Dr. Zátonyi Sándor FIZIKA 8. A tankönyv feladatainak megoldása I. ELEKTROMOS ALAPJELENSÉGEK; AZ EGYENÁRAM

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Dr. Zátonyi Sándor FIZIKA 8. A tankönyv feladatainak megoldása I. ELEKTROMOS ALAPJELENSÉGEK; AZ EGYENÁRAM"

Átírás

1 Dr. Zátonyi Sándor FIZIKA 8. A tankönyv feladatainak megoldása I. ELEKTROMOS ALAPJELENSÉGEK; AZ EGYENÁRAM 1.1. Elektrosztatikai kísérletek; az elektromos töltés 1. a) Taszítás. b) Vonzás. c) Vonzás. d) Taszítás. e) Vonzás. 2. Ellentétes töltésű. 3. a) Proton. b) Elektron. c) Proton. d) Elektron. 4. a) Az üvegrúdon kisebb az elektronos száma, mint a protonok száma. b) A selymen nagyobb az elektronok száma, mint a protonok száma. 5. a) Negatív töltést. b) Pozitív töltést Az elektromos áram; vezetők, szigetelők 1. Áramforrás: zsebtelep, akkumulátor, vízi erőmű, kerékpár-generátor. Fogyasztó: vasaló, villanymozdony, televízió, hajszárító, számítógép, fénymásoló. 2. a) Áramforrás. b) Fogyasztó. 3. a) A vezeték fémes összeköttetést létesít az áramforrás és a fogyasztó között. b) A kapcsoló zárja és nyitja az áramkört. 4. A lakás csengőjének az áramkörében levő kapcsoló csak addig zárja az áramkört, amíg a kapcsolót nyomjuk. Az izzólámpák áramkörében levő kapcsoló bekapcsolás után akkor is zárva marad, ha elengedjük a kapcsolót. 5. Az akkumulátor az áramforrás, a kürt a fogyasztó. 6. Trolibusz: az áramforrás egyik sarkától induló egyik felső vezetéken át jut az áram a trolibusz motorjához, majd a másik felső vezetéken át vissza az áramforrás másik sarkához. Villamos: Az áramforrás egyik sarkától induló felső vezetéken át jut az áram a villamos motorjához, majd a villamos sínen keresztül záródik az áramkör. 1

2 1.3. Áramkörök összeállítása; áramköri jelek 1. a) b) a) b) Kapcsoló Ventilátor Fűtőszál I. II. ny ny 0 0 z ny 1 0 ny z 0 0 z z a) b) 1.4. Az áramerősség és mérése 1. 2,5 A = 2500 ma ma = 0,261 A. 3. 0,2 ampert. 4. a) A méréshatár 0,6 A; a mért áramerősség 0,4 A. b) A méréshatár 3 A; a mért áramerősség 0,5 A. 5. a) 3 A. b) 0,5 A. c) 1,25 A. 6. a) 1 A. b) 0,2 A A feszültség és mérése 1. 1,5 V = 1500 mv kv = V mv = 0,2 V. 2

3 V = 25 kv. 5. a) Kettő. b) Három. c) Négy. 6. a) A méréshatár 6 V; a mért feszültség 4 V. b) A méréshatár 30 V; a mért feszültség 10 V. 7. a) 6 V. b) 1 V. c) 2,5 V. 8. a) 10 V. b) 2 V Ohm törvény; az ellenállás 1. Az izzón áthaladó áramerősség kétszer akkora lesz, mint eredetileg volt. 2. a) Az áramerősség felére, harmadára, negyedére csökken. b) Az áramerősség az eredeti másfélszeresére, kétszeresére nő. 3. a) A feszültség az először mért feszültségnek a kétszeresére, háromszorosára nőtt. b) A feszültség az először mért feszültségnek a felére, harmadára csökkent. 4. R = 2,4 Ω. 5. R 885 Ω. 6. R 26 Ω. 7. R 1769 Ω. 8. a) R = 2,4 Ω. b) R = 30 Ω. c) Az irányjelző lámpának 12,5-szer akkora az ellenállása, mint a fényszóróban levő izzólámpának A feszültség és az áramerősség kiszámítása 1. U = 6 V. 2. U = 24 V. 3. U 4,3 V 4. U = 3,5 V. 5. I 2,8 A. 6. I = 0,1 A. 7. a) I = 5 A. b) I 0,4 A. 8. I = 0,001 A A vezetékek elektromos ellenállása 1. A kantálhuzal ellenállása 5-ször akkora, mint az azonos méretű rézhuzal ellenállása. 2. A kantélhuzal ellenállása 1,08-szorosára, a volfrámhuzal ellenállása 6,43-szorosára, a rézhuzal 5,6-szeresére nő, ha hőmérsékletük 20 C-ról 1200 C-ra emelkedik. 3. a) A távvezeték hosszúsága nagyobb lesz. b) A távvezeték ellenállása nagyobb lesz. 3

4 4. A 0,6 mm 2 keresztmetszetű vashuzal ellenállása harmad-része lesz a 0,2 mm 2 keresztmetszetű vashuzal ellenállásának. 5. a) I = 0,12 A. b) I = 0,72 A. 6. R = 12 Ω. b) 3 Ω. 7. Az egyik vezetéknek például 2-szer akkora a hosszúsága és 2-szer akkora a keresztmetszete is, mint a másiknak. Vagy: Ahányszor nagyobb az egyik vezeték keresztmetszete, ugyanannyiszor nagyobb a hossza is, mint a másik vezetéké. 8. Az izzószál ellenállása nő A fogyasztók soros kapcsolása a) I = 0,08 A. b) Az áramerősség csökken. 3. a) A huzalellenállás ellenállása 3-szorosa a az izzólámpa ellenállásának. b) U = 16 V. 4. a) R = 112 Ω. b) U = 4,5 V. 5. a) R = 1170 Ω. b) 12,8 V. c) I 0,2 A. 6. a) U = 16 V. b) R = 120 Ω. c) R 1 = 40 Ω; R 2 = 80 Ω A fogyasztók párhuzamos kapcsolása A kapcsoló állása Izzólámpa A B C D bal közép jobb a) U 1 = 4,2 voltot. b) U = 4,2 V. 4. a) A huzalellenállásnak feleakkora az ellenállása, mint az izzólámpának. b) I = 0,6 A Ω-nál kisebb. 6. a) I 1 0,16 A; I 2 0,16 A. b) I 0,32 A. c) R 28 Ω. 7. a) I = 1,3 A. b) R 177 Ω. 8. a) U p > U s. b) I p > I s. c) R p < R s. 4

5 II. AZ ELEKTROMOS ÁRAM HATÁSAI; AZ ELEKTROMOS MUNKA ÉS TELJESÍTMÉNY 2.1. Az elektromos áram hőhatása 1. Villanytűzhely, elektromos forrasztópáka, automata mosógép vízmelegítő része, melegítő párna, hajsütővas, merülőforraló stb. 2. A vasaló és a zsinór tulajdonképpen soros kapcsolásban vannak egymással. A vezeték ellenállása azonban elhanyagolhatóan kicsi a vasaló ellenállásához viszonyítva. Így a csatlakozó vezeték két vége között is nagyon kicsi a feszültség. A zsinór ezért nem melegszik fel. 3. A huzal olvadáspontja magasabb lehet, mint a betét olvadáspontja. Ezért túlterhelés vagy rövidzárlat esetén nem olvad ki, ami tűzveszélyes lehet. 4. a) Rövidzárlat keletkezik. A biztosító kiég. b) Az áramkör záródik, és a lámpa világít. (A biztosító nem ég ki.) 5. a) Az izzólámpa nem világítana olyan fényerővel, mint ha azt az előírt feszültségű áramforráshoz kapcsoljuk. b) Az izzólámpa kiégne. 6. a) Az újonnan bekapcsolt izzólámpán 0,4 A erősségű áram halad át. Az áramerősség a főágban így 8,4 A lesz; a biztosító nem ég ki. b) A főzőlapon 5,2 A erősségű áram halad át. A főágban az áramerősség 13,2 A lenne. A biztosító kiég Az elektromos áram vegyi hatása 1. a) Oxigénből. b) A pozitív pólussal. c) Hidrogénből. d) A negatív pólussal. g 2. a) Abban az esetben, amikor 1,28 3 cm a sűrűség. 3. Az az előnyük, hogy miután lemerültek, újra lehet tölteni őket. 4. a) U = 7,2 V. b) U = 1,2 V. 5. a) U = 1,2 V. b) Soros kapcsolásban. 6. η = 0,75 = 75 %. b) A sűrűség csökken Az elektromos áram élettani hatása 1. Nehogy a fürdőkádból el lehessen érni a kapcsolót. Ha a sérült kapcsolót a fürdővízben levő személy megérintené, súlyos áramütés érhetné, mivel teste nagy felületen érintkezik a vízzel, és a nedves test jó vezető. A vízvezeték és a kád csővezetéke pedig fémes összeköttetésben van a földdel. 5

6 2. Zárlat esetén áram jut a készülék külső, fémből készült részeihez. Védőföldelés esetén a biztosító kiolvad. Ha nincs védőföldelés (a feladat feltételezése szerint), akkor nem old ki a biztosító, és a külső fémrészek érintésekor áramütés érhet bennünket. 3. A 2,5 az áramerősséget (2,5 A), a 250 a feszültséget (250 V) jelenti. 4. a) Az emberi testen 0,23 A erősségű áram haladna át. b) Ez az áramerősség nagyobb, mint az emberi szervezetre életveszélyes áramerősség (4,6-szerese). 5. Az emberi testen 0,0045 A erősségű áram haladna át. A zsebizzónak sokkal kisebb az ellenállása, ezért nagyobb (0,2 A) a rajta áthaladó áram erőssége A mágneses kölcsönhatás 1. a) Vonzást. b) A mágnes nem vonzza az alumíniumkilincset. c) A mágnes nem vonzza a rézkilincset. d) Taszítást. e) Vonzást. 2. a) Nincs mágneses kölcsönhatás. b) Nincs mágneses kölcsönhatás. c) Nincs mágneses kölcsönhatás. d) Vonzást tapasztalunk. e) Vonzást tapasztalunk. 3. Az egyik rúd egyik végét végighúzzuk a másik rúdon. Ha mindvégig vonzást tapasztaltunk, akkor a mágneses rúd volt a kezünkben. Ha végighúzáskor csak a rúd két végénél tapasztaltunk vonzást, akkor a nem mágneses rudat húztuk végig a másik rúdon a) Ferdén lefelé. b) Függőlegesen felfelé Az elektromos áram mágneses hatása 1. a) b) Az iránytű északi pólusa távolodik az elektromágnestől. c) Az iránytű északi pólusa az elektromágnes felé. d) Az iránytű északi pólusa távolodik az elektromágnestől. 2. Az elektromágnesen áthaladó áram erősségétől, az elektromágnes menetszámától, a vasmag anyagától, a tekercs és a vasmag alakjától. 3. Amikor 0,2 A erősségű áram halad át az elektromágnesen, akkor kisebb az elektromágnes erőssége, mint amikor 0,3 A az áramerősség. 4. a) A kélt elektromágnesen azonos erősségű áram halad át. b) A 600 menetű elektromágnes körüli mágneses mező erőssége nagyobb, mint a 300 menetű elektromágnes körüli mágneses mező erőssége. 5. Azért, mert például a kisebb menetszámú elektromágnesen nagyobb erősségű áram haladt át, mint a nagyobb menetszámú elektromágnesen. 6

7 2.6. Az elektromágnes gyakorlati alkalmazásai 1. Elektromos csengő, fejhallgató, teheremelő mágnes, automata biztosító, lágyvasas műszer. 2. a) b) 3. Az erősítőből jövő áram erőssége a hangrezgéseknek megfelelő módon változik. Ennek megfelelően, különböző erősségű lesz az elektromágnes, és így a hangrezgésekkel megegyező módon hozza mozgásba a lengőtekercset és a membránt. 4. a) A mutató jobbra tér ki a 2 V-os beosztásig. b) A mutató az 1 V-os beosztásig tér ki. 5. a) A mutató ebben az esetben is a 0,6 A jelzésig tér ki. b) A mutató a 0,2 A jelzési tér ki Az elektromos motor 1. Villamos, mosógép, centrifuga, trolibusz. 2. a) Sétáló magnó, hordozható CD-lejátszó, kézi porszívó, elemes villanyborotva. b) Mosógép, centrifuga, asztali magnó, CD-lejátszó, háztartási porszívó, villanyborotva. 3. a) A forgórész forgásiránya megváltozik. b) A forgórész forgásiránya nem változik meg. 4. η = 0,83 = 83 %. 5. a) Hibás válasz. b) Helyes válasz. c) Hibás válasz Az elektromos munka 1. W = 8970 J. 2. W = J 17,8 kj. 3. W = J 11,9 kj. 4. W J 6458 kj. 5. W = J = 9108 kj. 6. a) I 4,29 A. b) W = J 309 kj. c) Q 309 kj Az elektromos teljesítmény 1. P = 1099,4 W 1100 W. 2. a) U = 3,5 V; I = 0,2 A; R = 17,5 Ω. b) P = 0,7 W. 7

8 3. I 0,43 A. 4. a) I 1 4,35 A. b) I 2 8,7 A. 5. U = 15 V. 6. a) I 4,1 A. b) R 56 Ω Az elektromos fogyasztás 1. W = 20 kwh. 2. W = 3 kwh. 3. a) W = 0,5 kwh. b) Q = 1800 kj. 4. P 0,06 kw = 60 W. 5. P = 0,075 kw = 75 W. 6. a) t 1,8 h. b) I 2,39 A. 7. a) Az izzólámpát 10 óráig, a kávéfőzőt 2 óráig, a porszívót 1 óráig lehet működtetni 1 kwh elektromos energiával. b) Fordított arányosság. 8. Megjegyzés: A tankönyv szövege helyesen: 1440 kj-lal nőtt az étel termikus energiája. Ennek megfelelően a megoldás: a) W = 0,415 kwh = 1494 kj. b) η 0,96 = 96 %. III. AZ ELEKTROMÁGNESES INDUKCIÓ; A VÁLTAKOZÓ ÁRAM 3.1. Indukciós alapjelenségek 1. a) A műszer mutatója kitér. b) A műszer mutatója nyugalomban marad. c) A műszer mutatója kitér (az előző kitéréssel ellentétes irányba). 2. a) A műszer mutatója kitér. b) A műszer mutatója nyugalomban marad. c) A műszer mutatója kitér (az előző kitéréssel ellentétes irányba). 3. a) A műszer mutatója kitér. b) A műszer mutatója nyugalomban marad. c) A műszer mutatója kitér (az előző kitéréssel ellentétes irányba). 4. a) A műszer mutatója kitér. b) A műszer mutatója kitér (az előző kitéréssel ellentétes irányba). c) A műszer mutatója nyugalomban marad. 5. A tekercset a Föld mágneses mezőjében mozgatjuk, s ezáltal indukált feszültség jön létre a tekercsben. 6. 8

9 3.2. Az indukált feszültség és áram 1. Az indukált feszültség függ a mágnes mozgatásának a sebességétől, a mágnes erősségétől, a tekercs menetszámától. 2. a) Az indukált áram erőssége nő. b) Az indukált áram erőssége csökken. 3. Kisebb feszültség indukálódott, mint amekkora az izzó működtetéséhez szükséges. 4. Amikor nagyobb sebességgel mozgatjuk az elektromágnest a tekercs előtt, akkor nagyobb indukált feszültség jön létre, mint amikor kisebb sebességgel mozgatjuk. 5. Amikor a nagyobb erősségű mágneses hatást mutató elektromágnes áramát szaggatjuk meg, akkor nagyobb indukált feszültség jön létre a közelben levő tekercsben, mint a gyengébb mágneses hatást mutató elektromágnes esetében. 6. A nagyobb menetszámú tekercs áramának erősítésekor és gyengítésekor nagyobb indukált feszültség jön létre a közelben levő tekercsben, mint a kisebb menetszámú tekercs esetében A váltakozó áramú generátor 1. a) Balra tér ki. b) Balra tér ki. c) Jobbra tér ki. 2. I = 0,5 A. 3. a) A mozgási energiából elektromos energiát állít elő a generátor. b) A villanymotor az elektromos energiát mozgási energiává alakítja át. 4. a) Mozgási energiából elektromos energia lesz. b) A gőz termikus energiáját a turbina mozgási energiává alakítja át; a turbinával közös tengelyen levő generátor pedig a mozgási energiát elektromos energiává alakítja át. 5. a) Lőrinci, Várpalota (Inota), Ajka, Berente, Tiszapalkonya, Pécs stb. b) Paks. 6. η = 0,9 = 90 % A váltakozó áram hatásai 1 t = 0,02 s szor. 3. a) 120-szor. b) t 0,017 s. 4. a) t = 0,06 s. b) 33-szor. 5. a) A műszer mutatója kitér. b) A műszer mutatója kitér. 9

10 6. Budapest, Győr, Tatabánya, Szombathely, Veszprém, Székesfehérvár, Kaposvár, Pécs, Eger, Miskolc, Nyíregyháza, Szolnok, Debrecen, Kecskemét, Szeged, Békéscsaba A transzformátor 1. U p : U sz = 230 V : 12 V 19, U sz 9 V. 3. U sz : U p = V : 230 V U sz = 5,75 V. 5. U sz 4,5 V. 6. a) U sz = 96 V. b) U sz = 6 V A transzformátor gyakorlati alkalmazásai 1. a) 24 V : 12 V = 2 (háromszor); 6 V : 24 V = 0,25 (háromszor). b) Fordított arányosság. 2. I p 0,09 A; I sz = 1,75 A. 3. I p 0,0083 A = 8,3 ma. 4. I sz 192 A. 5. a) I p 0,73 A. b) W = 1,008 kwh 1 kwh. 6. η 0,91 = 91 % Az elektromos hálózat; az energiatakarékosság 1. a) U sz : U p = V : ,4. b) Mert a szekunder oldalon sokkal nagyobb az áramerősség. 2. a) P p = W = 700 kw. b) P sz = W = 667 kw. 3. A hálózati áramforrás egyik vezetéke összeköttetésben van a földdel. Így a másik vezeték érintése esetén rajtunk és a földön keresztül záródna az áramkör. Áramütés érne bennünket. 4. a) W = 0,15 kwh. b) W = 3 kwh. 5. a) W = 0,141 kwh. b) A fizetendő összeg 4,06 Ft. (Az egységár decemberben: 28,78 Ft/kWh, ÁFÁ-val együtt.) 6. a) W = 365 Wh = 0,365 kwh. b) 10,50 Ft-ot. *7. Akkor is érhetné áramütés a például a szerelőt, ha rövidzárlat következtében kioldott a biztosíték. A fázisvezeték ugyanis továbbra is áram alatt maradna. *8. Izzócsere esetén nagyobb veszélyt jelentene, ha véletlenül megérintenénk a foglalat fémes részét. 10

11 IV. FÉNYTAN 4.1. Fényforrások; a fény egyenes vonalú terjedése 1. Sarkcsillag. 2. Magas hőmérsékletű fényforrás: Sarkcsillag, izzó parázs, villám, zsebizzó. Hideg fényforrás: ködfénylámpa, fénycső. 3. Pontszerű fényforrás: zsebizzó, az autó irányjelző lámpája. Kiterjedt fényforrás: nagy burájú izzólámpa, a televízió képernyője a) 0,001 másodperc alatt. b) 882 másodperc, vagyis 14,7 perc alatt. 6. 0, másodperc alatt ,67 s 8,31 min alatt. 8. 2,56 másodperc alatt A fény visszaverődése a sík- és gömbtükrökről A beesési szög és a visszaverődési szög is A vízszintessel 65 -os szöget kell bezárnia a tükörnek. (90-25 = 65.) 5. a) Párhuzamosan. b) Széttartóan. 6. a) A fókuszponton keresztül. b) Az optikai tengellyel párhuzamosan. c) Önmagában verődik vissza. 7. A domborúbb tükörről a fénysugarak nagyobb szögben verődnek vissza a fénysugarak, mint a kevésbé domború tükörről. 8. a) Mintha a látszólagos fókuszpontból indulna ki. b) Az optikai tengellyel párhuzamosan verődik vissza. 11

12 Törési szög 4.3. A sík- és gömbtükör képalkotásai 1. A síktükörben. 2. Homorú tükörrel. 3. Domború tükörben. 4. a) A fókuszpont és a tükör között. b) A tükör mögött. c) Látszólagos. 5. Kicsinyített, fordított állású látszólagos képet látunk a gömb felülete mögött. 6. A domború tükörben a toll kicsinyített, a homorú tükörben a toll nagyított képét látjuk. Mindkét tükörben a tükör mögött látjuk a tollal azonos állású, látszólagos képet A fénytörés 1. a) A beesési szög a Nap deleléséig csökken, utána nő. b) A törési szög a Nap deleléséig csökken, utána nő. 2. A fénysugár merőlegesen éri a víz felületét. (A beesési és a törési szög is 0.) 3. A szívószál vízben levő része nagyítottnak látszik. A pohárban levő víz henger alakú domború lencsét alkot. 4. fok fok Beesési szög 5. A törési szög A prizma másik oldalán 49 a törési szög. 12

13 4.5. Fénytörés a domború és a homorú lencsén 1. A fényfolt először egyre kisebb lesz. Amikor a papírlap 12 cm-re van a lencsétől, akkor a legkisebb a fényfolt. Ezt követően ismét nagyobb lesz a fényfolt. 2. a) Párhuzamosan. b) Széttartóan. 3. a) Domború lencsével végeztük a kísérletet. b) A fényforrás a lencse gyújtópontjában volt. 4. a) A fókuszponton át. b) Az optikai tengellyel párhuzamosan. 5. a) Mintha a látszólagos gyújtópontból indult volna ki. b) Az optikai tengellyel párhuzamosan A domború és a homorú lencse képalkotása 1. a) Domború lencsével állítható elő kicsinyített, valódi kép. A tárgy a fókusztávolság kétszeresén kívül van. b) Homorú lencsén keresztül láthatunk kicsinyített, látszólagos képet. A tárgy és a kép a lencse ugyanazon oldalán van. 2. a) A lencse gyújtópontja és a lencse között. b) A lencse mögött. c) Látszólagos. 3. a) 85 mm és 170 mm között. b) Fordított. 4. a) 35 mm és 70 mm között. b) Fordított. 5. A domború lencsén át a radír nagyított, a homorú lencsén át a radír kicsinyített képét látjuk. Mindkét esetben a tárggyal megegyező oldalon látjuk a radírral azonos állású, látszólagos képet. 6. Mindkét kép kicsinyített, látszólagos, a tárggyal azonos állású kép. A kép a tárggyal megegyező oldalon, illetve a tükör mögött látszik A mikroszkóp és a távcső 1. A fényvisszaverődésen. A homorú tükör a mikroszkóplátóterének kis részére gyűjti össze a visszaverődő fénysugarakat. 2. a) A szemlencse fókusztávolságán belül. b) A szemlencse ugyanazon oldalán, ahol a tárgylencse létrehozta a képet. 3. A kórokozót 0,6 mm nagyságúnak látjuk. 4. a) A távcső 8-szoros nagyítást nyújt. b) A tárgylencse 30 mm átmérőjű. c) Tőbb fény juthat a távcsőbe, világosabb képet láthatunk Az emberi szem és a látás 1. a) A szemlencse gyújtópontjának a kétszeresén kívül. b) A szemlencse gyújtópontja és a gyújtótávolság kétszereses között. 13

14 2. Változik a pupilla nagysága. 3. Változik a szemlencse domborulata, ezáltal változik a szemlencse fókusztávolsága. 4. Hasonlóság: a fényképezőgép és a szem lencséje is kicsinyített, fordított állású, valódi képet hoz létre a gyújtópont és a gyújtótávolság kétszerese között. Különbség: A fényképezőgéppel a kép élesre állítását a lencse és a film közötti távolság változtatásával oldjuk meg; a szem a szemlencse domborulatának a változtatásával állítja élesre a képet. A fényképezőgépen a lencse nyílásának (a blendének ) az állításával szabályozzuk a gépbe kerülő fény mennyiségét; a szemben a pupilla nyílásának a nagysága változik. A fényképezőgép a filmre, a szem az ideghártyára vetíti az éles képet. 5. A fiú rövidlátó. Ezért kell olyan szemüveget viselnie, amelyikben homorú lencse van. 6. A kislány távollátó. Ezért domború lencsés szemüveget kell viselnie. *7. 0,5 dioptriás. *8. 0,4 m. 9. A testek színe 1. Azért látjuk zöldnek, mert a tábla csak a zöld szint veri vissza, a többit elnyeli. 2. Kék színűnek látjuk. 3. A fénycső által kibocsátott fény nem ugyanabban az arányban tartalmazza a különböző színeket, mint a napfény. Ezért más a ruhaanyagról visszaverődő színek aránya is. 4. Azért, mert minden színű fény nagy részét ellnyelik. 5. a) A zöldet. b) A vöröset, a narancsot, a sárgát, a kéket és az ibolyát. 14

Fizika 8. oszt. Fizika 8. oszt.

Fizika 8. oszt. Fizika 8. oszt. 1. Statikus elektromosság Dörzsöléssel a testek elektromos állapotba hozhatók. Ilyenkor egyik testről töltések mennek át a másikra. Az a test, amelyről a negatív töltések (elektronok) átmennek, pozitív

Részletesebben

8. A vezetékek elektromos ellenállása

8. A vezetékek elektromos ellenállása 8. A vezetékek elektromos ellenállása a) Fémbôl készült vezeték van az elektromos melegítôkészülékekben, a villanymotorban és sok más elektromos készülékben. Fémhuzalból vannak a távvezetékek és az elektromos

Részletesebben

Elektromos ellenállás, az áram hatásai, teljesítmény

Elektromos ellenállás, az áram hatásai, teljesítmény Elektromos ellenállás, az áram hatásai, teljesítmény Elektromos ellenállás Az anyag részecskéi akadályozzák a töltések mozgását. Ezt a tulajdonságot nevezzük elektromos ellenállásnak. Annak a fogyasztónak

Részletesebben

Elektromos áram, áramkör

Elektromos áram, áramkör Elektromos áram, áramkör Az anyagok szerkezete Az anyagokat atomok, molekulák építik fel, ezekben negatív elektromos állapotú elektronok és pozitív elektromos állapotú protonok vannak. Az atomokban ezek

Részletesebben

Elektromos áram, egyenáram

Elektromos áram, egyenáram Elektromos áram, egyenáram Áram Az elektromos töltések egyirányú, rendezett mozgását, áramlását, elektromos áramnak nevezzük. (A fémekben az elektronok áramlanak, folyadékokban, oldatokban az oldott ionok,

Részletesebben

FÉNYTAN A FÉNY TULAJDONSÁGAI 1. Sorold fel milyen hatásait ismered a napfénynek! 2. Hogyan tisztelték és minek nevezték az ókori egyiptomiak a Napot?

FÉNYTAN A FÉNY TULAJDONSÁGAI 1. Sorold fel milyen hatásait ismered a napfénynek! 2. Hogyan tisztelték és minek nevezték az ókori egyiptomiak a Napot? FÉNYTAN A FÉNY TULAJDONSÁGAI 1. Sorold fel milyen hatásait ismered a napfénynek! 2. Hogyan tisztelték és minek nevezték az ókori egyiptomiak a Napot? 3. Mit nevezünk fényforrásnak? 4. Mi a legjelentősebb

Részletesebben

Fizika Vetélkedő 8 oszt. 2013

Fizika Vetélkedő 8 oszt. 2013 Fizika Vetélkedő 8 oszt. 2013 Osztályz«grade» Tárgy:«subject» at: Dátum:«date» 1 Hány proton elektromos töltése egyenlő nagyságú 6 elektron töltésével 2 Melyik állítás fogadható el az alábbiak közül? A

Részletesebben

25. Képalkotás. f = 20 cm. 30 cm x =? Képalkotás

25. Képalkotás. f = 20 cm. 30 cm x =? Képalkotás 25. Képalkotás 1. Ha egy gyujtolencse fókusztávolsága f és a tárgy távolsága a lencsétol t, akkor t és f viszonyától függ, hogy milyen kép keletkezik. Jellemezd a keletkezo képet a) t > 2 f, b) f < t

Részletesebben

A fény visszaverődése

A fény visszaverődése I. Bevezető - A fény tulajdonságai kölcsönhatásokra képes egyenes vonalban terjed terjedési sebessége függ a közeg anyagától (vákuumban 300.000 km/s; gyémántban 150.000 km/s) hullám tulajdonságai vannak

Részletesebben

Mágnesesség, elektromágnes, indukció Tudománytörténeti háttér Már i. e. 600 körül Thalész felfedezte, hogy Magnesia város mellett vannak olyan talált

Mágnesesség, elektromágnes, indukció Tudománytörténeti háttér Már i. e. 600 körül Thalész felfedezte, hogy Magnesia város mellett vannak olyan talált Mágnesesség, elektromágnes, indukció Tudománytörténeti háttér Már i. e. 600 körül Thalész felfedezte, hogy Magnesia város mellett vannak olyan talált ércek, amelyek vonzzák a vasat. Ezeket mágnesnek nevezték

Részletesebben

Dr. Zátonyi Sándor. ÚTMUTATÓ ÉS TANMENETJAVASLAT a Fizika 8. című tankönyv alkalmazásához. Oktatáskutató és Fejlesztő Intézet

Dr. Zátonyi Sándor. ÚTMUTATÓ ÉS TANMENETJAVASLAT a Fizika 8. című tankönyv alkalmazásához. Oktatáskutató és Fejlesztő Intézet Dr. Zátonyi Sándor ÚTMUTATÓ ÉS TANMENETJAVASLAT a Fizika 8. című tankönyv alkalmazásához Oktatáskutató és Fejlesztő Intézet 1 BEVEZETŐ Kerettanterv fizikából A Fizika 8. című tankönyv anyaga az Oktatási

Részletesebben

FIZIKA ZÁRÓVIZSGA 2015

FIZIKA ZÁRÓVIZSGA 2015 FIZIKA ZÁRÓVIZSGA 2015 TESZT A következő feladatokban a három vagy négy megadott válasz közül pontosan egy helyes. Írd be az általad helyesnek vélt válasz betűjelét a táblázat megfelelő cellájába! Indokolni

Részletesebben

Történeti áttekintés

Történeti áttekintés A fény Történeti áttekintés Arkhimédész tükrök segítségével gyújtotta fel a római hajókat. A fény hullámtermészetét Cristian Huygens holland fizikus alapozta meg a 17. században. A fénysebességet először

Részletesebben

Egyenáram tesztek. 3. Melyik mértékegység meghatározása nem helyes? a) V = J/s b) F = C/V c) A = C/s d) = V/A

Egyenáram tesztek. 3. Melyik mértékegység meghatározása nem helyes? a) V = J/s b) F = C/V c) A = C/s d) = V/A Egyenáram tesztek 1. Az alábbiak közül melyik nem tekinthető áramnak? a) Feltöltött kondenzátorlemezek között egy fémgolyó pattog. b) A generátor fémgömbje és egy földelt gömb között szikrakisülés történik.

Részletesebben

Osztályozó vizsga anyagok. Fizika

Osztályozó vizsga anyagok. Fizika Osztályozó vizsga anyagok Fizika 9. osztály Kinematika Mozgás és kölcsönhatás Az egyenes vonalú egyenletes mozgás leírása A sebesség fogalma, egységei A sebesség iránya Vektormennyiség fogalma Az egyenes

Részletesebben

Elektromágneses indukció kísérleti vizsgálata

Elektromágneses indukció kísérleti vizsgálata A kísérlet célkitűzései: Kísérleti úton tapasztalja meg a diák, hogy mi a különbség a mozgási és a nyugalmi indukció között, ill. milyen tényezőktől függ az indukált feszültség nagysága. Eszközszükséglet:

Részletesebben

Digitális tananyag a fizika tanításához

Digitális tananyag a fizika tanításához Digitális tananyag a fizika tanításához A lencsék fogalma, fajtái Az optikai lencsék a legegyszerűbb fénytörésen alapuló leképezési eszközök. Fajtái: a domború és a homorú lencse. optikai középpont optikai

Részletesebben

A fény útjába kerülő akadályok és rések mérete. Sokkal nagyobb. összemérhető. A fény hullámhoszánál. A fény hullámhoszával

A fény útjába kerülő akadályok és rések mérete. Sokkal nagyobb. összemérhető. A fény hullámhoszánál. A fény hullámhoszával Optika Fénytan A fény útjába kerülő akadályok és rések mérete Sokkal nagyobb összemérhető A fény hullámhoszánál. A fény hullámhoszával Elektromágneses spektrum Az elektromágneses hullámokat a keltés módja,

Részletesebben

Elektromos áram, egyenáram

Elektromos áram, egyenáram Elektromos áram, egyenáram Áram Az elektromos töltések egyirányú, rendezett mozgását, áramlását, elektromos áramnak nevezzük. (A fémekben az elektronok áramlanak, folyadékokban, oldatokban az oldott ionok,

Részletesebben

TestLine - Fizika 8. évfolyam elektromosság alapok Minta feladatsor

TestLine - Fizika 8. évfolyam elektromosság alapok Minta feladatsor Mi az áramerősség fogalma? (1 helyes válasz) 1. 1:56 Normál Egységnyi idő alatt áthaladó töltések száma. Egységnyi idő alatt áthaladó feszültségek száma. Egységnyi idő alatt áthaladó áramerősségek száma.

Részletesebben

Elektrotechnika. Ballagi Áron

Elektrotechnika. Ballagi Áron Elektrotechnika Ballagi Áron Mágneses tér Elektrotechnika x/2 Mágneses indukció kísérlet Állandó mágneses térben helyezzünk el egy l hosszúságú vezetőt, és bocsássunk a vezetőbe I áramot! Tapasztalat:

Részletesebben

Az elektromágneses indukció jelensége

Az elektromágneses indukció jelensége Az elektromágneses indukció jelensége Korábban láttuk, hogy az elektromos áram hatására mágneses tér keletkezik (Ampère-féle gerjesztési törvény) Kérdés, hogy vajon ez megfordítható-e, és a mágneses tér

Részletesebben

Fizika II. feladatsor főiskolai szintű villamosmérnök szak hallgatóinak. Levelező tagozat

Fizika II. feladatsor főiskolai szintű villamosmérnök szak hallgatóinak. Levelező tagozat Fizika. feladatsor főiskolai szintű villamosmérnök szak hallgatóinak Levelező tagozat 1. z ábra szerinti félgömb alakú, ideális vezetőnek tekinthető földelőbe = 10 k erősségű áram folyik be. föld fajlagos

Részletesebben

Fény, mint elektromágneses hullám, geometriai optika

Fény, mint elektromágneses hullám, geometriai optika Fény, mint elektromágneses hullám, geometriai optika Az elektromágneses hullámok egyik fajtája a szemünk által látható fény. Látható fény (400 nm 800 nm) (vörös ibolyakék) A látható fehér fény a különböző

Részletesebben

A diákok végezzenek optikai méréseket, amelyek alapján a tárgytávolság, a képtávolság és a fókusztávolság közötti összefüggés igazolható.

A diákok végezzenek optikai méréseket, amelyek alapján a tárgytávolság, a képtávolság és a fókusztávolság közötti összefüggés igazolható. Az optikai paddal végzett megfigyelések és mérések célkitűzése: A tanulók ismerjék meg a domború lencsét és tanulmányozzák képalkotását, lássanak példát valódi képre, szerezzenek tapasztalatot arról, mely

Részletesebben

Elektromos jelenségek Testnek kétféle állapota lehet: pozitív és negatív elektromos állapot. Sajátos környezetük van: elektromos mezőnek nevezzük.

Elektromos jelenségek Testnek kétféle állapota lehet: pozitív és negatív elektromos állapot. Sajátos környezetük van: elektromos mezőnek nevezzük. 1. Emlékeztető Elektromos jelenségek Testnek kétféle állapota lehet: pozitív és negatív elektromos állapot. Sajátos környezetük van: elektromos mezőnek nevezzük. Bármilyen anyagú test és az elektromos

Részletesebben

Mágneses mező tesztek. d) Egy mágnesrúd északi pólusához egy másik mágnesrúd déli pólusát közelítjük.

Mágneses mező tesztek. d) Egy mágnesrúd északi pólusához egy másik mágnesrúd déli pólusát közelítjük. Mágneses mező tesztek 1. Melyik esetben nem tapasztalunk vonzóerőt? a) A mágnesrúd északi pólusához vasdarabot közelítünk. b) A mágnesrúd közepéhez vasdarabot közelítünk. c) A mágnesrúd déli pólusához

Részletesebben

TANMENET FIZIKA 8. osztály Elektromosság, fénytan

TANMENET FIZIKA 8. osztály Elektromosság, fénytan TANMENET FIZIKA 8. osztály Elektromosság, fénytan A Kiadó javaslata alapján összeállította: Látta:...... Harmath Lajos munkaközösség vezető tanár Jóváhagyta:... igazgató 2015-2016 Általános célok, feladatok:

Részletesebben

Elektromágnesség tesztek

Elektromágnesség tesztek Elektromágnesség tesztek 1. Melyik esetben nem tapasztalunk vonzóerőt? a) A mágnesrúd északi pólusához vasdarabot közelítünk. b) A mágnesrúd közepéhez vasdarabot közelítünk. c) A mágnesrúd déli pólusához

Részletesebben

Mágneses mező jellemzése

Mágneses mező jellemzése pólusok dipólus mező mező jellemzése vonalak pólusok dipólus mező vonalak Tartalom, erőhatások pólusok dipólus mező, szemléltetése meghatározása forgatónyomaték méréssel Elektromotor nagysága különböző

Részletesebben

MÁGNESES TÉR, INDUKCIÓ

MÁGNESES TÉR, INDUKCIÓ Egy vezetéket 2 cm átmérőjű szigetelő testre 500 menettel tekercselünk fel, 25 cm hosszúságban. Mekkora térerősség lép fel a tekercs belsejében, ha a vezetékben 5 amperes áram folyik? Mekkora a mágneses

Részletesebben

OPTIKA. Vékony lencsék képalkotása. Dr. Seres István

OPTIKA. Vékony lencsék képalkotása. Dr. Seres István OPTIKA Vékony lencsék képalkotása Dr. Seres István Vékonylencse fókusztávolsága D 1 f (n 1) 1 R 1 1 R 2 Ha f > 0, gyűjtőlencse R > 0, ha domború felület R < 0, ha homorú felület n a relatív törésmutató

Részletesebben

Elektromágneses indukció, váltakozó áram

Elektromágneses indukció, váltakozó áram Elektromágneses indukció, váltakozó áram Elektromágneses indukció: Ha tekercsben megváltoztatjuk a mágneses teret (pl. mágnest mozgatunk benne, vagy körülötte), akkor a tekercsben feszültség keletkezik,

Részletesebben

TestLine - Fizika 8. évfolyam elektromosság 2. Minta feladatsor

TestLine - Fizika 8. évfolyam elektromosság 2. Minta feladatsor 1. Fizikai mennyiségek Jele: (1), (2), (3) R, (4) t, (5) Mértékegysége: (1), (2), (3) Ohm, (4) s, (5) V 3:06 Normál Számítása: (1) /, (2) *R, (3) *t, (4) /t, (5) / Jele Mértékegysége Számítása dő Töltés

Részletesebben

Elektromos áram, áramkör

Elektromos áram, áramkör Elektromos áram, áramkör Az anyagok szerkezete Az anyagokat atomok, molekulák építik fel, ezekben negatív elektromos állapotú elektronok és pozitív elektromos állapotú protonok vannak. Az atomokban ezek

Részletesebben

d) A gömbtükör csak domború tükröző felület lehet.

d) A gömbtükör csak domború tükröző felület lehet. Optika tesztek 1. Melyik állítás nem helyes? a) A Hold másodlagos fényforrás. b) A foszforeszkáló jel másodlagos fényforrás. c) A gyertya lángja elsődleges fényforrás. d) A szentjánosbogár megfelelő potrohszelvénye

Részletesebben

5. Pontszerű és merev test egyensúlya, egyszerű gépek.

5. Pontszerű és merev test egyensúlya, egyszerű gépek. FIZIKA KÖZÉPSZINTŰ ÉRETTSÉGI VIZSGA SZÓBELI TÉMAKÖREI a 2014-2015. tanév május-júniusi vizsgaidőszakában Vizsgabizottság: 12.a Vizsgáztató tanár: Bartalosné Agócs Irén 1. Egyenes vonalú mozgások dinamikai

Részletesebben

A kísérlet célkitűzései: A fénytani lencsék megismerése, tulajdonságainak kísérleti vizsgálata és felhasználási lehetőségeinek áttekintése.

A kísérlet célkitűzései: A fénytani lencsék megismerése, tulajdonságainak kísérleti vizsgálata és felhasználási lehetőségeinek áttekintése. A kísérlet célkitűzései: A fénytani lencsék megismerése, tulajdonságainak kísérleti vizsgálata és felhasználási lehetőségeinek áttekintése. Eszközszükséglet: Optika I. tanulói készlet főzőpohár, üvegkád,

Részletesebben

AZ EGYENÁRAM HATÁSAI

AZ EGYENÁRAM HATÁSAI AZ EGYENÁRAM HATÁSAI 1) HŐHATÁS Az elektromos áram hatására a zseblámpa világít, mert izzószála felmelegszik, izzásba jön. Oka: az áramló elektronok kölcsönhatásba kerülnek a vezető helyhez kötött részecskéivel,

Részletesebben

OPTIKA. Gömbtükrök képalkotása, leképezési hibák. Dr. Seres István

OPTIKA. Gömbtükrök képalkotása, leképezési hibák. Dr. Seres István OPTIKA Gömbtükrök képalkotása, Dr. Seres István Tükrök http://www.mozaik.info.hu/mozaweb/feny/fy_ft11.htm Seres István 2 http://fft.szie.hu Gömbtükrök Domború tükör képalkotása Jellegzetes sugármenetek

Részletesebben

OPTIKA. Vékony lencsék, gömbtükrök. Dr. Seres István

OPTIKA. Vékony lencsék, gömbtükrök. Dr. Seres István OPTIKA Vékony lencsék, gömbtükrök Dr. Seres István Geometriai optika 3. Vékony lencsék Kettős gömbelület (vékonylencse) énytörése R 1 és R 2 sugarú gömbelületek között n relatív törésmutatójú közeg o 2

Részletesebben

Elektromos áram. Vezetési jelenségek

Elektromos áram. Vezetési jelenségek Elektromos áram. Vezetési jelenségek Emlékeztető Elektromos áram: töltéshordozók egyirányú áramlása Áramkör részei: áramforrás, vezető, fogyasztó Áramköri jelek Emlékeztető Elektromos áram hatásai: Kémiai

Részletesebben

Jedlik Ányos Fizikaverseny 3. (országos) forduló 8. o A feladatlap

Jedlik Ányos Fizikaverseny 3. (országos) forduló 8. o A feladatlap ÖVEGES korcsoport Azonosító kód: Jedlik Ányos Fizikaverseny. (országos) forduló 8. o. 0. A feladatlap. feladat Egy 0, kg tömegű kiskocsi két végét egy-egy azonos osszúságú és erősségű, nyújtatlan rugóoz

Részletesebben

9. évfolyam. Osztályozóvizsga tananyaga FIZIKA

9. évfolyam. Osztályozóvizsga tananyaga FIZIKA 9. évfolyam Osztályozóvizsga tananyaga A testek mozgása 1. Egyenes vonalú egyenletes mozgás 2. Változó mozgás: gyorsulás fogalma, szabadon eső test mozgása 3. Bolygók mozgása: Kepler törvények A Newtoni

Részletesebben

Fizika vizsgakövetelmény

Fizika vizsgakövetelmény Fizika vizsgakövetelmény A tanuló tudja, hogy a fizika alapvető megismerési módszere a megfigyelés, kísérletezés, mérés, és ezeket mindig valamilyen szempont szerint végezzük. Legyen képes fizikai jelenségek

Részletesebben

A FIZIKA KÖZÉPSZINTŰ SZÓBELI VIZSGA TÉMAKÖREI 2015. június

A FIZIKA KÖZÉPSZINTŰ SZÓBELI VIZSGA TÉMAKÖREI 2015. június A FIZIKA KÖZÉPSZINTŰ SZÓBELI VIZSGA TÉMAKÖREI 2015. június I. Mechanika Newton törvényei Egyenes vonalú mozgások Munka, mechanikai energia Pontszerű és merev test egyensúlya, egyszerű gépek Periodikus

Részletesebben

Lencse típusok Sík domború 2x Homorúan domború Síkhomorú 2x homorú domb. Homorú

Lencse típusok Sík domború 2x Homorúan domború Síkhomorú 2x homorú domb. Homorú Jegyzeteim 1. lap Fotó elmélet 2015. október 9. 14:42 Lencse típusok Sík domború 2x Homorúan domború Síkhomorú 2x homorú domb. Homorú Kardinális elemek A lencse képalkotását meghatározó geometriai elemek,

Részletesebben

Mágneses mező jellemzése

Mágneses mező jellemzése pólusok dipólus mező mező jellemzése vonalak pólusok dipólus mező kölcsönhatás A mágnesek egymásra és a vastárgyakra erőhatást fejtenek ki. vonalak vonzó és taszító erő pólusok dipólus mező pólusok északi

Részletesebben

Mágnesesség, indukció, váltakozó áram Tudománytörténeti háttér Már i. e. 600 körül Thalész felfedezte, hogy Magnesia város mellett vannak olyan

Mágnesesség, indukció, váltakozó áram Tudománytörténeti háttér Már i. e. 600 körül Thalész felfedezte, hogy Magnesia város mellett vannak olyan Mágnesesség, indukció, váltakozó áram Tudománytörténeti háttér Már i. e. 600 körül Thalész felfedezte, hogy Magnesia város mellett vannak olyan talált ércek, amelyek vonzzák a vasat. Ezeket mágnesnek nevezték

Részletesebben

EÖTVÖS LABOR EÖTVÖS JÓZSEF GIMNÁZIUM TATA FELADATLAPOK FIZIKA. 8. évfolyam, tehetséggondozó szakkör. Csalai Lajos

EÖTVÖS LABOR EÖTVÖS JÓZSEF GIMNÁZIUM TATA FELADATLAPOK FIZIKA. 8. évfolyam, tehetséggondozó szakkör. Csalai Lajos FELADATLAPOK FIZIKA 8. évfolyam, tehetséggondozó szakkör Csalai Lajos ajánlott korosztály: 8. évfolyam, tehetséggondozó szakkör! GYÜMÖLCSELEM fizika-8- BALESETVÉDELEM, BETARTANDÓ SZABÁLYOK, AJÁNLÁSOK Az

Részletesebben

Tanmenet. Fizika 8. évfolyam. Bevezető

Tanmenet. Fizika 8. évfolyam. Bevezető Tanmenet Fizika 8. évfolyam Bevezető A tanmenet a Műszaki Kiadó által 2002-ben megjelentetett és 2008-ban átdolgozott: Fizika tankönyv 8. osztályosoknak (Szerzők: Gulyás János, dr. Honyek Gyula, Markovits

Részletesebben

Mágneses indukcióvektor begyakorló házi feladatok

Mágneses indukcióvektor begyakorló házi feladatok Mágneses indukcióvektor begyakorló házi feladatok 1. Egy vezető keret (lapos tekercs) területe 10 cm 2 ; benne 8A erősségű áram folyik, a menetek száma 20. A keretre ható legnagyobb forgatónyomaték 0,005

Részletesebben

Ohm törvénye. A mérés célkitűzései: Ohm törvényének igazolása mérésekkel.

Ohm törvénye. A mérés célkitűzései: Ohm törvényének igazolása mérésekkel. A mérés célkitűzései: Ohm törvényének igazolása mérésekkel. Eszközszükséglet: Elektromos áramkör készlet (kapcsolótábla, áramköri elemek) Digitális multiméter Vezetékek, krokodilcsipeszek Tanulói tápegység

Részletesebben

Egyenáram. Áramkörök jellemzése Fogyasztók és áramforrások kapcsolása Az áramvezetés típusai

Egyenáram. Áramkörök jellemzése Fogyasztók és áramforrások kapcsolása Az áramvezetés típusai Egyenáram Áramkörök jellemzése Fogyasztók és áramforrások kapcsolása Az áramvezetés típusai Elektromos áram Az elektromos töltéshordozók meghatározott irányú rendezett mozgását elektromos áramnak nevezzük.

Részletesebben

Feladatlap X. osztály

Feladatlap X. osztály Feladatlap X. osztály 1. feladat Válaszd ki a helyes választ. Két test fajhője közt a következő összefüggés áll fenn: c 1 > c 2, ha: 1. ugyanabból az anyagból vannak és a tömegük közti összefüggés m 1

Részletesebben

2. Miért hunyorognak a csillagok? Melyik az egyetlen helyes válasz? a. A Föld légkörének változó törésmutatója miatt Hideg-meleg levegő

2. Miért hunyorognak a csillagok? Melyik az egyetlen helyes válasz? a. A Föld légkörének változó törésmutatója miatt Hideg-meleg levegő 1. Milyen képet látunk a karácsonyfán lévı üveggömbökben? a. Egyenes állású, kicsinyített képet. mert c. Egyenes állású, nagyított képet. domborótükör d. Fordított állású, nagyított képet. b. Fordított

Részletesebben

A töltéshordozók meghatározott irányú rendezett mozgását elektromos áramnak nevezzük. Az áram irányán a pozitív részecskék áramlási irányát értjük.

A töltéshordozók meghatározott irányú rendezett mozgását elektromos áramnak nevezzük. Az áram irányán a pozitív részecskék áramlási irányát értjük. Elektromos mezőben az elektromos töltésekre erő hat. Az erő hatására az elektromos töltések elmozdulnak, a mező munkát végez. A töltéshordozók meghatározott irányú rendezett mozgását elektromos áramnak

Részletesebben

TestLine - Csefi tesztje-01 Minta feladatsor

TestLine - Csefi tesztje-01 Minta feladatsor TestLine - sefi tesztje-01 FIZIK KÖZÉPSZINTŰ ÍRÁSELI VIZSG TESZTKÉRDÉSEI 2010. május 18. 1. Melyik mértékegység lehet a gyorsulás mértékegysége? (1 helyes válasz) W/J. J/kg. N/kg. 2. Hogyan változik egy

Részletesebben

Áram mágneses hatása, elektromágnes, váltakozó áram előállítása, transzformálása

Áram mágneses hatása, elektromágnes, váltakozó áram előállítása, transzformálása Áram mágneses hatása, elektromágnes, váltakozó áram előállítása, transzformálása A feltekercselt vezeték; tekercs, amelyben áram folyik, rúdmágnesként viselkedik, olyan mágneses tere lesz, mint a rúdmágnesnek.

Részletesebben

71. A lineáris és térfogati hőtágulási tényező közötti összefüggés:

71. A lineáris és térfogati hőtágulási tényező közötti összefüggés: Összefüggések: 69. Lineáris hőtágulás: Hosszváltozás l = α l 0 T Lineáris hőtágulási Kezdeti hossz Hőmérsékletváltozás 70. Térfogati hőtágulás: Térfogatváltozás V = β V 0 T Hőmérsékletváltozás Térfogati

Részletesebben

A semleges testeket a + és a állapotú anyagok is vonzzák. Elnevezés: töltés: a negatív állapotú test negatív töltéssel, a pozitív állapotú test

A semleges testeket a + és a állapotú anyagok is vonzzák. Elnevezés: töltés: a negatív állapotú test negatív töltéssel, a pozitív állapotú test Elektromosság Elektromos alapjelenségek Egymással szorosan érintkező ( pl. megdörzsölt) felületű anyagok a szétválás után elektromos állapotba kerülnek. Azonos elektromos állapotú anyagok taszítják egymást,

Részletesebben

Mérés: Millikan olajcsepp-kísérlete

Mérés: Millikan olajcsepp-kísérlete Mérés: Millikan olajcsepp-kísérlete Mérés célja: 1909-ben ezt a mérést Robert Millikan végezte el először. Mérése során meg tudta határozni az elemi részecskék töltését. Ezért a felfedezéséért Nobel-díjat

Részletesebben

5. A súrlódás. Kísérlet: Mérje meg a kiadott test és az asztal között mennyi a csúszási súrlódási együttható!

5. A súrlódás. Kísérlet: Mérje meg a kiadott test és az asztal között mennyi a csúszási súrlódási együttható! FIZIKA KÖZÉPSZINTŰ SZÓBELI VIZSGA TÉMAKÖREI ÉS KÍSÉRLETEI a 2015/2016. tanév május-júniusi vizsgaidőszakában Vizsgabizottság: 12.a Vizsgáztató tanár: Bartalosné Agócs Irén 1. Egyenes vonalú mozgások dinamikai

Részletesebben

LY) (1) párhuzamosan, (2) párhuzamosan

LY) (1) párhuzamosan, (2) párhuzamosan 1. Egyenes vezető mágneses terében pozitív, pontszerű töltés mozog. Határozzuk meg a töltésre ható erő (Lorentz-erő) irányát az ábrán látható esetben. NY) A rajz síkjából kifelé mutat az erő. TY) A vezető

Részletesebben

Mágneses erőtér. Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat. A villamos forgógépek mutatós műszerek működésének alapja

Mágneses erőtér. Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat. A villamos forgógépek mutatós műszerek működésének alapja Mágneses erőtér Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat A villamos forgógépek mutatós műszerek működésének alapja Magnetosztatikai mező: nyugvó állandó mágnesek és egyenáramok időben

Részletesebben

Verseny kérdések az általános iskola nyolcadik osztálya számára

Verseny kérdések az általános iskola nyolcadik osztálya számára Verseny kérdések az általános iskola nyolcadik osztálya számára 1. Áramütés esetén a mentők érkezéséig elsősegélynyújtást, szívmasszázst és lélegeztetést kell végezni a sérültön. 2. A földelés szigetelése

Részletesebben

MÁGNESES INDUKCIÓ VÁLTÓÁRAM VÁLTÓÁRAMÚ HÁLÓZATOK

MÁGNESES INDUKCIÓ VÁLTÓÁRAM VÁLTÓÁRAMÚ HÁLÓZATOK MÁGNESES NDUKCÓ VÁLTÓÁRAM VÁLTÓÁRAMÚ HÁLÓZATOK Mágneses indukció Mozgási indukció v B Vezetőt elmozdítunk mágneses térben B-re merőlegesen, akkor a vezetőben áram keletkezik, melynek iránya az őt létrehozó

Részletesebben

ELEKTROMÁGNESES REZGÉSEK. a 11. B-nek

ELEKTROMÁGNESES REZGÉSEK. a 11. B-nek ELEKTROMÁGNESES REZGÉSEK a 11. B-nek Elektromos Kondenzátor: töltés tárolására szolgáló eszköz (szó szerint összesűrít) Kapacitás (C): hány töltés fér el rajta 1 V-on A homogén elektromos mező energiát

Részletesebben

TARTALOMJEGYZÉK. Előszó 9

TARTALOMJEGYZÉK. Előszó 9 TARTALOMJEGYZÉK 3 Előszó 9 1. Villamos alapfogalmak 11 1.1. A villamosság elő for d u lá s a é s je le n t ősége 12 1.1.1. Történeti áttekintés 12 1.1.2. A vil la mos ság tech ni kai, tár sa dal mi ha

Részletesebben

Programozható vezérlő rendszerek. Elektromágneses kompatibilitás II.

Programozható vezérlő rendszerek. Elektromágneses kompatibilitás II. Elektromágneses kompatibilitás II. EMC érintkező védelem - az érintkezők nyitása és zárása során ún. átívelések jönnek létre - ezek csökkentik az érintkezők élettartamát - és nagyfrekvenciás EM sugárzások

Részletesebben

ÖVEGES JÓZSEF FIZIKAVERSENY

ÖVEGES JÓZSEF FIZIKAVERSENY ÖVEGES JÓZSEF FZKAVERSENY skolai forduló Számításos feladatok Oldd meg az alábbi számításos feladatokat! ibátlan megoldás esetén a szöveg után látható kis táblázat jobb felső sarkában feltüntetett pontszámot

Részletesebben

OPTIKA. Optikai rendszerek. Dr. Seres István

OPTIKA. Optikai rendszerek. Dr. Seres István OPTIKA Dr. Seres István Nagyító képalkotása Látszólagos, egyenes állású nagyított kép Nagyítás: k = - 25 cm (tisztánlátás) 1 f N 1 t k t 1 0,25 0,25 1 t 1 t 0,25 f 0,25 Seres István 2 http://fft.szie.hu

Részletesebben

Bevezető fizika (infó), 8. feladatsor Egyenáram, egyenáramú áramkörök 2.

Bevezető fizika (infó), 8. feladatsor Egyenáram, egyenáramú áramkörök 2. evezető fizika (infó), 8 feladatsor Egyenáram, egyenáramú áramkörök 04 november, 3:9 mai órához szükséges elméleti anyag: Kirchhoff törvényei: I Minden csomópontban a befolyó és kifolyó áramok előjeles

Részletesebben

FIZIKA KÖZÉPSZINTŐ SZÓBELI FIZIKA ÉRETTSÉGI TÉTELEK Premontrei Szent Norbert Gimnázium, Gödöllı, 2012. május-június

FIZIKA KÖZÉPSZINTŐ SZÓBELI FIZIKA ÉRETTSÉGI TÉTELEK Premontrei Szent Norbert Gimnázium, Gödöllı, 2012. május-június 1. Egyenes vonalú mozgások kinematikája mozgásokra jellemzı fizikai mennyiségek és mértékegységeik. átlagsebesség egyenes vonalú egyenletes mozgás egyenes vonalú egyenletesen változó mozgás mozgásokra

Részletesebben

Fizika 8. évfolyam II. félév Tantárgytömbösített oktatás. Tanmenet. Készítette: Nagy Gusztávné

Fizika 8. évfolyam II. félév Tantárgytömbösített oktatás. Tanmenet. Készítette: Nagy Gusztávné Fizika 8. évfolyam II. félév Tantárgytömbösített oktatás Tanmenet Készítette: Nagy Gusztávné A tantárgytömbösített órák megvalósítására kijelölt tanítási hetek: Február 2010 Hé: Ke: Sze: Csü: Pé: Szo:

Részletesebben

TANMENET FIZIKA. 8. osztály. Elektromosság, fénytan

TANMENET FIZIKA. 8. osztály. Elektromosság, fénytan TANMENET FIZIKA 8. osztály Elektromosság, fénytan MOZAIK KIADÓ SZEGED, 2009 Készítette: BONIFERT DOMONKOSNÉ DR. főiskolai docens DR. KÖVESDI KATALIN főiskolai docens SCHWARTZ KATALIN általános iskolai

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2008. november 3. FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2008. november 3. 14:00 Az írásbeli vizsga időtartama: 120 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM

Részletesebben

TANANYAGBEOSZTÁS. Kompetencia alapú fizika 8. osztály. A kompetencia alapú oktatás, egyenlő hozzáférés megteremtése Mátészalkán

TANANYAGBEOSZTÁS. Kompetencia alapú fizika 8. osztály. A kompetencia alapú oktatás, egyenlő hozzáférés megteremtése Mátészalkán TANANYAGBEOSZTÁS TÁMOP 3.1.4. 08/2-2008-0149 A kompetencia alapú oktatás, egyenlő hozzáférés megteremtése Mátészalkán Implementáló pedagógus: Nagy Gusztávné Implementációs terület: Kompetencia alapú fizika

Részletesebben

1. feladat Alkalmazzuk a mólhő meghatározását egy gázra. Izoterm és adiabatikus átalakulásokra a következőt kapjuk:

1. feladat Alkalmazzuk a mólhő meghatározását egy gázra. Izoterm és adiabatikus átalakulásokra a következőt kapjuk: Válaszoljatok a következő kérdésekre: 1. feladat Alkalmazzuk a mólhő meghatározását egy gázra. Izoterm és adiabatikus átalakulásokra a következőt kapjuk: a) zéró izoterm átalakulásnál és végtelen az adiabatikusnál

Részletesebben

TANANYAGBEOSZTÁS. Kompetencia alapú fizika 8. osztály. A kompetencia alapú oktatás, egyenlő hozzáférés megteremtése Mátészalkán

TANANYAGBEOSZTÁS. Kompetencia alapú fizika 8. osztály. A kompetencia alapú oktatás, egyenlő hozzáférés megteremtése Mátészalkán TANANYAGBEOSZTÁS TÁMOP 3.1.4. 08/2-2008-0149 A kompetencia alapú oktatás, egyenlő hozzáférés megteremtése Mátészalkán Implementáló pedagógus: Nagy Gusztávné Implementációs terület: Kompetencia alapú fizika

Részletesebben

Elektromos áram, áramkör, ellenállás

Elektromos áram, áramkör, ellenállás Elektromos áram, áramkör, ellenállás Az anyagok szerkezete Az anyagokat atomok, molekulák építik fel, ezekben negatív elektromos állapotú elektronok és pozitív elektromos állapotú protonok vannak. Az atomokban

Részletesebben

1. ábra Tükrös visszaverődés 2. ábra Szórt visszaverődés 3. ábra Gombostű kísérlet

1. ábra Tükrös visszaverődés 2. ábra Szórt visszaverődés 3. ábra Gombostű kísérlet A kísérlet célkitűzései: A fény visszaverődésének kísérleti vizsgálata, a fényvisszaverődés törvényének megismerése, síktükrök képalkotásának vizsgálata. Eszközszükséglet: szivacslap A/4 írólap vonalzó,

Részletesebben

Elektrosztatika. 1.2. Mekkora két egyenlő nagyságú töltés taszítja egymást 10 m távolságból 100 N nagyságú erővel? megoldás

Elektrosztatika. 1.2. Mekkora két egyenlő nagyságú töltés taszítja egymást 10 m távolságból 100 N nagyságú erővel? megoldás Elektrosztatika 1.1. Mekkora távolságra van egymástól az a két pontszerű test, amelynek töltése 2. 10-6 C és 3. 10-8 C, és 60 N nagyságú erővel taszítják egymást? 1.2. Mekkora két egyenlő nagyságú töltés

Részletesebben

írásbeli vizsgatevékenység

írásbeli vizsgatevékenység Vizsgarészhez rendelt követelménymodul azonosítója, megnevezése: 0896-06 Villanyszerelési munka előkészítése, dokumentálása Vizsgarészhez rendelt vizsgafeladat száma, megnevezése: 0896-06/3 Mérési feladat

Részletesebben

A kísérlet, mérés megnevezése célkitűzései: Váltakozó áramú körök vizsgálata, induktív ellenállás mérése, induktivitás értelmezése.

A kísérlet, mérés megnevezése célkitűzései: Váltakozó áramú körök vizsgálata, induktív ellenállás mérése, induktivitás értelmezése. A kísérlet, mérés megnevezése célkitűzései: Váltakozó áramú körök vizsgálata, induktív ellenállás mérése, induktivitás értelmezése. Eszközszükséglet: tanulói tápegység funkcionál generátor tekercsek digitális

Részletesebben

= Φ B(t = t) Φ B (t = 0) t

= Φ B(t = t) Φ B (t = 0) t 4. Gyakorlat 32B-3 Egy ellenállású, r sugarú köralakú huzalhurok a B homogén mágneses erőtér irányára merőleges felületen fekszik. A hurkot gyorsan, t idő alatt 180 o -kal átforditjuk. Számitsuk ki, hogy

Részletesebben

Villamos mérések. Analóg (mutatós) műszerek. Készítette: Füvesi Viktor doktorandusz

Villamos mérések. Analóg (mutatós) műszerek. Készítette: Füvesi Viktor doktorandusz Villamos mérések Analóg (mutatós) műszerek Készítette: Füvesi Viktor doktorandusz rodalom UrayVilmos Dr. Szabó Szilárd: Elektrotechnika o.61-79 1 Alapfogalmak Mutatós műszerek Legegyszerűbbek Közvetlenül

Részletesebben

A munkavégzés a rendszer és a környezete közötti energiacserének a D hőátadástól eltérő valamennyi más formája.

A munkavégzés a rendszer és a környezete közötti energiacserének a D hőátadástól eltérő valamennyi más formája. 11. Transzportfolyamatok termodinamikai vonatkozásai 1 Melyik állítás HMIS a felsoroltak közül? mechanikában minden súrlódásmentes folyamat irreverzibilis. disszipatív folyamatok irreverzibilisek. hőmennyiség

Részletesebben

Szünetmentes áramforrások. Felhasználói Kézikönyv PRO2050 - PRO2120 500VA 1200VA

Szünetmentes áramforrások. Felhasználói Kézikönyv PRO2050 - PRO2120 500VA 1200VA Szünetmentes áramforrások Felhasználói Kézikönyv PRO2050 - PRO2120 500VA 1200VA 1. Bemutatás Az UPS más néven szünetmentes áramforrás megvédi az ön elektromos berendezéseit, illetve a hálózat kimaradása

Részletesebben

Az áram hatásai, az áram munkája, teljesítménye Hőhatás Az áramló elektronok beleütköznek a vezető anyag részecskéibe, ezért azok gyorsabb

Az áram hatásai, az áram munkája, teljesítménye Hőhatás Az áramló elektronok beleütköznek a vezető anyag részecskéibe, ezért azok gyorsabb Az áram hatásai, az áram munkája, teljesítménye Hőhatás Az áramló elektronok beleütköznek a vezető anyag részecskéibe, ezért azok gyorsabb rezgőmozgást végeznek, az anyag felmelegszik. A világító volfram-izzólámpa

Részletesebben

OPTIKA-FÉNYTAN. A fény elektromágneses hullám, amely homogén közegben egyenes vonalban terjed, terjedési sebessége a közeg anyagi minőségére jellemző.

OPTIKA-FÉNYTAN. A fény elektromágneses hullám, amely homogén közegben egyenes vonalban terjed, terjedési sebessége a közeg anyagi minőségére jellemző. OPTIKA-FÉNYTAN A fény elektromágneses hullám, amely homogén közegben egyenes vonalban terjed, terjedési sebessége a közeg anyagi minőségére jellemző. A fény sebessége: vákuumban közelítőleg: c km 300000

Részletesebben

FIZIKA VIZSGATEMATIKA

FIZIKA VIZSGATEMATIKA FIZIKA VIZSGATEMATIKA osztályozó vizsga írásbeli szóbeli időtartam 60p 10p arány az értékelésnél 60% 40% A vizsga értékelése jeles (5) 80%-tól jó (4) 65%-tól közepes (3) 50%-tól elégséges (2) 35%-tól Ha

Részletesebben

GEOMETRIAI OPTIKA I.

GEOMETRIAI OPTIKA I. Elméleti háttér GEOMETRIAI OPTIKA I. Törésmutató meghatározása a törési törvény alapján Snellius-Descartes törvény Az új közeg határához érkező fény egy része behatol az új közegbe, és eközben általában

Részletesebben

A NAPFÉNY ÉS A HŐ I. A FÉNY TULAJDONSÁGAINAK MEGFIGYELÉSE. Dátum:

A NAPFÉNY ÉS A HŐ I. A FÉNY TULAJDONSÁGAINAK MEGFIGYELÉSE. Dátum: I. A FÉNY TULAJDONSÁGAINAK MEGFIGYELÉSE A NAPFÉNY ÉS A HŐ 1. A meleg éghajlatú tengerparti országokban való kirándulásaitok során bizonyára láttatok a házak udvarán fekete tartályokat kifolyónyílással

Részletesebben

Nagyállattenyésztési és Termeléstechnológiai Tanszék VILLAMOSÍTÁS. Gépjármű-villamosság. Készítette: Dr.Desztics Gyula

Nagyállattenyésztési és Termeléstechnológiai Tanszék VILLAMOSÍTÁS. Gépjármű-villamosság. Készítette: Dr.Desztics Gyula Nagyállattenyésztési és Termeléstechnológiai Tanszék VILLAMOSÍTÁS Gépjármű-villamosság Készítette: Dr.Desztics Gyula Járművek elektromos berendezései A traktorok és közúti járművek villamos berendezései

Részletesebben

33 522 04 1000 00 00 Villanyszerelő 4 Villanyszerelő 4

33 522 04 1000 00 00 Villanyszerelő 4 Villanyszerelő 4 A 10/2007 (II. 27.) SzMM rendelettel módosított 1/2006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,

Részletesebben

Hobbi Elektronika. Bevezetés az elektronikába: Ohm törvény, Kirchoff törvényei, soros és párhuzamos kapcsolás

Hobbi Elektronika. Bevezetés az elektronikába: Ohm törvény, Kirchoff törvényei, soros és párhuzamos kapcsolás Hobbi Elektronika Bevezetés az elektronikába: Ohm törvény, Kirchoff törvényei, soros és párhuzamos kapcsolás 1 Felhasznált irodalom Hodossy László: Elektrotechnika I. Torda Béla: Bevezetés az Elektrotechnikába

Részletesebben

A teljes elektromágneses színkép áttekintése

A teljes elektromágneses színkép áttekintése Az elektromágneses spektrum. Geometriai optika: visszaverődés, törés, diszperzió. Lencsék és tükrök képalkotása (nevezetes sugarak, leképezési törvény) A teljes elektromágneses színkép áttekintése Az elektromágneses

Részletesebben

Geometriai optika. Alapfogalmak. Alaptörvények

Geometriai optika. Alapfogalmak. Alaptörvények Alapfogalmak A geometriai optika a fénysugár fogalmára épül, mely homogén közegben egyenes vonalban terjed, két közeg határán visszaverődik és/vagy megtörik. Alapfogalmak: 1. Fényforrás: az a test, amely

Részletesebben

Elektromos áramerősség

Elektromos áramerősség Elektromos áramerősség Két különböző potenciálon lévő fémet vezetővel összekötve töltések áramlanak amíg a potenciál ki nem egyenlítődik. Az elektromos áram iránya a pozitív töltéshordozók áramlási iránya.

Részletesebben