Assembly. Iványi Péter

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Assembly. Iványi Péter"

Átírás

1 Assembly Iványi Péter

2 További Op. rsz. funkcionalitások PSP címének lekérdezése mov ah, 62h int 21h Eredmény: BX = PSP szegmens címe

3 További Op. rsz. funkcionalitások Paraméterek kimásolása mov di, parameter mov ah, 62h int 21h mov ds, bx mov si, 80h mov cl, [si] inc si rep movsb... parameter resb 256

4 További Op. rsz. funkcionalitások File létrehozása FCB módszer HANDLE segítségével mov ah, 3ch mov cx, attributum mov dx, file_neve ; végén nulla,ds:dx int 21h Eredmény: AX = HANDLE, ezzel lehet rá hivatkozni Carry flag = 1, akkor hiba volt

5 További Op. rsz. funkcionalitások Attribútum: CX 00h 01h 02h 04h 08h 10h Attribútum Normál Csak-olvasható (read-only) Rejtett (hidden) Rendszer (system) Archive Könyvtár (directory)

6 További Op. rsz. funkcionalitások File megnyitása mov ah, 3dh mov al, mode mov dx, file_neve ; végén nulla,ds:dx int 21h Eredmény: AX = HANDLE, ezzel lehet rá hivatkozni Carry flag = 1, akkor hiba volt

7 További Op. rsz. funkcionalitások Mód: AL Mód Csak olvasás Csak írás Írás és olvasás

8 További Op. rsz. funkcionalitások File lezárása mov ah, 3eh mov bx, handle int 21h

9 További Op. rsz. funkcionalitások File olvasás mov ah, 3fh mov bx, handle mov cx, mennyit_olvasson mov dx, ide_olvas ; DS:DX int 21h Eredmény: AX = ennyi byte-ot olvasott Ha Carry flag = 1, akkor hiba volt

10 További Op. rsz. funkcionalitások File írása mov ah, 40h mov bx, handle mov cx, mennyit_írjon mov dx, innen_írjon ; DS:DX int 21h Eredmény: Ha CX=0 akkor a file végéhez fűz hozzá

11 További Op. rsz. funkcionalitások AX=4800h BX=kérendő memória mérete paragrafusban INT 21h Eredmény AX=a lefoglalt memória címe Ha Carry flag=1 akkor hiba volt

12 További Op. rsz. funkcionalitások AX=4900h ES=foglalás során az AX regiszterben megkapott cím INT 21h

13 Példa mov ax, 4800h ; memória foglalás mov bx, 4096 ; 64 Kbyte hely int 21h mov bp, ax mov es, bp... mov ax, 4900h ; memória felszabadítás mov es,bp int 21h mov ax, 4c00h int 21h

14 Optimalizálás

15 Optimalizálás Premature optimization is the root of the evil Csak akkor és ott optimalizáljunk ahol számít Végezzünk méréseket

16 80486 mikroprocesszor Busz Fetch 1 Fetch 2 Fetch 3 Fetch 4 Tárol 1 Fetch 5 Fetch 6 Dekód 1 Dekód 2 Dekód 3 Dekód 4 Vár Dekód 5 Dekódoló egység Futtat 1 Futtat 2 Futtat 3 Futtat 4 Vár Végrahajtó egység Címzés 1 Vár Vár Címzés 2 Címző egység pipelining

17 Address generation interlock (AGI) Memória cím kiszámítása egy órajel ciklust igényel A pipeline-ban általában külön lépés/fázis, addig számoljuk míg az előző utasítást végrehajtjuk DE Ha a címzés függ az előző utasítástól akkor egy extra órajelciklust várni kell

18 Példa ADD EBX, 4 MOV EAX, [EBX] Elkerülés módja: Utasítást rakunk közéjük ADD EBX, 4 NOP MOV EAX, [EBX] AGI Picit más utasításokat használunk MOV EAX, [EBX+4] ADD EBX, 4

19 AGI A stack pointer(sp)-en keresztül is előfordulhat AGI Például: PUSH, POP, CALL, RET esetén ha előtte MOV, ADD, SUB műveletet használtunk az SP-vel ADD ESP,4 POP ; AGI várakozás MOV ESP, EBP RET ; AGI várakozás

20 PPro, PII, PIII AGI Nincs AGI memória olvasásra Memória írás esetén még mindig van, de nem túl jelentős

21 Utasítás párosítás A Pentium processzornak két végrehajtó egysége van Egy órajel ciklus alatt két utasítást lehet végrehajtani Nem párosíthatók az utasítások Ha az utasítások nem párosíthatóak A két utasítás között regiszter függőség van Az utasítások nincsennek a utasítás cache-ben

22 Nem párosítható utasítások Bit léptetés vagy bit forgatás ha a CL regisztert használjuk A komplex matematikai műveletek: MUL, DIV Kiterjesztett utasítások: RET, ENTER, PUSHA, REP STOS Bizonyos mat coprocesszor műveletek: FSCALE, FLDCW Szegmensek közötti utasítások: PUSH szegmens, CALL far cím

23 Párosítható utasítások Legtöbb ALU utasítás: ADD, INC, XOR Összehasonlító utasítások: CMP, TEST Regisztereket használó PUSH és POP

24 Regiszter függőség Az első utasítás frissíti a regisztert amit a második utasítás használ MOV EAX, 8 MOV [EBP], EAX Mindkét utasítás ugyanabba a regiszterbe ír MOV EAX, 8 MOV EAX, [EBP]

25 Regiszter függőség, de párosítható Az első utasítás olvas a regiszterből a második ír, az párosítható: MOV EAX, EBX MOV EBX, [EBP]

26 32 bites regiszterek A 32 bites utasítások végrehajtása gyorsabb mint a 16 bites utasításoké Az EAX regiszter használata egy byte-al rövidebb utasítást eredményez DS használata ES helyett szintén gyorsabb

27 Egyéb optimalizálás Kerüljük a felesleges utasításokat: SUB AX, CX CMP AX, 0 JZ címke ; beállítja a státuszt ; ez is beállítja a státuszt

28 Egyéb optimalizálás A rövidebb op kód általában gyorsabb végrehajtást is jelent Nem mindig igaz A kevesebb utasítás gyorsabb végrehajtást jelent Nem mindig igaz

29 Egyéb optimalizálás Eredeti MOV AX, 0 SHL AX, 1 Optimalizált XOR AX, AX ADD AX, AX

30 Egyéb optimalizálás Használjunk biteltolást szorzásra MUL helyett SHL Használhatjuk a LEA utasítást is LEA CX, [DX+DX*4] ; CX = DX * 5

31 Egyéb optimalizálás Kerüljük a komplex utasításokat LOOP, ENTER, LEAVE Például LOOP utasítás helyett DEC CX JNZ ciklus Így bármely regiszter használható Gyorsabb

32 Egyéb optimalizálás Használjuk a TEST utasítást az AND helyett annak ellenőrzésére hogy az érték zérus-e Nem pazaroljuk az időt, hogy eltároljuk az eredményt

33 Egyéb optimalizálás Bizonyos utasítások esetén ha az AX vagy EAX regisztert használjuk akkor rövidebb lesz a gépi kód add ecx, C add eax,

34 Egyéb optimalizálás Kerüljük, hogy a regiszterekbe folyamatosan adatot töltsünk, ha egyszer betöltöttük az adatot, akkor őrizzük meg

35 Egyéb optimalizálás LODSx, MOVSx, STOSx utasítások gyorsabbak 386 processzoron mint a 486-os processzoron

assume CS:Code, DS:Data, SS:Stack Start mov dl, 100 mov dh, 100 push dx Rajz

assume CS:Code, DS:Data, SS:Stack Start mov dl, 100 mov dh, 100 push dx Rajz Feladat5: rajzolo.asm Feladat meghatározása A feladat célja bemutatni egy egyszerű grafikai program segítségével a közvetlen címzést (grafikus VGA 320*200). A program a kurzor mozgató gombok segítségével

Részletesebben

Assembly Utasítások, programok. Iványi Péter

Assembly Utasítások, programok. Iványi Péter Assembly Utasítások, programok Iványi Péter Assembly programozás Egyszerű logikán alapul Egy utasítás CSAK egy dolgot csinál Magas szintű nyelven: x = 5 * z + y; /* 3 darab művelet */ Assembly: Szorozzuk

Részletesebben

Előszó avagy Murphy és az optimizmus. Tartalomjegyzék

Előszó avagy Murphy és az optimizmus. Tartalomjegyzék Előszó avagy Murphy és az optimizmus Tartalomjegyzék Tartalomjegyzék...3 Előszó avagy Murphy és az optimizmus...7 1. Fejezet...8 A PC (DOS) filekezelésetm "filekezelése"...8 Egy file létrehozása...8 File

Részletesebben

Assembly utasítások listája

Assembly utasítások listája Assembly utasítások listája Bevezetés: Ebben a segédanyagban a fontosabb assembly utasításokat szedtem össze. Az utasítások csoportosítva vannak. A fontos kategóriába azok az utasítások tartoznak, amiknek

Részletesebben

Balaton Marcell Balázs. Assembly jegyzet. Az Assembly egy alacsony szintű nyelv, mely a gépi kódú programozás egyszerűsítésére született.

Balaton Marcell Balázs. Assembly jegyzet. Az Assembly egy alacsony szintű nyelv, mely a gépi kódú programozás egyszerűsítésére született. Balaton Marcell Balázs Assembly jegyzet Az Assembly egy alacsony szintű nyelv, mely a gépi kódú programozás egyszerűsítésére született. 1. Regiszterek Regiszterek fajtái a. Szegmensregiszterek cs (code):

Részletesebben

Assembly Rekurzív függvények, EXE, C programok. Iványi Péter

Assembly Rekurzív függvények, EXE, C programok. Iványi Péter Assembly Rekurzív függvények, EXE, C programok Iványi Péter Algoritmusok előadás Rekurzív függvény FÜGGVÉNY nyomtat(n) print n HA n!= 0 nyomtat(n-1) ELÁGAZÁS VÉGE FÜGGVÉNY VÉGE Rekurzív függvény org 100h

Részletesebben

Digitális rendszerek. Utasításarchitektúra szintje

Digitális rendszerek. Utasításarchitektúra szintje Digitális rendszerek Utasításarchitektúra szintje Utasításarchitektúra Jellemzők Mikroarchitektúra és az operációs rendszer közötti réteg Eredetileg ez jelent meg először Sokszor az assembly nyelvvel keverik

Részletesebben

1. Az utasítás beolvasása a processzorba

1. Az utasítás beolvasása a processzorba A MIKROPROCESSZOR A mikroprocesszor olyan nagy bonyolultságú félvezető eszköz, amely a digitális számítógép központi egységének a feladatait végzi el. Dekódolja az uatasításokat, vezérli a műveletek elvégzéséhez

Részletesebben

A 32 bites x86-os architektúra regiszterei

A 32 bites x86-os architektúra regiszterei Memória címzési módok Jelen nayagrészben az Intel x86-os architektúrára alapuló 32 bites processzorok programozását tekintjük. Egy program futása során (legyen szó a program vezérléséről vagy adatkezelésről)

Részletesebben

Assembly Címzési módok. Iványi Péter

Assembly Címzési módok. Iványi Péter Assembly Címzési módok Iványi Péter Gépi kód Gépi kód = amit a CPU megért 1-13 byte hosszúak lehetnek az utasítások Kb. 20 000 variációja van a gépi kódú utasításoknak Számítógép architektúrától függ Feszültség

Részletesebben

Adatelérés és memóriakezelés

Adatelérés és memóriakezelés Adatelérés és memóriakezelés Jelen nayagrészben az Intel x86-os architektúrára alapuló 32 bites processzorok programozását tekintjük. Egy program futása során (legyen szó a program vezérléséről vagy adatkezelésről)

Részletesebben

Assembly. Iványi Péter

Assembly. Iványi Péter Assembly Iványi Péter Miért? Ma már ritkán készül program csak assembly-ben Általában bizonyos kritikus rutinoknál használják Miért nem használjuk? Magas szintű nyelven könnyebb programozni Nehéz más gépre

Részletesebben

találhatók. A memória-szervezési modell mondja meg azt, hogy miként

találhatók. A memória-szervezési modell mondja meg azt, hogy miként Memória címzési módok Egy program futása során (legyen szó a program vezérléséről vagy adatkezelésről) a program utasításai illetve egy utasítás argumentumai a memóriában találhatók. A memória-szervezési

Részletesebben

Aritmetikai utasítások I.

Aritmetikai utasítások I. Aritmetikai utasítások I. Az értékadó és aritmetikai utasítások során a címzési módok különböző típusaira látunk példákat. A 8086/8088-as mikroprocesszor memóriája és regiszterei a little endian tárolást

Részletesebben

Archi2 Gyak. (Processzorok Utasításszintű Kezelése) 2014 ősz

Archi2 Gyak. (Processzorok Utasításszintű Kezelése) 2014 ősz Archi2 Gyak (Processzorok Utasításszintű Kezelése) 2014 ősz Ajánlott irodalom Agárdi Gábor: Gyakorlati Assembly, LSI Oktatóközpont, 1996, ISBN 963 577 117 7 Agárdi G.: Gyakorlati Assembly haladóknak, LSI

Részletesebben

Bevezetés a számítástechnikába

Bevezetés a számítástechnikába Bevezetés a számítástechnikába, Címzési módok, Assembly Fodor Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék foa@almos.vein.hu 2010. november 2/9. ú utasítás

Részletesebben

assume CS:Code, DS:Data, SS:Stack Start: xor di, di mov si, 1 Torles int 10h mov dl, 40 xor bh, bh mov ah, 02h Kesleltet int 16h

assume CS:Code, DS:Data, SS:Stack Start: xor di, di mov si, 1 Torles int 10h mov dl, 40 xor bh, bh mov ah, 02h Kesleltet int 16h Fealadat3: labda.asm Feladat meghatározása A program célja az assembly rutinok időzítési lehetőségeinek bemutatása. Az időzítés az AH00, INT1Ah funkció segítségével történik. A program egy labda leesését

Részletesebben

A számok kiírása is alapvetően karakterek kiírásán alapul, azonban figyelembe kell venni, hogy a számjegyeket, mint karaktereket kell kiírni.

A számok kiírása is alapvetően karakterek kiírásán alapul, azonban figyelembe kell venni, hogy a számjegyeket, mint karaktereket kell kiírni. Példák számok kiírására A számok kiírása is alapvetően karakterek kiírásán alapul, azonban figyelembe kell venni, hogy a számjegyeket, mint karaktereket kell kiírni. Decimális számok kiírása Az alábbi

Részletesebben

Máté: Assembly programozás

Máté: Assembly programozás Dr. Máté Eörs docens Képfeldolgozás és Számítógépes Grafika Tanszék Árpád tér 2. II. em. 213 6196, 54-6196 (6396, 54-6396) http://www.inf.u-szeged.hu/~mate Tantárgy leírás: http://www.inf.u-szeged.hu/oktatas/kurzusleirasok/

Részletesebben

code segment para public 'code' assume cs:code, ds:code, es:nothing, ss:nothing

code segment para public 'code' assume cs:code, ds:code, es:nothing, ss:nothing Készítsen VIZSGA3.COM programot, amely a képernyő bal felső sarkában megjeleníti az egérgombok pillanatnyi állapotát. Azaz a "bal", "jobb", "mindkettő", "egyik sem" szövegeket írja ki, attól függően, hogy

Részletesebben

A Számítógépek felépítése, mőködési módjai

A Számítógépek felépítése, mőködési módjai Mechatronika, Optika és Gépészeti Informatika Tanszék Kovács Endre tud. Mts. A Számítógépek felépítése, mőködési módjai Mikroprocesszoros Rendszerek Felépítése Buszrendszer CPU OPERATÍV TÁR µ processzor

Részletesebben

Processzorok Utasításszintű Kezelése tavasz

Processzorok Utasításszintű Kezelése tavasz Processzorok Utasításszintű Kezelése 2014 tavasz Ajánlott irodalom Agárdi Gábor: Gyakorlati Assembly, LSI Oktatóközpont, 1996, ISBN 963 577 117 7 Agárdi G.: Gyakorlati Assembly haladóknak, LSI oktatóközpont,

Részletesebben

Gyakorló feladatok. /2 Maradék /16 Maradék /8 Maradék

Gyakorló feladatok. /2 Maradék /16 Maradék /8 Maradék Gyakorló feladatok Számrendszerek: Feladat: Ábrázold kettes számrendszerbe a 639 10, 16-os számrendszerbe a 311 10, 8-as számrendszerbe a 483 10 számot! /2 Maradék /16 Maradék /8 Maradék 639 1 311 7 483

Részletesebben

[cimke:] [feltétel] utasítás paraméterek [; megjegyzés]

[cimke:] [feltétel] utasítás paraméterek [; megjegyzés] Szoftver fejlesztés Egy adott mikroprocesszoros rendszer számára a szükséges szoftver kifejlesztése több lépésből áll: 1. Forrás nyelven megírt program(ok) lefordítása gépi kódra, amihez megfelelő fejlesztő

Részletesebben

Introduction to 8086 Assembly

Introduction to 8086 Assembly Introduction to 886 Assembly Lecture 7 D and N-D Arrays D Arrays 4 5 tabular data rows and columns 4 6 8 6 9 5 4 8 6 D Arrays 4 5 4 6 8 6 9 5 https://advancedmathclubsk.weebly.com/matrices.html 4 8 6 5

Részletesebben

Újrakonfigurálható technológiák nagy teljesítményű alkalmazásai

Újrakonfigurálható technológiák nagy teljesítményű alkalmazásai Újrakonfigurálható technológiák nagy teljesítményű alkalmazásai Gyakorlat: SSE utasításkészlet Szántó Péter BME MIT, FPGA Laboratórium Vektorizáció Inline assembly Minden fordító támogatja (kivéve VS x64

Részletesebben

Mi az assembly? Gyakorlatias assembly bevezető. Sokféle assembly van... Mit fogunk mi használni? A NASM fordítóprogramja. Assembly programok fordítása

Mi az assembly? Gyakorlatias assembly bevezető. Sokféle assembly van... Mit fogunk mi használni? A NASM fordítóprogramja. Assembly programok fordítása Mi az assembly Gyakorlatias assembly bevezető Fordítóprogramok előadás (A, C, T szakirány) programozási nyelvek egy csoportja gépközeli: az adott processzor utasításai használhatóak általában nincsenek

Részletesebben

Aritmetikai utasítások

Aritmetikai utasítások Aritmetikai utasítások Az értékadó és aritmetikai utasítások során a címzési módok különböző típusaira látunk példát. A 8086/8088-as processzor memóriája és regiszterei a little endian tárolást követik,

Részletesebben

Paraméter átadás regisztereken keresztül

Paraméter átadás regisztereken keresztül Eljárások paramétereinek átadási módjai Az eljárások deklarációjánál nincs mód arra, hogy paramétereket adjunk meg, ezért más, közvetett módon tudunk átadni paramétereket az eljárásoknak. Emlékeztetőül:

Részletesebben

2016/08/31 02:45 1/6 Hardver alapok

2016/08/31 02:45 1/6 Hardver alapok 2016/08/31 02:45 1/6 Hardver alapok < Hardver Hardver alapok Szerző: Sallai András Copyright Sallai András, 2011, 2013, 2014 Licenc: GNU Free Documentation License 1.3 Web: http://szit.hu Bevezetés A számítógépet

Részletesebben

Megszakítások és kivételek

Megszakítások és kivételek Megszakítások és kivételek Megszakítások Megszakítás a számítási rendszernek küldött jelzés, mely valamilyen esemény felléptéről értesíti. Egy megszakítás felléptekor a rendszer: megszakítja az aktív program

Részletesebben

2017/12/16 21:33 1/7 Hardver alapok

2017/12/16 21:33 1/7 Hardver alapok 2017/12/16 21:33 1/7 Hardver alapok < Hardver Hardver alapok Szerző: Sallai András Copyright Sallai András, 2011, 2013, 2014 Licenc: GNU Free Documentation License 1.3 Web: http://szit.hu Bevezetés A számítógépet

Részletesebben

Intel x86 utasításkészlet

Intel x86 utasításkészlet Intel x86 utasításkészlet Kód visszafejtés. Izsó Tamás 2013. október 31. Izsó Tamás Intel x86 utasításkészlet/ 1 Section 1 Intel mikroprocesszor Izsó Tamás Intel x86 utasításkészlet/ 2 Intel mikroprocesszor

Részletesebben

A regiszterek az assembly programozás változói. A processzor az egyes mőveleteket kizárólag regiszterek közremőködésével tudja végrehajtani.

A regiszterek az assembly programozás változói. A processzor az egyes mőveleteket kizárólag regiszterek közremőködésével tudja végrehajtani. 1. Regiszterek A regiszterek az assembly programozás változói. A processzor az egyes mőveleteket kizárólag regiszterek közremőködésével tudja végrehajtani. Általános célú regiszterek AX akkumulátor: aritmetikai

Részletesebben

Stack Vezérlés szerkezet Adat 2.

Stack Vezérlés szerkezet Adat 2. Stack Vezérlés szerkezet Adat 2. Kód visszafejtés. Izsó Tamás 2013. november 14. Izsó Tamás Stack Vezérlés szerkezet Adat 2./ 1 Változó típusú paraméterekátadása 1. #include < s t d i o. h> int64 myfunc

Részletesebben

A mikroprocesszor egy RISC felépítésű (LOAD/STORE), Neumann architektúrájú 32 bites soft processzor, amelyet FPGA val valósítunk meg.

A mikroprocesszor egy RISC felépítésű (LOAD/STORE), Neumann architektúrájú 32 bites soft processzor, amelyet FPGA val valósítunk meg. Mikroprocesszor A mikroprocesszor egy RISC felépítésű (LOAD/STORE), Neumann architektúrájú 32 bites soft processzor, amelyet FPGA val valósítunk meg. A mikroprocesszor részei A mikroprocesszor a szokásos

Részletesebben

A fordítóprogramok szerkezete. Kódoptimalizálás. A kódoptimalizálás célja. A szintézis menete valójában. Kódoptimalizálási lépések osztályozása

A fordítóprogramok szerkezete. Kódoptimalizálás. A kódoptimalizálás célja. A szintézis menete valójában. Kódoptimalizálási lépések osztályozása A fordítóprogramok szerkezete Forrásprogram Forrás-kezelő (source handler) Kódoptimalizálás Fordítóprogramok előadás (A,C,T szakirány) Lexikális elemző (scanner) Szintaktikus elemző (parser) Szemantikus

Részletesebben

GÁBOR DÉNES FŐISKOLA PREZENTÁCIÓ. Vezetőtanár: Ágoston György 2002/2003 6. szemeszter. 222 lap

GÁBOR DÉNES FŐISKOLA PREZENTÁCIÓ. Vezetőtanár: Ágoston György 2002/2003 6. szemeszter. 222 lap GÁBOR DÉNES FŐISKOLA PREZENTÁCIÓ Vezetőtanár: Ágoston György 2002/2003 6. szemeszter 222 lap 1. oldal A vezetőtanár: Ágoston György tel: (1) 436-6556 e-mail: agoston@gdf-ri.hu A GDF hivatalos honlapja:

Részletesebben

1. ábra: Perifériára való írás idődiagramja

1. ábra: Perifériára való írás idődiagramja BELÉPTETŐ RENDSZER TERVEZÉSE A tárgy első részében tanult ismeretek részbeni összefoglalására tervezzük meg egy egyszerű mikroprocesszoros rendszer hardverét, és írjuk meg működtető szoftverét! A feladat

Részletesebben

A MiniRISC processzor

A MiniRISC processzor BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK A MiniRISC processzor Fehér Béla, Raikovich Tamás, Fejér Attila BME MIT

Részletesebben

Vezérlésfolyam gráf és X86 utasításkészlet

Vezérlésfolyam gráf és X86 utasításkészlet Vezérlésfolyam gráf és X86 utasításkészlet Kód visszafejtés. Izsó Tamás 2016. november 3. Izsó Tamás Vezérlésfolyam gráf és X86 utasításkészlet / 1 Intervallum algoritmus Procedure Intervals(G={N, E, h})

Részletesebben

Bevezetés az informatikába

Bevezetés az informatikába Bevezetés az informatikába 3. előadás Dr. Istenes Zoltán Eötvös Loránd Tudományegyetem Informatikai Kar Programozáselmélet és Szoftvertechnológiai Tanszék Matematikus BSc - I. félév / 2008 / Budapest Dr.

Részletesebben

GPU Lab. 3. fejezet. Az X86 Utasításkészlet. Grafikus Processzorok Tudományos Célú Programozása. Berényi Dániel Nagy-Egri Máté Ferenc

GPU Lab. 3. fejezet. Az X86 Utasításkészlet. Grafikus Processzorok Tudományos Célú Programozása. Berényi Dániel Nagy-Egri Máté Ferenc 3. fejezet Az X86 Utasításkészlet Grafikus Processzorok Tudományos Célú Programozása Assembly nyelv Assembly nyelv: Bitkódok (gépikód) helyett rövid párbetűs nevek (mnemonic) az utasításoknak és a regisztereknek.

Részletesebben

Egyszerű RISC CPU tervezése

Egyszerű RISC CPU tervezése IC és MEMS tervezés laboratórium BMEVIEEM314 Budapesti Műszaki és Gazdaságtudományi Egyetem Egyszerű RISC CPU tervezése Nagy Gergely Elektronikus Eszközök Tanszéke (BME) 2013. február 14. Nagy Gergely

Részletesebben

Assembly programozás levelező tagozat

Assembly programozás levelező tagozat Assembly programozás levelező tagozat Szegedi Tudományegyetem Képfeldolgozás és Számítógépes Grafika Tanszék 2011-2012-2 Tematika Assembly nyelvi szint. Az Intel 8086/88 regiszter készlete, társzervezése,

Részletesebben

Karunkról Kari digitális könyvtár

Karunkról Kari digitális könyvtár . előadás Jegyzet www.inf.elte.hu Karunkról Kari digitális könyvtár i az assembly? gépi kód: a számítógép által közvetlenül értelmezett és végrehajtott jelsorozat assembly: a gépi kód emberek számára könnyen

Részletesebben

Mikroprocesszor CPU. C Central Központi. P Processing Számító. U Unit Egység

Mikroprocesszor CPU. C Central Központi. P Processing Számító. U Unit Egység Mikroprocesszor CPU C Central Központi P Processing Számító U Unit Egység A mikroprocesszor általános belső felépítése 1-1 BUSZ Utasítás dekóder 1-1 BUSZ Az utasítás regiszterben levő utasítás értelmezését

Részletesebben

Számítógép Architektúrák

Számítógép Architektúrák Számítógép Architektúrák Utasításkészlet architektúrák 2015. április 11. Budapest Horváth Gábor docens BME Hálózati Rendszerek és Szolgáltatások Tsz. ghorvath@hit.bme.hu Számítógép Architektúrák Horváth

Részletesebben

Az integrált áramkörök kimenetének kialakítása

Az integrált áramkörök kimenetének kialakítása 1 Az integrált áramörö imeneténe ialaítása totem-pole three-state open-olletor Az áramörö általános leegyszerűsített imeneti foozata: + tápfeszültség R1 V1 K1 imenet V2 K2 U i, I i R2 ahol R1>>R2, és K1,

Részletesebben

Számítógépek felépítése

Számítógépek felépítése Számítógépek felépítése Emil Vatai 2014-2015 Emil Vatai Számítógépek felépítése 2014-2015 1 / 14 Outline 1 Alap fogalmak Bit, Byte, Word 2 Számítógép részei A processzor részei Processzor architektúrák

Részletesebben

Assebly feladatok SHR SHL NOT NEG AND XOR. Ezt követően ismertetni kell a szoftver megszakítás fogalmát és szükségességét.

Assebly feladatok SHR SHL NOT NEG AND XOR. Ezt követően ismertetni kell a szoftver megszakítás fogalmát és szükségességét. Bevezetés Assebly feladatok A feladatok mindegyike működőképes. A programkódok sok esetben tartalmaznak felesleges, vagy logikátlan megoldásokat. Ezeket a bemutatás során a hallgatókkal együtt kell optimalizálni.

Részletesebben

Memóriagazdálkodás. Kódgenerálás. Kódoptimalizálás

Memóriagazdálkodás. Kódgenerálás. Kódoptimalizálás Kódgenerálás Memóriagazdálkodás Kódgenerálás program prológus és epilógus értékadások fordítása kifejezések fordítása vezérlési szerkezetek fordítása Kódoptimalizálás L ATG E > TE' E' > + @StPushAX T @StPopBX

Részletesebben

Kitlei Róbert kitlei.web.elte.hu. Karunkról Kari digitális könyvtár

Kitlei Róbert kitlei.web.elte.hu.  Karunkról Kari digitális könyvtár . előadás Kitlei Róbert kitlei.web.elte.hu Jegyzet: ssembly programozás www.inf.elte.hu Karunkról Kari digitális könyvtár i az assembly? gépi kód: a számítógép által közvetlenül értelmezett és végrehajtott

Részletesebben

DSP architektúrák dspic30f család

DSP architektúrák dspic30f család DSP architektúrák dspic30f család A Microchip 2004 nyarán piacra dobta a dspic30f családot, egy 16 bites fixpontos DSC. Mivel a mikróvezérlők tantárgy keretén belül a PIC családdal már megismerkedtetek,

Részletesebben

A számítógép alapfelépítése

A számítógép alapfelépítése Informatika alapjai-6 számítógép felépítése 1/8 számítógép alapfelépítése Nevezzük számítógépnek a következő kétféle elrendezést: : Harvard struktúra : Neumann struktúra kétféle elrendezés alapvetően egyformán

Részletesebben

Gábor Dénes Főiskola Győr. Mikroszámítógépek. Előadás vázlat. 2004/2005 tanév 4. szemeszter. Készítette: Markó Imre 2006

Gábor Dénes Főiskola Győr. Mikroszámítógépek. Előadás vázlat. 2004/2005 tanév 4. szemeszter. Készítette: Markó Imre 2006 Gábor Dénes Főiskola Győr Mikroszámítógépek Előadás vázlat 102 2004/2005 tanév 4. szemeszter A PROCESSZOR A processzorok jellemzése A processzor felépítése A processzorok üzemmódjai Regiszterkészlet Utasításfelépítés,

Részletesebben

Intel x86 utasításkészlet + disassembler működése

Intel x86 utasításkészlet + disassembler működése Intel x86 utasításkészlet + disassembler működése Kód visszafejtés. Izsó Tamás 2016. november 10. Izsó Tamás Intel x86 utasításkészlet + disassembler működése / 1 Section 1 Intel X86 utasításkészlet Izsó

Részletesebben

Programozás alapjai. 10. előadás

Programozás alapjai. 10. előadás 10. előadás Wagner György Általános Informatikai Tanszék Pointerek, dinamikus memóriakezelés A PC-s Pascal (is) az IBM PC memóriáját 4 fő részre osztja: kódszegmens adatszegmens stackszegmens heap Alapja:

Részletesebben

A hibát az alábbi Python program segítségével tudjuk előidézni:

A hibát az alábbi Python program segítségével tudjuk előidézni: Bevezető Az ismertetésre kerülő biztonsági hiba 0day kategóriába tartozik, ezért sem a termék, sem a teljes hiba kihasználását lehetővé tevő kód bemutatása nem történik meg. A leírás célja az alkalmazott

Részletesebben

A mikroszámítógép felépítése.

A mikroszámítógép felépítése. 1. Processzoros rendszerek fő elemei mikroszámítógépek alapja a mikroprocesszor. Elemei a mikroprocesszor, memória, és input/output eszközök. komponenseket valamilyen buszrendszer köti össze, amelyen az

Részletesebben

ASSEMBLY PROGRAMOZÁS TANTÁRGYHOZ SZÜKSÉGES ELŐISMERETEK ISMÉTLÉSE

ASSEMBLY PROGRAMOZÁS TANTÁRGYHOZ SZÜKSÉGES ELŐISMERETEK ISMÉTLÉSE ASSEMBLY PROGRAMOZÁS TANTÁRGYHOZ SZÜKSÉGES ELŐISMERETEK ISMÉTLÉSE Dr. Varga Imre Debreceni Egyetem Informatikai Rendszerek és Hálózatok Tanszék 2019. augusztus 31. A C programozási nyelv alapos ismerete

Részletesebben

Máté: Számítógép architektúrák 2010.12.01.

Máté: Számítógép architektúrák 2010.12.01. Máté: Számítógép architektúrák... A feltételes ugró utasítások eldugaszolják a csővezetéket Feltételes végrehajtás (5.5 5. ábra): Feltételes végrehajtás Predikáció ió C pr. rész Általános assembly Feltételes

Részletesebben

5-6. ea Created by mrjrm & Pogácsa, frissítette: Félix

5-6. ea Created by mrjrm & Pogácsa, frissítette: Félix 2. Adattípusonként különböző regisztertér Célja: az adatfeldolgozás gyorsítása - különös tekintettel a lebegőpontos adatábrázolásra. Szorzás esetén karakterisztika összeadódik, mantissza összeszorzódik.

Részletesebben

HARDVERKÖZELI PROGRAMOZÁS1

HARDVERKÖZELI PROGRAMOZÁS1 HARDVERKÖZELI PROGRAMOZÁS1 Dr. Varga Imre Debreceni Egyetem Informatikai Rendszerek és Hálózatok Tanszék 2015.05.11 Követelmények Gyakorlat (aláírás) Óralátogatás (maximum hiányzás: 3) C programozási beugró

Részletesebben

Számítógépek felépítése, alapfogalmak

Számítógépek felépítése, alapfogalmak 2. előadás Számítógépek felépítése, alapfogalmak Lovas Szilárd, Krankovits Melinda SZE MTK MSZT kmelinda@sze.hu B607 szoba Nem reprezentatív felmérés kinek van ilyen számítógépe? 2 Nem reprezentatív felmérés

Részletesebben

[1] Bevezetés. A "debug" a DOS-ból közvetlenûl indítható a "debug" szó begépelésével. Kilépés hasonlóképpen a "q" paranccsal történik.

[1] Bevezetés. A debug a DOS-ból közvetlenûl indítható a debug szó begépelésével. Kilépés hasonlóképpen a q paranccsal történik. Assembly Tutorial 1. Bevezetés 2. Hexaritmetika 3. Negatív számok 4. Regiszterek 5. Memória 6. Összeadás 7. A négy alapmûvelet 8. Megszakítások 9. Programok beírása 10. Karakterlánc kiírása 11. Átviteljelzô

Részletesebben

Dr. Máté Eörs docens. Képfeldolgozás és Számítógépes Grafika Tanszék Árpád tér 2. II. em

Dr. Máté Eörs docens. Képfeldolgozás és Számítógépes Grafika Tanszék Árpád tér 2. II. em Dr. Máté Eörs docens Képfeldolgozás és Számítógépes Grafika Tanszék Árpád tér 2. II. em. 213 6196, 54-6196 (6396, 54-6396) http://www.inf.u-szeged.hu/~mate mate@inf.u-szeged.hu Máté: Assembly programozás

Részletesebben

Számítógép felépítése

Számítógép felépítése Alaplap, processzor Számítógép felépítése Az alaplap A számítógép teljesítményét alapvetően a CPU és belső busz sebessége (a belső kommunikáció sebessége), a memória mérete és típusa, a merevlemez sebessége

Részletesebben

Operandus típusok Bevezetés: Az utasítás-feldolgozás menete

Operandus típusok Bevezetés: Az utasítás-feldolgozás menete Operandus típusok Bevezetés: Az utasítás-feldolgozás menete Egy gépi kódú utasítás általános formája: MK Címrész MK = műveleti kód Mit? Mivel? Az utasítás-feldolgozás általános folyamatábrája: Megszakítás?

Részletesebben

Máté: Számítógép architektúrák

Máté: Számítógép architektúrák Az GOTO offset utasítás. P relatív: P értékéhez hozzá kell adni a két bájtos, előjeles offset értékét. Mic 1 program: Main1 P = P + 1; fetch; goto() goto1 OP=P 1 // Main1 nél : P=P+1 1. bájt goto P=P+1;

Részletesebben

Máté: Assembly programozás

Máté: Assembly programozás Paraméter másutt is előfordulhat a makró törzsben, nemcsak az operandus részen, pl.: PL macro p1,p2 mov ax,p1 P2 p1 PL mov INC Adat, INC ax,adat Adat A &, %,! karakterek továbbá a és ;; speciális szerepet

Részletesebben

Assembly Programozás Rodek Lajos Diós Gábor

Assembly Programozás Rodek Lajos Diós Gábor Assembly Programozás Rodek Lajos Diós Gábor Tartalomjegyzék Ábrák jegyzéke Táblázatok jegyzéke Előszó Ajánlott irodalom IV V VI VII 1. Az Assembly nyelv jelentősége 1 2. A PC-k hardverének felépítése 4

Részletesebben

Számítógép architektúrák

Számítógép architektúrák Számítógép architektúrák Számítógépek felépítése Digitális adatábrázolás Digitális logikai szint Mikroarchitektúra szint Gépi szint Operációs rendszer szint Assembly nyelvi szint Probléma orientált (magas

Részletesebben

Architektúra, címzési módok

Architektúra, címzési módok Architektúra, címzési módok Mirıl lesz szó? Címzés fogalma, címzési módok Virtuális tárkezelés Koschek Vilmos Példa: Intel vkoschek@vonalkodhu Fogalom A címzési mód az az út (algoritmus), ahogyan az operandus

Részletesebben

Máté: Számítógép architektúrák

Máté: Számítógép architektúrák Pentium 4 Nagyon sok előd kompatibilitás!), a fontosabbak: 44: 4 bites, 88: 8 bites, 886, 888: es, 8 bites adat sín 8286: 24 bites nem lineáris) címtartomány 6 K darab 64 KB-os szegmens) 8386: IA-32 architektúra,

Részletesebben

Biztonságos programozás Puffer túlcsordulásos támadások

Biztonságos programozás Puffer túlcsordulásos támadások Biztonságos programozás Puffer túlcsordulásos támadások Izsó Tamás 2015 október 12 Izsó Tamás Biztonságos programozás Puffer túlcsordulásos támadások/ 1 Section 1 DEP támadás Izsó Tamás Biztonságos programozás

Részletesebben

Máté: Számítógép architektúrák

Máté: Számítógép architektúrák NEXT ADDRESS JMPC JAMN JAMZ SLL8 SRA1 F0 F1 ENA EN INVA INC H OPC TOS LV SP PC MDR MAR WRITE READ FETCH 4 sín Mikroutasítások 24 bit: az adatút vezérléséhez bit: a következő utasítás címének megadásához,

Részletesebben

II. KMAPR21TNB, KMAPR21ONB PC

II. KMAPR21TNB, KMAPR21ONB PC Programozás II. KMAPR21TNB, KMAPR21ONB PC assembly Sándor Tamás Ajánlott irodalom Diós Gábor és Rodek Lajos jegyzete. (http://www.inf.uszeged.hu/~rusko/asm/jegyzet.pdf) Máté Eörs: Assembly programozás,

Részletesebben

Máté: Számítógép architektúrák

Máté: Számítógép architektúrák A mikroprogram Mic 1: 4.. ábra. 51x3 bites vezérlőtár a mikroprogramnak, MPC (MicroProgram Counter): mikroprogram utasításszámláló. MIR (MicroInstruction Register): mikroutasítás regiszter. Az adatút ciklus

Részletesebben

Jelfeldolgozás a közlekedésben

Jelfeldolgozás a közlekedésben Jelfeldolgozás a közlekedésben 2015/2016 II. félév 8051 és C8051F020 mikrovezérlők Fontos tudnivalók Elérhetőség: ST. 108 E-mail: lovetei.istvan@mail.bme.hu Fontos tudnivalók: kjit.bme.hu Aláírás feltétele:

Részletesebben

Jelszavak helyes megválasztása, szótáras törés. Pánczél Zoltán

Jelszavak helyes megválasztása, szótáras törés. Pánczél Zoltán Jelszavak helyes megválasztása, szótáras törés Pánczél Zoltán 1 Miért fontos a megfelelő jelszó? Nagyban növeli a rendszer biztonságát. Könnyű jelszó = Nincs jelszó A teljes rendszer biztonsága tőlünk

Részletesebben

ARM Cortex magú mikrovezérlők

ARM Cortex magú mikrovezérlők ARM Cortex magú mikrovezérlők 3. Cortex-M0, M4, M7 Scherer Balázs Budapest University of Technology and Economics Department of Measurement and Information Systems BME-MIT 2018 32 bites trendek 2003-2017

Részletesebben

8. Fejezet Processzor (CPU) és memória: tervezés, implementáció, modern megoldások

8. Fejezet Processzor (CPU) és memória: tervezés, implementáció, modern megoldások 8. Fejezet Processzor (CPU) és memória: The Architecture of Computer Hardware and Systems Software: An Information Technology Approach 3rd Edition, Irv Englander John Wiley and Sons 2003 Wilson Wong, Bentley

Részletesebben

Programok működése dióhéjban

Programok működése dióhéjban Programok működése dióhéjban Intel x68 Izsó Tamás 2015. október 30. Izsó Tamás Programok működése dióhéjban/ 1 Section 1 Fordítás Izsó Tamás Programok működése dióhéjban/ 2 authenticate.c 1 // cl /GS-

Részletesebben

Máté: Számítógép architektúrák

Máté: Számítógép architektúrák MPC új tartalma, JMPC JMPC esetén MPC 8 alacsonyabb helyértékű bitjének és MR 8 bitjének bitenkénti vagy kapcsolata képződik MPC-ben az adatút ciklus vége felé (MR megérkezése után). Ilyenkor Addr 8 alacsonyabb

Részletesebben

SZÁMÍTÓGÉP ARCHITEKTÚRÁK

SZÁMÍTÓGÉP ARCHITEKTÚRÁK SZÁMÍTÓGÉP ARCHITEKTÚRÁK Az utasítás-pipeline szélesítése Horváth Gábor, Belső Zoltán BME Hálózati Rendszerek és Szolgáltatások Tanszék ghorvath@hit.bme.hu, belso@hit.bme.hu Budapest, 2018-05-19 1 UTASÍTÁSFELDOLGOZÁS

Részletesebben

Az assembly nyelv sor-orientált nyelv, tehát minden sorba pontosan egy utasítás kerül. Egy sor mezőkből áll a következőképpen:

Az assembly nyelv sor-orientált nyelv, tehát minden sorba pontosan egy utasítás kerül. Egy sor mezőkből áll a következőképpen: Informatika szigorlat 16-os tétel: Az assembly nyelvek tulajdonságai és fordítása Az assembly nyelv tulajdonképpen a gépi kód szimbolikus megfelelője, azért jött létre, hogy könnyebben lehessen programozni

Részletesebben

Számítógépek felépítése, alapfogalmak

Számítógépek felépítése, alapfogalmak 2. előadás Számítógépek felépítése, alapfogalmak Lovas Szilárd SZE MTK MSZT lovas.szilard@sze.hu B607 szoba Nem reprezentatív felmérés kinek van ilyen számítógépe? Nem reprezentatív felmérés kinek van

Részletesebben

SZÁMÍTÓGÉPEK BELSŐ FELÉPÍTÉSE - 1

SZÁMÍTÓGÉPEK BELSŐ FELÉPÍTÉSE - 1 INFORMATIKAI RENDSZEREK ALAPJAI (INFORMATIKA I.) 1 NEUMANN ARCHITEKTÚRÁJÚ GÉPEK MŰKÖDÉSE SZÁMÍTÓGÉPEK BELSŐ FELÉPÍTÉSE - 1 Ebben a feladatban a következőket fogjuk áttekinteni: Neumann rendszerű számítógép

Részletesebben

VI. SZOFTVERES PROGRAMOZÁSÚ VLSI ÁRAMKÖRÖK

VI. SZOFTVERES PROGRAMOZÁSÚ VLSI ÁRAMKÖRÖK VI. SZOFTVERES PROGRAMOZÁSÚ VLSI ÁRAMKÖRÖK 1 Az adatok feldolgozását végezhetjük olyan általános rendeltetésű digitális eszközökkel, amelyeket megfelelő szoftverrel (programmal) vezérelünk. A mai digitális

Részletesebben

Architektúra, cache. Mirıl lesz szó? Mi a probléma? Teljesítmény. Cache elve. Megoldás. Egy rövid idıintervallum alatt a memóriahivatkozások a teljes

Architektúra, cache. Mirıl lesz szó? Mi a probléma? Teljesítmény. Cache elve. Megoldás. Egy rövid idıintervallum alatt a memóriahivatkozások a teljes Architektúra, cache irıl lesz szó? Alapfogalmak Adat cache tervezési terének alapkomponensei Koschek Vilmos Fejlıdés vkoschek@vonalkodhu Teljesítmény Teljesítmény növelése Technológia Architektúra (mem)

Részletesebben

Máté: Számítógép architektúrák

Máté: Számítógép architektúrák Máté: Számítógép architektúrák 211117 Utasításrendszer architektúra szintje ISA) Amit a fordító program készítőjének tudnia kell: memóriamodell, regiszterek, adattípusok, ok A hardver és szoftver határán

Részletesebben

8. Fejezet Processzor (CPU) és memória: tervezés, implementáció, modern megoldások

8. Fejezet Processzor (CPU) és memória: tervezés, implementáció, modern megoldások 8. Fejezet Processzor (CPU) és memória: The Architecture of Computer Hardware and Systems Software: An Information Technology Approach 3rd Edition, Irv Englander John Wiley and Sons 2003 Wilson Wong, Bentley

Részletesebben

Járműfedélzeti rendszerek I. 3. előadás Dr. Bécsi Tamás

Járműfedélzeti rendszerek I. 3. előadás Dr. Bécsi Tamás Járműfedélzeti rendszerek I. 3. előadás Dr. Bécsi Tamás ATmega128 CPU Single-level pipelining Egyciklusú ALU működés Reg. reg., reg. konst. közötti műveletek 32 x 8 bit általános célú regiszter Egyciklusú

Részletesebben

Assembly programozás levelező tagozat

Assembly programozás levelező tagozat Assembly programozás levelező tagozat Németh Gábor Szegedi Tudományegyetem Képfeldolgozás és Számítógépes Grafika Tanszék 2011-2012-2 A kurzusról Tematika Assembly nyelvi szint. Az Intel 8086/88 regiszter

Részletesebben

Az interrupt Benesóczky Zoltán 2004

Az interrupt Benesóczky Zoltán 2004 Az interrupt Benesóczky Zoltán 2004 1 Az interrupt (program megszakítás) órajel generátor cím busz környezet RESET áramkör CPU ROM RAM PERIF. adat busz vezérlõ busz A periféria kezelés során információt

Részletesebben

Digitális technika II. (vimia111) 5. gyakorlat: Tervezés adatstruktúra-vezérlés szétválasztással, vezérlőegység generációk

Digitális technika II. (vimia111) 5. gyakorlat: Tervezés adatstruktúra-vezérlés szétválasztással, vezérlőegység generációk Digitális technika II. (vimia111) 5. gyakorlat: Tervezés adatstruktúra-vezérlés szétválasztással, vezérlőegység generációk Elméleti anyag: Processzoros vezérlés általános tulajdonságai o z induló készletben

Részletesebben

ELŐSZÓTJ "Előszó" \l

ELŐSZÓTJ Előszó \l ELŐSZÓTJ "Előszó" \l Ebben a könyvben megpróbálom egy kicsit másképpen megközelíteni a gépi kódú programozást mint ahogyan az az eddig megjelent hasonló témájú kiadványokban történt. Nem elsősorban a programozás

Részletesebben

Irvine eljárások. ClrScr - Törli a képernyő tartalmát és a kurzort a képernyő bal felső sarkába helyezi (Clear Screen).

Irvine eljárások. ClrScr - Törli a képernyő tartalmát és a kurzort a képernyő bal felső sarkába helyezi (Clear Screen). Irvine eljárások Ahogy azt már év elején is említettük, a 32 bites környezet lehetővé tette számunkra, hogy több, már előre létrehozott eljárást használhassunk. Ehhez csupán telepítenünk kellett az Irvine

Részletesebben