjedés hatására a fénysugár újta távolsággal

Részletesebben

TŰZVÉDELMI MÉRNÖKI KÉPZÉSEK

TŰZVÉDELMI MÉRNÖKI KÉPZÉSEK Szent István Egyetem Ybl Miklós Építéstudományi Kar Tűz- és Katasztrófavédelmi Intézet Dr. Beda László főiskolai tanár TŰZVÉDELMI MÉRNÖKI KÉPZÉSEK (jelenlegi helyzet, ismeretanyag fejlesztés) 2013 A mai

Részletesebben

ASPIRÁCIÓS ÉRZÉKELŐ RENDSZEREK, A HAGYOMÁNYOS SZÍVÓNYÍLÁS KÖZELÉBEN KIALKULÓ ÁRAMKÉP VIZSGÁLATA

ASPIRÁCIÓS ÉRZÉKELŐ RENDSZEREK, A HAGYOMÁNYOS SZÍVÓNYÍLÁS KÖZELÉBEN KIALKULÓ ÁRAMKÉP VIZSGÁLATA ASPIRÁCIÓS ÉRZÉKELŐ RENDSZEREK, A HAGYOMÁNYOS SZÍVÓNYÍLÁS KÖZELÉBEN KIALKULÓ ÁRAMKÉP VIZSGÁLATA Szikra Csaba csszikra@meldetechnik.hu Budapesti Műszaki és Gazdaságtudományi Egyetem Építészmérnöki Kar Épületenergetikai

Részletesebben

Benapozásvédelmi eszközök komplex jellemzése

Benapozásvédelmi eszközök komplex jellemzése Budapesti Műszaki és Gazdaságtudományi Egyetem, Építészmérnöki Kar, Épületenergetikai és Épületgépészeti Tanszék, 1111 Budapest, Műegyetem rkp. 3. K.II.31. Benapozásvédelmi eszközök komplex jellemzése

Részletesebben

Hogyan égnek a szendvicspanel falak? Heizler György Webinar,

Hogyan égnek a szendvicspanel falak? Heizler György Webinar, Hogyan égnek a szendvicspanel falak? Heizler György Webinar, 2015.04.01. Hűtőház Zalaegerszeg Mindig leégnek? szendvicspanelek homlokzattüzek anyagok: EPS, XPS, PUR, PIR, IPN Áruház Szlovákia Nem mindig

Részletesebben

A szimuláció szerepe a hő- és füstelvezetésben

A szimuláció szerepe a hő- és füstelvezetésben A szimuláció szerepe a hő- és füstelvezetésben Balatonföldvár, 2017. április 27-28. Szikra Csaba BME Építészmérnöki Kar Veresné Rauscher Judit Flamella Kft. Miről lesz ma szó? Szimulációs lehetőségek Szereplők

Részletesebben

TMMK Csoportos műhelymunka

TMMK Csoportos műhelymunka TMMK Csoportos műhelymunka V. TMKE konferencia Készítsünk TMMK-t 2015. február 4-5., Balatonföldvár Heizler György Csoportvezetők (10 fő) 1. Vágvölgyi László: Tűzvédelmi koncepció 2. Mészáros János: Tűzterjedés

Részletesebben

BAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011.

BAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011. BAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011. 1 Mérési hibák súlya és szerepe a mérési eredményben A mérési hibák csoportosítása A hiba rendűsége Mérési bizonytalanság Standard és kiterjesztett

Részletesebben

Tippek-trükkök a BAUSOFT programok használatához. Kazánok tulajdonságainak változása az égéstermék tömegáramának függvényében

Tippek-trükkök a BAUSOFT programok használatához. Kazánok tulajdonságainak változása az égéstermék tömegáramának függvényében Tippek-trükkök a BAUSOFT programok használatához Kazánok tuladonságainak változása az égéstermék tömegáramának függvényében Baumann Mihály ügyvezető BAUSOFT Pécsvárad Kft. Ú szabványok bevezetésekor gyakran

Részletesebben

Szórakozóhelyek tűzvédelme. Fővárosi Tűzoltóparancsnokság 2011.03.31. Wagner Károly tű. alez.

Szórakozóhelyek tűzvédelme. Fővárosi Tűzoltóparancsnokság 2011.03.31. Wagner Károly tű. alez. Szórakozóhelyek tűzvédelme Fővárosi Tűzoltóparancsnokság 2011.03.31. Wagner Károly tű. alez. Az előadás felépítése Szórakozóhelyek jellemzése A tűzvédelem megoldásai Rendezvénytartási engedélyezés Elrettentő

Részletesebben

Tűzháromszög és égéselmélet D1 akció

Tűzháromszög és égéselmélet D1 akció Tűzháromszög és égéselmélet D1 akció Középfokú erdőtűz-megelőzés továbbképzés ProBono (PM-2297-1705-BS) LIFE13 INF/HU/000827 www.erdotuz.hu www.nebih.gov.hu 1 A TŰZ JÓ SZOLGA DE ROSSZ MESTER 2 1. Az égés

Részletesebben