MIKROELEKTRONIKAI ÉRZÉKELİK I
|
|
- Elek Kelemen
- 6 évvel ezelőtt
- Látták:
Átírás
1 MIKROELEKTRONIKAI ÉRZÉKELİK I Dr. Pıdör Bálint BMF KVK Mikroelektronikai és Technológia Intézet és MTA Mőszaki Fizikai és Anyagtudományi Kutató Intézet 5. ELİADÁS (OPTIKAI SUGÁRZÁSÉRZÉKELİK, 2. RÉSZ) 5. ELİADÁS 1. A megvilágított pn átmenet átmenet tulajdonságai 2. Fotodiódák 3. PIN fotodiódák 4. Lavina fotodiódák 5. Fototranzisztorok 2008/2009 tanév 1. félév 1 2 A FOTODIÓDA A fotodiódák, és az egykristályos napelemek lényegében pn-átmenetes eszközök. Fény hatására bennük fotoáram generálódik, mely hozzáadódik az ismert összefüggésekkel leírható diódaáramhoz PN ÁTMENET: BEÉPÍTETT ELEKTROMOS TÉR I = I s (exp( ) 1) I ph Az I ph fotoáramot a keltett elektronok és lyukak hozzák létre. A kiürített rétegbeli beépített elektromos tér az elektronokat az n-típusú, a lyukakat a p-típusú tartomány felé sodorja. 3 Kiürített réteg és beépített elektromos tér záróirányban elıfeszített pn-átmenetben 4 A FOTOÁRAM GENERÁLÁSI MECHANIZMUSA Elektron-folyamatok a megvilágított fényelemben A fény által keltett töltéshordozók egy, a nyitóirányú árammal ellentétes irányú áramot hoznak létre. 5 6
2 Záróréteges fényelektromos hatás PN-ÁTMENETES FOTODIÓDA Fényelem külsı tápforrás nélkül mőködik Félvezetık fényelem készítéshez Fotodióda külsı tápforrással mőködik 7 pn-átmenetes fotodióda felépítése. A fény által keltett elektronlyuk párok a kiürített réteg elektromos terében szétválnak, az elektronok a katód (n+) a lyukak az anód (p) felé sodródnak. 8 PN- ÉS FÉM-FÉLVEZETİ (SCHOTTKY-) Si FOTODIÓDÁK MEGVILÁGÍTOTT PN-ÁTMENET ÁRAM-FESZÜLTSÉG KARAKTERISZTIKÁJA 9 10 PN ÁTMENET ÁRAM-FESZÜLTÉG KARAKTERISZTIKÁJA Az ideális pn átmenet áram-feszültség karakterisztikája (megvilágítás nélkül) I = I s (exp( ) 1) A MEGVILÁGÍTOTT PN ÁTMENET Megvilágítva a többletáram -I ph, és az I U karakterisztika I = I s (exp( ) 1) I ph qd p p n qd n n p I s = A(j p + j n ) = A( + ) L p L n D - diffúziós állandó, L - diffúziós hossz, A - keresztmetszet. A telítési áram a kisebbségi töltéshordozók (n-oldalon lyukak, p oldalon elektronok diffúziós árama (Shockley egyenlet). 11 A pn átmenet rövidzárási árama (U = 0, fotóáram), I sc = -I ph A megvilágított pn átmenet (és így a fotodióda) rövidzárási árama a fotoárammal egyenlı, és így arányos a fényteljesítménnyel. 12
3 A MEGVILÁGÍTOTT PN ÁTMENET Megvilágítva a többletáram -I ph, és az I U karakterisztika FOTODIÓDA HELYETTESÍTİ KÉPE I = I s (exp( ) 1) I ph Az üresjárási feszültség (I = 0, fotofeszültség) U oc I ph I ph U oc = ln (1 + ) ln ( ) q I s q I s A megvilágított pn átmenet (és így a fotodióda) üresjárási feszültsége (fotofeszültség) legalább is erıs dióda ideális dióda, áramgenerátor fotoáram, kondenzátor pn-átmenet kapacitása záróirányban, párhuzamos ellenállás szivárgás, stb., soros ellenállás félvezetı chip nem kiürített tartománya, induktivitás hozzávezetések Rshunt 100 kom 1 Gohm, Rseries ohm megvilágításkor, logaritmikusan függ a fényintenzitástól FOTOÁRAM MÉRÉSE PIN FOTODIÓDA Fotodióda áram-feszültség átalakítása elıfeszítés nélküli (rövidzár) illetve elıfeszítéses üzemmódban. 15 i-tartomány (közel intrinsic ): alacsony adalékolású A pn átmenet drift áram lesz domináns a diffúziós áram felett (nincs torzulás, diszperzió). Vastagabb elnyelıréteg ηés R megnı, de a válaszidı (futási idı) lecsökken. 16 PIN FOTODIÓDA FELÉPÍTÉSE PIN FOTÓDIÓDA ÉRZÉKENYSÉGE Mekkora egy PIN fotodióda érzékenysége az 1,3 µm és 1,55 µm távközlési hullámhosszakon, ha a kvantum-hatásfok 80 %? ηq ηλ[µm] R = = [A/W] hν 1,24 R = 0,84 A/W, illetve 1 A/W. Az érzékenység hullámhosszfüggése abból adódik, hogy λ növelésével egyre kisebb energiájú foton kelti az elektron-lyuk párokat
4 PIN FOTODIÓDA LAVINA FOTÓDIÓDA Az adott hullámhossztartományt (fotonenergiában kifejezve 0,8 ev 0,95 ev) az InP szubsztrátra rácstorzulás nélkül növeszthetı In 0,53 Ga 0,47 As átfogja (levágási hullámhossza kb. 1,63 µm), ma ez az elfogadott megoldás. A tiltott sávját tekintve a germánium is megfelelne, de az abból készült diódák zajosak, és más hátrányos tulajdonságaik is vannak. Lavina fotódióda (avalanche photodiode, APD) 19 Az ütközési ionizáció töltéshordozósokszorozódást hoz létre (erısítés) 20 LAVINA FOTODIÓDA LAVINA FOTÓDIÓDA Si lavina fotodióda szerkezete, és az elektromos térerısség eloszlása I-U karakterisztika (sötétáram), erısítés (lavinasokszorozási tényezı) feszültségfüggése LAVINA FOTODIÓDA LAVIANSOKSZOROZÁSI TÉNYEZİ A lavinasokszorozási (multiplikációs) tényezı empirikusan írható le 1 M = 1 (U/U b ) n U b letörési feszültség n 3 5 Si lavinafotodióda multiplikációs tényezıje a zárófeszültség függvényében 23 24
5 LAVINA FOTODIÓDA: PÉLDA PIN ÉS APD FOTÓDIÓDÁK Egy 6 A/W érzekenységő lavinadióda, sec -1 fotonáramot fogad 1,5 µm-en. Ha a lavinasokszorozási tényezı 10, mekkora a kvatumhatásfok, és mekkora a fotoáram? A belsı erısítés megnöveli az érzékenységet, ezt figyelembe kell venni a kvantumhatásfok kiszámításánál: R = M (ηq/hf) = M (ηλ[µm]/1,24), ebbıl η 50 % adódik. A fotoáram I fot = R P opt = R n h (c/λ) = 6 x x 6,626x10-34 x 3x10 8 / 1,5x10-6 = 7,95x10-9 A FOTOTRANZISZTOR Si FOTOTRANZISZTOR FELÉPÍTÉSE Szerkezetileg a fototranzisztor egy npn vagy pnp tranzisztorhoz hasonló, és egy beépített ablak biztosítja a fény behatolását az emitter rétegen keresztül a bázisba. A kollektor-bázis dióda fotoárama a tranzisztorhatás révén felerısödve jelentkezik mint kollektoráram I foto (CE) = (1 + β)i foto (BC) = (1 + β)rp opt R - a kollektor-bázis dióda fotoérzékenysége. Az eszköz úgy mőködik, mint egy közös emitteres erısítı, ahol a bázisáramnak a fotoáram felel meg. 27 A nagyfelülető kollektor-bázis átmenetben mint fotodiódában fotoáram generálódik, melyet a tranzisztor hatás felerısít 28 FOTOTRANZISZTOR A fototranzisztor mőködése csak szőkebb megvilágítástartományban lineáris amiatt hogy a β áramerısítési tényezı szintfüggı, mind a kisebb mind a nagyobb megvilágítási tartományokban (kollektoráramnál) lecsökken. Sok esetben nincs is szükség lineáris jelleggörbére, mert a sötét-világos érzékelése között több nagyságrendi különbség van, közbülsı finom átmenet nincs. Ilyenek a digitális leolvasók, jelenlét-érzékelık, fénysorompók, fordulatszám-érzékelık, stb. FOTOTRANZISZTOR Foto-Darlington: többezerszeres áramerısítés, de tovább romlik a linearitás. Frekveciamenet: nagy bázis-kollektor kapacitás a meghatározó. Fototranzisztor: Foto-Darlington: (Fotodióda: néhány µsec néhánysor 10 µsec ~nsec) Foto-Darlington: többezerszeres áramerısítés, de tovább romlik a linearitás
6 FOTOTRANZISZTOROK FELÉPÍTÉSE FOTO-FET A foto FET lényegében egy fotodióda és egy nagy bemeneti impedanciájú merısítı integrált megvalósításának tekinthetı. A megvilágítás a vezérlı- (gate-) elektródán keresztül történik. Az így keltett fotoáram hozzáadódik a forrás (S) és a nyelı (D) közötti áramhoz. A vezérlı elektróda feszültségét úgy kell beállítani, hogy a foto-fet sötétben zárjon. a. Planár diffúziós technikával készített fototranzisztor metszete. A tokon ablakot nyitnak, melyet síküveggel, lencsével, vagy mőanyagfedéssel látnak el. b. Foto-FET felépítése 31 Elınyök: mőködése lineáris, és a linearitás független a szinttıl. Általában integrált formában (foto-fet hálózatok és mátrixok) készülnek. 32 FOTODETEKTOROK ERİSÍTÉSE ÉS VÁLASZIDEJE Fotódetektor Erısítés Válaszidı Mőködési hısec mérséklet, K Fotoellenállás ,2-300 PN dióda VÉGE PIN dióda Fém-félvezetı dióda Lavina fotodióda Bipoláris fototranzisztor Térvezérléső fototranzisztor
SZENZOROK ÉS MIKROÁRAMKÖRÖK
SZENZOROK ÉS MIKROÁRAMKÖRÖK 7. ELŐADÁS: OPTIKAI SUGÁRZÁSÉRZÉKELŐK II. 2014/2015 tanév 2. félév 1 1. A megvilágított pn átmenet átmenet tulajdonságai 2. Fotodiódák 3. PIN fotodiódák 4. Lavina fotodiódák
SZENZOROK ÉS MIKROÁRAMKÖRÖK 7. ELŐADÁS: OPTIKAI SUGÁRZÁSÉRZÉKELŐK II.
SZENZOROK ÉS MIKROÁRAMKÖRÖK 7. ELŐADÁS: OPTIKAI SUGÁRZÁSÉRZÉKELŐK II. 2015/2016 tanév 2. félév 1 1. A megvilágított pn átmenet átmenet tulajdonságai 2. Fotodiódák 3. PIN fotodiódák 4. Lavina fotodiódák
MIKROELEKTRONIKAI ÉRZÉKELŐK I
MIKROELEKTRONIKAI ÉRZÉKELŐK I Dr. Pődör Bálint BMF KVK Mikroelektronikai és Technológia Intézet és MTA Műszaki Fizikai és Anyagtudományi Kutató Intézet 2. ELŐADÁS: LABORMÉRÉSEK 2008/2009 tanév 1. félév
UNIPOLÁRIS TRANZISZTOR
UNIPOLÁRIS TRANZISZTOR Az unipoláris tranzisztorok térvezérléső tranzisztorok (Field Effect Transistor). Az ilyen tranzisztorok kimeneti áramának nagyságát a bemeneti feszültséggel létrehozott villamos
MIKROELEKTRONIKA, VIEEA306
Budapesti Műszaki és Gazdaságtudományi Egyetem MKROELEKTRONKA, VEEA306 A bipoláris tranzisztor. http://www.eet.bme.hu/~poppe/miel/hu/08-bipol3.ppt http://www.eet.bme.hu Az ideális tranzisztor karakterisztikái
A BIPOLÁRIS TRANZISZTOR.
A BIPOLÁRIS TRANZISZTOR. A bipoláris tranzisztor kialakításához a félvezetı kristályt három rétegben n-p-n vagy p-n-p típusúra adalékolják. Az egyes rétegek elnevezése emitter (E), bázis (B), kollektor
PN átmenet kivitele. (B, Al, Ga, In) (P, As, Sb) A=anód, K=katód
PN átmenet kivitele A pn átmenet: Olyan egykristályos félvezető tartomány, amelyben egymással érintkezik egy p és egy n típusú övezet. Egy pn átmenetből álló eszköz a dióda. (B, Al, Ga, n) (P, As, Sb)
Hobbi Elektronika. Bevezetés az elektronikába: A tranzisztor, mint kapcsoló
Hobbi Elektronika Bevezetés az elektronikába: A tranzisztor, mint kapcsoló 1 Felhasznált irodalom Tudásbázis: Bipoláris tranzisztorok (Sulinet - szakképzés) Wikipedia: Tranzisztor Szabó Géza: Elektrotechnika-Elektronika
1. Egy lineáris hálózatot mikor nevezhetünk rezisztív hálózatnak és mikor dinamikus hálózatnak?
Ellenörző kérdések: 1. előadás 1/5 1. előadás 1. Egy lineáris hálózatot mikor nevezhetünk rezisztív hálózatnak és mikor dinamikus hálózatnak? 2. Mit jelent a föld csomópont, egy áramkörben hány lehet belőle,
Bevezetés az analóg és digitális elektronikába. V. Félvezető diódák
Bevezetés az analóg és digitális elektronikába V. Félvezető diódák Félvezető dióda Félvezetőknek nevezzük azokat az anyagokat, amelyek fajlagos ellenállása a vezetők és a szigetelők közé esik. (Si, Ge)
FÉLVEZETŐ ESZKÖZÖK II. Elektrotechnika 5. előadás
FÉLVEZETŐ ESZKÖZÖK II. Elektrotechnika 5. előadás A tranzisztor felfedezése A tranzisztor kifejlesztését a Lucent Technologies kutatóintézetében, a Bell Laboratóriumban végezték el. A laboratóriumban három
i1. Az elektronikában alkalmazott mennyiségek SI mértékegységei és prefixei.
i1. Az elektronikában alkalmazott mennyiségek SI mértékegységei és prefixei. M, mega 10 6 k, kilo 10 3 m,milli 10-3 µ, mikro 10-6 n, nano 10-9 p, piko 10-12 f, femto 10-15 Volt, Amper, Ohm, Farad, Henry,
6.B 6.B. Zener-diódák
6.B Félvezetı áramköri elemek Speciális diódák Ismertesse a Zener-, a varicap-, az alagút-, a Schottky-, a tős-dióda és a LED felépítését, jellemzıit és gyakorlati alkalmazási lehetıségeit! Rajzolja fel
III. félvezetők elméleti kérdések 1 1.) Milyen csoportokba sorolhatók az anyagok a fajlagos ellenállásuk alapján?
III. félvezetők elméleti kérdések 1 1.) Milyen csoportokba sorolhatók az anyagok a fajlagos ellenállásuk alapján? 2.) Mi a tiltott sáv fogalma? 3.) Hogyan befolyásolja a tiltott sáv szélessége az anyagok
Integrált áramkörök/2. Rencz Márta Elektronikus Eszközök Tanszék
Integrált áramkörök/2 Rencz Márta Elektronikus Eszközök Tanszék Mai témák MOS áramkörök alkatrészkészlete Bipoláris áramkörök alkatrészkészlete 11/2/2007 2/27 MOS áramkörök alkatrészkészlete Tranzisztorok
Elektronika 1. 4. Előadás
Elektronika 1 4. Előadás Bipoláris tranzisztorok felépítése és karakterisztikái, alapkapcsolások, munkapont-beállítás Irodalom - Megyeri János: Analóg elektronika, Tankönyvkiadó, 1990 - U. Tiecze, Ch.
Adatok: R B1 = 100 kω R B2 = 47 kω. R 2 = 33 kω. R E = 1,5 kω. R t = 3 kω. h 22E = 50 MΩ -1
1. feladat R B1 = 100 kω R B2 = 47 kω R C = 3 kω R E = 1,5 kω R t = 4 kω A tranzisztor paraméterei: h 21E = 180 h 22E = 30 MΩ -1 a) Számítsa ki a tranzisztor kollektor áramát, ha U CE = 6,5V, a tápfeszültség
- elektromos szempontból az anyagokat három csoportra oszthatjuk: vezetők félvezetők szigetelő anyagok
lektro- és irányítástechnika. jegyzet-vázlat 1. Félvezető anyagok - elektromos szempontból az anyagokat három csoportra oszthatjuk: vezetők félvezetők szigetelő anyagok - vezetők: normál körülmények között
I. Nyitó lineáris tartomány II. Nyitó exponenciális tartomány III. Záróirányú tartomány IV. Letörési tartomány
A DIÓDA. A dióda áramiránytól függı ellenállású alkatrész. Az egykristály félvezetı diódákban a p-n átmenet tulajdonságait használják ki. A p-n átmenet úgy viselkedik, mint egy áramszelep, az áramot az
Gingl Zoltán, Szeged, dec. 1
Gingl Zoltán, Szeged, 2017. 17 dec. 1 17 dec. 2 Egyenirányító (rectifier) Mint egy szelep deális dióda Nyitó irányban tökéletes vezető (rövidzár) Záró irányban tökéletes szigetelő (szakadás) Valódi dióda:
Diszkrét aktív alkatrészek
Aktív alkatrészek Az aktív alkatrészek képesek kapcsolási és erősítési feladatokat ellátni. A digitális elektronika és a teljesítményelektronika gyors kapcsolókra épül, az analóg technikában elsősorban
Műveleti erősítők - Bevezetés
Analóg és digitális rsz-ek megvalósítása prog. mikroák-kel BMEVIEEM371 Budapesti Műszaki és Gazdaságtudományi Egyetem Műveleti erősítők - Bevezetés Takács Gábor Elektronikus Eszközök Tanszéke (BME) 2014.
9. Gyakorlat - Optoelektronikai áramköri elemek
9. Gyakorlat - Optoelektronikai áramköri elemek (Componente optoelectronice) (Optoelectronic devices) 1. Fénydiódák (LED-ek) Elnevezésük az angol Light Emitting Diode rövidítéséből származik. Áramköri
MODULÁRAMKÖRÖK ÉS KÉSZÜLÉKEK
MODULÁRAMKÖRÖK ÉS KÉSZÜLÉKEK Moduláramkörök alapvető építőelemei Gross Péter Hardware fejlesztő, ARH Informatikai Zrt. E-mail: peter.gross@arh.hu Utoljára módosítva: 2016. 10. 09. BUDAPEST UNIVERSITY OF
F1301 Bevezetés az elektronikába Félvezető diódák
F1301 Bevezetés az elektronikába Félvezető diódák FÉLVEZETŐ DÓDÁK Félvezető P- átmeneti réteg (P- átmenet, kiürített réteg): A félvezető kristály két ellentétesen szennyezett tartományának határán kialakuló
Tételek Elektrotechnika és elektronika I tantárgy szóbeli részéhez 1 1. AZ ELEKTROSZTATIKA ALAPJAI AZ ELEKTROMOS TÖLTÉS FOGALMA 8 1.
Tételek Elektrotechnika és elektronika I tantárgy szóbeli részéhez 1 1. AZ ELEKTROSZTATIKA ALAPJAI 8 1.1 AZ ELEKTROMOS TÖLTÉS FOGALMA 8 1.2 AZ ELEKTROMOS TÉR 9 1.3 COULOMB TÖRVÉNYE 10 1.4 AZ ELEKTROMOS
ELEKTRONIKA I. (KAUEL11OLK)
Félévi követelmények és beadandó feladatok ELEKTRONIKA I. (KAUEL11OLK) tárgyból a Villamosmérnöki szak levelező tagozat hallgatói számára Óbuda Budapest, 2005/2006. Az ELEKTRONIKA I. tárgy témaköre: Az
Mérés és adatgyűjtés
Mérés és adatgyűjtés 7. óra Mingesz Róbert Szegedi Tudományegyetem 2013. április 11. MA - 7. óra Verzió: 2.2 Utolsó frissítés: 2013. április 10. 1/37 Tartalom I 1 Szenzorok 2 Hőmérséklet mérése 3 Fény
Gingl Zoltán, Szeged, :44 Elektronika - Diódák, tranzisztorok
Gingl Zoltán, Szeged, 2016. 2016. 12. 13. 7:44 Elektronika - Diódák, tranzisztorok 1 2016. 12. 13. 7:44 Elektronika - Diódák, tranzisztorok 2 Egyenirányító (rectifier) Mint egy szelep deális dióda Nyitó
Bevezetés a méréstechnikába és jelfeldolgozásba. Tihanyi Attila április 17.
Bevezetés a méréstechnikába és jelfeldolgozásba Tihanyi Attila 2007. április 17. ALAPOK Töltés 1 elektron töltése 1,602 10-19 C 1 C (coulomb) = 6,24 10 18 elemi elektromos töltés. Áram Feszültség I=Q/t
FÉLVEZETŐ ESZKÖZÖK I. Elektrotechnika 4. előadás
FÉLVEZETŐ ESZKÖZÖK I. Elektrotechnika 4. előadás FÉLVEZETŐ ESZKÖZÖK A leggyakrabban használt félvezető anyagok a germánium (Ge), és a szilícium (Si). Félvezető tulajdonsággal rendelkező elemek: szén (C),
Mikro- és nanotechnika I. - Laboratóriumi mérések
Mikro- és nanotechnika I. - Laboratóriumi mérések 1. Piezorezisztív nyomásérzékelő tulajdonságainak mérése. 2. Világító diódák spektrumának és optikai érzékelők tulajdonságainak mérése. 3. Hall effektus
Mérési utasítás. P2 150ohm. 22Kohm
Mérési utasítás A mérés célja: Tranzisztorok és optocsatoló mérésén keresztül megismerkedni azok felhasználhatóságával, tulajdonságaival. A mérés során el kell készíteni különböző félvezető alkatrészek
Elektronika alapjai. Témakörök 11. évfolyam
Elektronika alapjai Témakörök 11. évfolyam Négypólusok Aktív négypólusok. Passzív négypólusok. Lineáris négypólusok. Nemlineáris négypólusok. Négypólusok paraméterei. Impedancia paraméterek. Admittancia
G04 előadás Napelem technológiák és jellemzőik. Szent István Egyetem Gödöllő
G04 előadás Napelem technológiák és jellemzőik Kristályos szilícium napelem keresztmetszete negatív elektróda n-típusú szennyezés pozitív elektróda p-n határfelület p-típusú szennyezés Napelem karakterisztika
8. Mérések napelemmel
A MÉRÉS CÉLJA: 8. Mérések napelemmel Megismerkedünk a fény-villamos átalakítók típusaival, a napelemekkel kapcsolatos alapfogalmakkal, az alternatív villamos rendszerek tervezési alapelveivel, a napelem
Óbudai Egyetem Kandó Kálmán Villamosmérnöki Kar Mikroelektronikai és Technológia Intézet
Óbudai Egyetem Kandó Kálmán Villamosmérnöki Kar Mikroelektronikai és Technológia Intézet Mikro- és nanotechnika (KMENT14TNC) Szenzorok és mikroáramkörök (KMESM11TNC) Laboratóriumi gyakorlatok Mérési útmutató
Az N csatornás kiürítéses MOSFET jelleggörbéi.
SZIGETELT VEZÉRLİELEKTRÓDÁS TÉRVEZÉRLÉSŐ TRANZISZTOR (MOSFET) A MOSFET-nek (Metal Oxide Semiconductor, fém-oxid-félvezetı) két alaptípusa a kiürítéses és a növekményes MOSFET. Mindkét típusból készítenek
4.B 4.B. A félvezetı anyagok fizikája (sajátvezetés, szennyezés, áramvezetés félvezetıkben)
4.B Félvezetı áramköri elemek Félvezetı diódák Ismertesse a félvezetık felépítésének és mőködésének fizikai alapjait, s fejtse ki a mőködés elektronfizikai és elektrokémiai vonatkozásait! Értelmezze a
- elektromos szempontból az anyagokat három csoportra oszthatjuk: vezetık félvezetık szigetelı anyagok
lektro- és irányítástechnika. jegyzet-vázlat 1. Félvezetı anyagok - elektromos szempontból az anyagokat három csoportra oszthatjuk: vezetık félvezetık szigetelı anyagok - vezetık: normál körülmények között
MIKROELEKTRONIKAI ÉRZÉKELİK I
MIKROELEKTRONIKAI ÉRZÉKELİK I Dr. Pıdör Bálint BMF KVK Mikroelektronikai és Technológia Intézet és MTA Mőszaki Fizikai és Anyagtudományi Kutató Intézet 8. ELİADÁS: MECHANIKAI ÉRZÉKELİK I 8. ELİADÁS 1.
Elektromos áram. Vezetési jelenségek
Elektromos áram. Vezetési jelenségek Emlékeztető Elektromos áram: töltéshordozók egyirányú áramlása Áramkör részei: áramforrás, vezető, fogyasztó Áramköri jelek Emlékeztető Elektromos áram hatásai: Kémiai
1. Fotodetektorok vizsgálata
Óbudai Egyetem Kandó Kálmán Villamosmérnöki Kar Mikroelektronikai és Technológia Intézet Szenzor laboratórium, Mikro- és nanotechnika Laboratóriumi gyakorlatok Mérési útmutató 1. Fotodetektorok vizsgálata
Hobbi Elektronika. Bevezetés az elektronikába: Térvezérlésű tranzisztorok (FET)
Hobbi Elektronika Bevezetés az elektronikába: Térvezérlésű tranzisztorok (FET) 1 Felhasznált irodalom Sulinet Tudásbázis: Unipoláris tranzisztorok Electronics Tutorials: The MOSFET CONRAD Elektronik: Elektronikai
KÖZÖS EMITTERŰ FOKOZAT BÁZISOSZTÓS MUNKAPONTBEÁLLÍTÁSA
KÖZÖS EMITTERŰ FOKOZT BÁZISOSZTÓS MUNKPONTBEÁLLÍTÁS Mint ismeretes, a tranzisztor bázis-emitter diódájának jelentős a hőfokfüggése. Ugyanis a hőmérséklet növekedése a félvezetőkben megnöveli a töltéshordozók
Hiszterézis: Egy rendszer kimenete nem csak az aktuális állapottól függ, hanem az állapotváltozás aktuális irányától is.
1. Mi az érzékelő? Definiálja a típusait (belső/külső). Mit jelent a hiszterézis? Miért nem tudunk közvetlenül mérni, miért származtatunk? Hogyan kapcsolódik össze az érzékelés és a becslés a mérések során?
-A homogén detektorok közül a gyakorlatban a Si és a Ge egykristályból készültek a legelterjedtebbek.
Félvezető detektorok - A legfiatalabb detektor család; a 1960-as évek közepétől kezdték alkalmazni őket. - Működésük bizonyos értelemben hasonló a gáztöltésű detektorokéhoz, ezért szokták őket szilárd
2.Előadás ( ) Munkapont és kivezérelhetőség
2.lőadás (207.09.2.) Munkapont és kivezérelhetőség A tranzisztorokat (BJT) lineáris áramkörbe ágyazva "működtetjük" és a továbbiakban mindig követelmény, hogy a tranzisztor normál aktív tartományban működjön
MIKROELEKTRONIKAI ÉRZÉKELİK I
MIKROELEKTRONIKAI ÉRZÉKELİK I Dr. Pıdör Bálint BMF KVK Mikroelektronikai és Technológia Intézet és MTA Mőszaki Fizikai és Anyagtudományi Kutató Intézet 4. ELİADÁS (OPTIKAI SUGÁRZÁSÉRZÉKLEİK, 1. RÉSZ) 4.
A töltéshordozók meghatározott irányú rendezett mozgását elektromos áramnak nevezzük. Az áram irányán a pozitív részecskék áramlási irányát értjük.
Elektromos mezőben az elektromos töltésekre erő hat. Az erő hatására az elektromos töltések elmozdulnak, a mező munkát végez. A töltéshordozók meghatározott irányú rendezett mozgását elektromos áramnak
Elektronika Alapismeretek
Alapfogalmak lektronika Alapismeretek Az elektromos áram a töltéssel rendelkező részecskék rendezett áramlása. Az ika az elektromos áram létrehozásával, átalakításával, befolyásolásával, irányításával
SZIGETELŐK, FÉLVEZETŐK, VEZETŐK
SZIGETELŐK, FÉLVEZETŐK, VEZETŐK ITRISIC (TISZTA) FÉLVEZETŐK E EXTRÉM AGY TISZTASÁG (kb: 10 10 Si, v. Ge, 1 szennyező atom) HIBÁTLA KRISTÁLYSZERKEZET abszolút nulla hőmérsékleten T = 0K = elektron kevés
Hobbi Elektronika. Bevezetés az elektronikába: A tranzisztor, mint kapcsoló
Hobbi Elektronika Bevezetés az elektronikába: A tranzisztor, mint kapcsoló 1 Felhasznált irodalom Oláh András, Tihanyi Attila, Cserey György: Elektronikai alapmérések (előadásvázlatok) Szabó Géza: Elektrotechnika-Elektronika
13.B 13.B. 13.B Tranzisztoros alapáramkörök Többfokozatú erısítık, csatolások
3.B Tranzisztoros alapáramkörök Többfokozatú erısítık, csatolások Ismertesse a többfokozatú erısítık csatolási lehetıségeit, a csatolások gyakorlati vonatkozásait és azok alkalmazási korlátait! Rajzolja
Földelt emitteres erősítő DC, AC analízise
Földelt emitteres erősítő DC, AC analízise Kapcsolási vázlat: Az ábrán egy kisjelű univerzális felhasználású tranzisztor (tip: 2N3904) köré van felépítve egy egyszerű, pár alkatrészből álló erősítő áramkör.
Elektronika 11. évfolyam
Elektronika 11. évfolyam Áramköri elemek csoportosítása. (Aktív-passzív, lineáris- nem lineáris,) Áramkörök csoportosítása. (Aktív-passzív, lineáris- nem lineáris, kétpólusok-négypólusok) Két-pólusok csoportosítása.
TELJESÍTMÉNYELEKTRONIKA
TELJESÍTMÉNYELEKTRONIKA AC Egyenirányító DC Váltakozó áramú szaggató Frekvenciaváltó Egyenáramú szaggató AC Váltóirányító (Inverter) DC Félvezetők kristályszerkezete A kristályrácsban minen Si atomot négy
MIKROELEKTRONIKAI ÉRZÉKELİK II
MIKROELEKTRONIKAI ÉRZÉKELİK II Dr. Pıdör Bálint BMF KVK Mikroelektronikai és Technológia Intézet és MTA Mőszaki Fizikai és Anyagtudományi Kutató Intézet 3. ELİADÁS: GÁZÉRZÉKELİK I 3. ELİADÁS 1. Bevezetés
Elektronika I. Gyakorló feladatok
Elektronika I. Gyakorló feladatok U I Feszültséggenerátor jelképe: Áramgenerátor jelképe: 1. Vezesse le a terheletlen feszültségosztóra vonatkozó összefüggést: 2. Vezesse le a terheletlen áramosztóra vonatkozó
1.zh Kösse össze a két oszlop egy-egy összetartozó fogalmát! pozitív visszacsatolás
1.zh Kösse össze a két oszlop egy-egy összetartozó fogalmát! gerjedés Bode hurokerősítés nem-invertáló db pozitív visszacsatolás követő egységnyi Kösse össze a két oszlop egy-egy összetartozó fogalmát!
2.4 Fizika - Elektromosságtan 2.4.10 Fotoelektromosság és elektronika
Napelemek A sugárzási energia elektromos energiává történő átalakításához. polikristály szilícium cellák fogantyúval ellátott műanyag lapon átlátszó védőüveg - 100 C-ig hőálló ismertetőjellel ellátott
3. gyakorlat. Félvezető eszközök jellemzőinek vizsgálata a hőmérséklet függvényében
3. gyakorlat Félvezető eszközök jellemzőinek vizsgálata a hőmérséklet függvényében A gyakorlat során a hallgatók 2 mérési feladatot végeznek el: 1. A félvezetők vezetési- és valenciasávja között elhelyezkedő
Egyenáram. Áramkörök jellemzése Fogyasztók és áramforrások kapcsolása Az áramvezetés típusai
Egyenáram Áramkörök jellemzése Fogyasztók és áramforrások kapcsolása Az áramvezetés típusai Elektromos áram Az elektromos töltéshordozók meghatározott irányú rendezett mozgását elektromos áramnak nevezzük.
10.B Tranzisztoros alapáramkörök Munkapont-beállítás
0.B ranzisztoros alapáramkörök Munkapont-beállítás Definiálja a lineáris és a nemlineáris mőködést, a sztatikus és a dinamikus üzemmódot! Értelmezze a munkapont, a munkaegyenes fogalmát és szerepét! Mutassa
Orvosi jelfeldolgozás. Információ. Információtartalom. Jelek osztályozása De, mi az a jel?
Orvosi jelfeldolgozás Információ De, mi az a jel? Jel: Információt szolgáltat (információ: új ismeretanyag, amely csökkenti a bizonytalanságot).. Megjelent.. Panasza? információ:. Egy beteg.. Fáj a fogam.
Betekintés a napelemek világába
Betekintés a napelemek világába (mőködés, fajták, alkalmazások) Nemcsics Ákos Óbudai Egyetem Tartalom Bevezetés energetikai problémák napenergia hasznosítás módjai Napelemrıl nem középiskolás fokon napelem
IRODALOM. Elektronika
Elektronika Dr. Lovassy Rita Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet lovassy.rita@kvk.uni-obuda.hu C 311. IRODALOM Zsom Gyula: Elektronikus áramkörök I. A. Budapest, 1991, (KKMF 1040).
MIKROELEKTRONIKAI ÉRZÉKELİK I
MIKROELEKTRONIKAI ÉRZÉKELİK I Dr. Pıdör Bálint BMF KVK Mikroelektronikai és Technológia Intézet és MTA Mőszaki Fizikai és Anyagtudományi Kutató Intézet 12. ELİADÁS: MÁGNESES ÉRZÉKELİK II 12. ELİADÁS: 1.
ELEKTROTECHNIKA-ELEKTRONIKA ELEKTROTECHNIKA
ELEKTROTECHNIKA-ELEKTRONIKA ELEKTROTECHNIKA 1. Egyenáramú körök Követelmények, matematikai alapok, prefixumok Töltés, áramerősség Feszültség Ellenállás és vezetés. Vezetők, szigetelők Áramkör fogalma Áramköri
Zener dióda karakterisztikáinak hőmérsékletfüggése
A mérés célja 18. mérés Zener dióda karakterisztikáinak hőmérsékletfüggése A Zener dióda nyitóirányú és záróirányú karakterisztikájának, a karakterisztika hőmérsékletfüggésének vizsgálata, a Zener dióda
25.B 25.B. 25.B Impulzustechnikai alapáramkörök Impulzusok elıállítása
5.B Impulzustechnikai alapáramkörök Impulzusok elıállítása Értelmezze a félvezetı elemek és a mőveleti erısítı kapcsoló üzemmódját, a stabil- és a kvázistabil állapotot! Magyarázza el a tranzisztoros vagy
Speciális passzív eszközök
Varisztorok Voltage Dependent Resistor VDR Variable resistor - varistor Speciális passzív eszközök Feszültségfüggő ellenállás, az áram erősen függ a feszültségtől: I=CU α ahol C konstans, α értéke 3 és
Áramkörök számítása, szimulációja és mérése próbapaneleken
Áramkörök számítása, szimulációja és mérése próbapaneleken. Munkapontbeállítás Elektronika Tehetséggondozás Laboratóriumi program 207 ősz Dr. Koller István.. NPN rétegtranzisztor munkapontjának kiszámítása
I. Félvezetődiódák. Tantárgy: Villamos mérések 2. Szakközépiskola 12. évfolyam számára. Farkas Viktor
I. Félvezetődiódák Tantárgy: Villamos mérések 2. Szakközépiskola 12. évfolyam számára Farkas Viktor Bevezetés Szilícium- és Germánium diódák A fénykibocsátó dióda (LED) Zener dióda Mérési elrendezések
MIKROELEKTRONIKA, VIEEA306
Buapesti Műszaki és Gazaságtuományi Egyetem MKROEEKTRONKA, VEEA6 Térvezérelt tranzisztorok. A JFET-ek http://www.eet.bme.hu/~poppe/miel/hu/11-jfet.ppt http://www.eet.bme.hu Vizsgált absztrakciós szint
ELEKTRONIKAI TECHNIKUS KÉPZÉS F É L V E Z E T Ő K ÖSSZEÁLLÍTOTTA NAGY LÁSZLÓ MÉRNÖKTANÁR
ELEKTRONIKAI TECHNIKUS KÉPZÉS 2 0 1 3 F É L V E Z E T Ő K ÖSSZEÁLLÍTOTTA NAGY LÁSZLÓ MÉRNÖKTANÁR - 2 - Tartalomjegyzék Félvezetők alapjai...3 Tiszta félvezetők...3 Töltéshordozók mozgása a félvezetőben...4
Logaritmikus erősítő tanulmányozása
13. fejezet A műveleti erősítők Logaritmikus erősítő tanulmányozása A műveleti erősítő olyan elektronikus áramkör, amely a két bemenete közötti potenciálkülönbséget igen nagy mértékben fölerősíti. A műveleti
Fényerő mérés. Készítette: Lenkei Zoltán
Fényerő mérés Készítette: Lenkei Zoltán Mértékegységek Kandela SI alapegység, a gyertya szóból származik. Egy pontszerű fényforrás által kibocsátott fény egy kitüntetett irányba. A kandela az olyan fényforrás
Gingl Zoltán, Szeged, :14 Elektronika - Hálózatszámítási módszerek
Gingl Zoltán, Szeged, 05. 05.09.9. 9:4 Elektronika - Hálózatszámítási módszerek 05.09.9. 9:4 Elektronika - Alapok 4 A G 5 3 3 B C 4 G Áramköri elemek vezetékekkel összekötve Csomópontok Ágak (szomszédos
FIZIKA II. Egyenáram. Dr. Seres István
Dr. Seres István Áramerősség, Ohm törvény Áramerősség: I Q t Ohm törvény: U I Egyenfeszültség állandó áram?! fft.szie.hu 2 Seres.Istvan@gek.szie.hu Áramerősség, Ohm törvény Egyenfeszültség U állandó Elektromos
MÉRÉSI SEGÉDLET PIN DIÓDÁS OPTIKAI VEVİ MÉRÉSE. V2 épület VI.emelet 602. Optikai és Mikrohullámú Távközlés Labor
MÉRÉSI SEGÉDLET PIN DIÓDÁS OPTIKAI VEVİ MÉRÉSE V2 épület VI.emelet 602. Optikai és Mikrohullámú Távközlés Labor Járó Gábor és Kovács Gábor anyagai alapján a mérési utasítást összeállította: Gerhátné Dr.
Feszültségszintek. a) Ha egy esemény bekövetkezik akkor az értéke 1 b) Ha nem következik be akkor az értéke 0
Logikai áramkörök Feszültségszintek A logikai rendszerekben az állapotokat 0 ill. 1 vagy H ill. L jelzéssel jelöljük, amelyek konkrét feszültségszinteket jelentenek. A logikai algebrában a változókat nagy
Hobbi Elektronika. Bevezetés az elektronikába: FET tranzisztoros kapcsolások
Hobbi Elektronika Bevezetés az elektronikába: FET tranzisztoros kapcsolások 1 Felhasznált irodalom CONRAD Elektronik: Elektronikai kíséletező készlet útmutatója 2 FET tranzisztorok FET = Field Effect Transistor,
4. Fényelektromos jelenség
4. Fényelektromos jelenség Kovács György 2013. április Tartalomjegyzék 1. Bevezetés 2 2. Fotocella 3 3. Gyakorló kérdések 5 4. Mérési feladatok 5 1 1. Bevezetés Fémeket fénnyel megvilágítva, bizonyos körülmények
MIKROELEKTRONIKA, VIEEA306
Budapesti Műszaki és Gazdaságtudományi Egyetem MIKROELEKTRONIKA, VIEEA306 PN átmenetek hőmérséklet függése: néhány mérés LEDeken és egy kis ismétlés http://www.eet.bme.hu/~poppe/miel/hu/05b-dioda3-hom.fugg.pptx
4. /ÁK Adja meg a villamos áramkör passzív építő elemeit!
Áramkörök 1. /ÁK Adja meg a mértékegységek lehetséges prefixumait (20db)! 2. /ÁK Értelmezze az ideális feszültség generátor fogalmát! 3. /ÁK Mit ért valóságos feszültség generátor alatt? 4. /ÁK Adja meg
A tanulók tudják alkalmazni és értsék az alapvetı elektrotechnikai fogalmakat összefüggéseket egyenáramú körökben Tartalom
Szakközépiskola CÉLOK ÉS FELADATOK, FEJLESZTÉSI KÖVETELMÉNYEK A tantervben meghatározott tananyag feldolgozásának célja, hogy a(z) Erısáramú elektrotechnikus/erısáramú elektrotechnikus szakma gyakorlása
Tantárgy: ANALÓG ELEKTRONIKA Tanár: Dr. Burány Nándor
Tantárgy: ANALÓG ELEKTRONIKA Tanár: Dr. Burány Nándor 3. félév Óraszám: 2+2 1 1.2. RÉSZ AKTÍV ALKATRÉSZEK Aktív alkatrészek nélkül nincs elektronika (erõsítést és kapcsolást végeznek) A XX. század elsõ
Elektronikus biztosíték kapcsolások 2.
Elektronikus biztosíték kapcsolások 2. Bus László okl. villamosmérnök, busl@dunaweb.hu 2. változat. Sziklai kapcsolás Bizonyára a kedves Olvasó elvétve vagy egyáltalán nem találkozott ezzel az elnevezéssel,
Analóg elektronika - laboratóriumi gyakorlatok
Analóg elektronika - laboratóriumi gyakorlatok. Diszkrét aktív alkatrészek és egyszerû alkalmazásaik. Elmélet A diszkrét aktív elektronikai alkatrészek (dióda, különbözõ tranzisztorok, tirisztor) elméleti
Elektronika Előadás. Mikroelektronikai félvezetők fizikai alapjai. PN átmenet, félvezető diódák. Diódatípusok, jellemzők, alkalmazások.
Elektronika 1 3. Előadás Mikroelektronikai félvezetők fizikai alapjai. PN átmenet, félvezető diódák. Diódatípusok, jellemzők, alkalmazások. Irodalom - Simonyi Károly: Elektronfizika, 1981 - Megyeri János:
ELEKTRONIKA I. TRANZISZTOROK. BSc Mérnök Informatikus Szak Levelező tagozat
ELEKTRONIKA I. TRANZISZTOROK BSc Mérnök Informatikus Szak Levelező tagozat Tranzisztorok Elemi félvezető eszközök Alkalmazásuk Analóg áramkörökben: erősítők Digitális áramkörökben: kapcsolók Típusai BJT
Gyakorló feladatok. Bipoláris tranzisztor
Gyakorló feladatok Bipoláris tranzisztor A tranzisztor három kivezetéses félvezető eszköz, mellyel elektromos jelek erősíthető vagy kapcsolhatók. Manapság a tranzisztorokat általában szilíciumból készítik
Elektronika II. 5. mérés
Elektronika II. 5. mérés Műveleti erősítők alkalmazásai Mérés célja: Műveleti erősítővel megvalósított áramgenerátorok, feszültségreferenciák és feszültségstabilizátorok vizsgálata. A leírásban a kapcsolások
Attól függően, hogy a tranzisztor munkapontját melyik karakterisztika szakaszon helyezzük el, működése kétféle lehet: lineáris és nemlineáris.
Alapkapcsolások (Attól függően, hogy a tranzisztor három csatlakozási pontja közül melyiket csatlakoztatjuk állandó potenciálú pólusra, megkülönböztetünk): földelt emitteres földelt bázisú földelt kollektoros
Bevezetés az elektronikába
Bevezetés az elektronikába 6. Feladatsor: Egyszerű tranzisztoros kapcsolások Hobbielektronika csoport 2017/2018 1 Debreceni Megtestesülés Plébánia Tranziens (átmeneti) jelenségek Az előzőekben csupán az
8.B 8.B. 8.B Félvezetı áramköri elemek Unipoláris tranzisztorok
8.B Félvezetı áramköri elemek Unipoláris tranzisztorok Értelmezze az unipoláris tranzisztorok felépítését, mőködését, feszültség- és áramviszonyait, s emelje ki a térvezérlés szerepét! Rajzolja fel a legfontosabb
FÉLVEZETŐK. Boros Alex 10AT
FÉLVEZETŐK Boros Alex 10AT Definíció Félvezetőknek nevezzük azokat az anyagokat, amelyek fajlagos ellenállása a vezetők és a szigetelők közé esik. A félvezetők fajlagos elektromos vezetése közönséges hőmérsékleten
Integrált áramkörök/3 Digitális áramkörök/2 CMOS alapáramkörök Rencz Márta Ress Sándor
Integrált áramkörök/3 Digitális áramkörök/2 CMOS alapáramkörök Rencz Márta Ress Sándor Elektronikus Eszközök Tanszék Mai témák A CMOS inverter, alapfogalmak működés, számitások, layout CMOS kapu áramkörök
Mag- és neutronfizika 5. elıadás
Mag- és neutronfizika 5. elıadás 5. elıadás Szcintillációs detektorok (emlékeztetı) Egyes anyagokban fényfelvillanás (szcintilláció) jön létre, ha energiát kapnak becsapódó részecskéktıl. Anyagát tekintve