Máté: Számítógép architektúrák

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Máté: Számítógép architektúrák"

Átírás

1 Pentium 4 Nagyon sok előd kompatibilitás!), a fontosabbak: 44: 4 bites, 88: 8 bites, 886, 888: es, 8 bites adat sín 8286: 24 bites nem lineáris) címtartomány 6 K darab 64 KB-os szegmens) 8386: IA-32 architektúra, az Intel első 32 bites gépe, lényegében az összes későbbi is ezt használja Pentium II től MMX ok A Pentium 4 üzemmódjai real valós): az összes 888 utáni fejlesztést kikapcsolja valódi 888-ként viselkedik) Hibánál a gép egyszerűen összeomlik, lefagy virtuális 886: a 888-as programok védett módban futnak ha WINDWS-ból indítjuk az MS-DS-t, és ha abban hiba történik, akkor nem fagy le, hanem visszaadja a vezérlést a WINDWS-nak) védett: valódi Pentium 4 4 védelmi szint PSW): : kernelmód operációs r),, 2: ritkán használt, 3: felhasználói mód Máté: Architektúrák előadás Máté: Architektúrák előadás 2 Memóriaszervezés: 6 K db szegmens lehetséges, de a WINDWS-ok és UNIX is csak szegmenst támogatnak, és ennek is egy részét az operációs rendszer foglalja el, minden szegmensen belül a címtartomány: Little endian tárolási mód: az alacsonyabb címen van az alacsonyabb helyértékű bájt Regiszterek 53 ábra): majdnem) általános regiszterek: EAX EBX ECX EDX AH AX AL BH BX BL CH CX CL DH DX DL Accumulator Base index Count Data Ezek 8 és es részei önálló regiszterként használhatók Máté: Architektúrák előadás 3 Máté: Architektúrák előadás 4 Regiszterek 53 ábra): ESI, EDI mutatók tárolására, szöveg kezelésre), EBP keretmutató, verem kezelésre), ESP verem mutató), EIP számláló), EFLAGS PSW), CS, SS, DS, ES, FS, GS es regiszterek A kompatibilitást biztosítják a régebbi gépekkel Mivel a Windows, Unix csak egy címtartományt használ, ezekre csak a visszafelé kompatibilitás miatt van szükség) UltraSPARC III SPARC 987) még 32, a Version 9 már 64 bites architektúra, az UltraSPARC ezen alapul Memóriaszervezés: 64 bites lineáris) címtartomány jelenleg maximum 44 bit használható) Big endian, de little endian is beállítható Regiszterek: 32 általános 54 ábra) 64 bites, a használatuk részben konvención, részben a hardveren alapul), 32 lebegőpontos 32 vagy 64 bites, de lehetséges két regiszterben egy 28 bites számot tárolni) Máté: Architektúrák előadás 5 Máté: Architektúrák előadás 6 előadás

2 Általános regiszterek R-R7 G-G7) Globális változók: minden eljárás használhatja, G huzalozott, minden tárolás eredménytelen R8-R5-7,): Kimenő paraméterek, de R4 6) =SP: verem mutató 7 csak ideiglenes tárolásra használható R6-R23 L-L7) Lokális regiszterek R24-R3 I-I7) Bemenő paraméterek, de R3 I6) = FP az aktuális veremkeret mutatója, R3: visszatérési cím Máté: Architektúrák előadás 7 CWP Current Window Pointer, 55 ábra) mutatja az aktuális regiszter ablakot több regiszter készlet létezik, de mindig csak egy látszik) Ha kifogy a regiszter készlet, memóriába mentés, R4=SP Globális Kimenő Lokális CWP = 7 SP L Átlapolás I R3=FP Globális Kimenő Lokális Bemenő Korábbi CWP = 6 L R3=visszatérési cím I R3=FP Bemenő Korábbi R3=visszatérési cím Máté: Architektúrák előadás 8 Loadstore architektúra: csak ezek az ok fordulhatnak a memóriához A többi operandusa regiszterben vagy az ban van Az eredmény is regiszterbe kerül Máté: Architektúrák előadás 9 56 ábra A 85 memória szervezése Külön címtartományú program és adat memória Program memória RM) Munkaterület Bit-címezhető memória 4 regiszterkészlet Vannak lapkán kívüli bővítési lehetőségek Van nagyobb 852) és programozható 875 és 8752) rokona RM helyett EPRM) 8 regiszter: R,, R7 A regiszterek a memóriában vannak 4 regiszter készlete van, de egyszerre csak egy használható Máté: Architektúrák előadás 56 ábra A 85 memória szervezése, fő regiszterei PSW: Carry, Auxiliary carry, RegisterS, verflow, Parity A PSW regiszter RS mezeje mondja meg, hogy melyik regiszterkészlet az aktuális Bit-címezhető memória bájt): címzésük: -27 Bit ok: beállítás, törlés, ÉS, VAGY, tesztelés 27 IE Interrupt Enable): EA= : nincs tiltva a megszakítás, : mind tiltva van, ES=: megszakítás engedélyezve a soros vonalon, : tiltva E-2=: a -2 időzítő csatorna engedélyezve, : tiltva Az engedélyezett számlálók egyszerre futhatnak, és ezek megszakítást válthatnak ki X-=: külső eszköz megszakítás engedélyezve, : tiltva Munkaterület Bit-címezhető memória 4 regiszterkészlet C A EA RS E2 ES E X E X IE E2 ES E X E X IP R R E X E X TCN időzítő 2 időzítő 8 bit P PSW TMD IP Interrupt Priority): alacsony), magas) Az alacsonyabb szintű megszakítást megszakíthatja egy magasabb szintű C A EA RS E2 ES E X E X IE E2 ES E X E X IP R R E X E X TCN időzítő 2 időzítő 8 bit P PSW TMD Máté: Architektúrák előadás Máté: Architektúrák előadás 2 előadás 2

3 TCN: a és időzítőt vezérli ezek a fő időzítők) -: beáll az időzítő túlcsordulásakor R-: ezzel ki- és bekapcsolható az időzítő futása A többi bit az időzítő él- vagy szintvezérlésével kapcsolatos TMD: a fő időzítők üzemmódját határozza meg 8, 3 vagy es, valódi időzítő vagy számláló, hardver jelek szintje C A E2 ES E X E X IE Máté: Architektúrák előadás 3 EA RS E2 ES E X E X IP R R E X E X TCN időzítő 2 időzítő 8 bit P PSW TMD Az eddig említett regiszterek és még néhány speciális regiszter ACC, BK portok, ) a címtartományban vannak Pl ACC a 24-en A 852 valódi memóriát tartalmaz a tartományban, a speciális regiszterek címe átfed a memóriával Direkt címzéssel a speciális regisztereket, Indirekt címzéssel a RAM-ot érhetjük el Máté: Architektúrák előadás 4 Utasításformák, hossz 5- ábra) Műveleti Műveleti cím Műv cím cím2 Mk cím cím2 cím3 A kiterjesztése k bites esetén 2 k különböző lehet, n bites címrésznél 2 n memória címezhető, fix hossz esetén egyik csak a másik rovására növelhető 52 ábra) szó szó szó ut ut műv cím 2 cím 3 cím Lehetőségek: fix hossz: rövidebb mellett hosszabb operandus rész, minimális átlagos hossz: a gyakori ok rövidek, a ritkán használtak hosszabbak Máté: Architektúrák előadás 5 Máté: Architektúrák előadás 6 4 bites A kiterjesztése 53 ábra) xxxx yyyy zzzz xxxx yyyy zzzz xxxx yyyy zzzz xxxx yyyy zzzz xxxx yyyy zzzz xxxx yyyy zzzz 5 db 3 címes 8 bites yyyy zzzz yyyy zzzz yyyy zzzz yyyy zzzz yyyy zzzz yyyy zzzz Máté: Architektúrák előadás 7 4 db 2 címes Az ot nem használtuk ki 3 címes nak menekülő ), és ez lehetővé teszi, hogy további igaz, nem 3 címes okat adjunk meg és is menekülő 2 bites zzzz zzzz zzzz zzzz zzzz zzzz zzzz zzzz zzzz A kiterjesztése 3 db címes es is menekülő 6 db címes Máté: Architektúrák előadás 8 előadás 3

4 Minden tartalmaz ot Ezen kívül tartalmazhat az operandusokra, eredményre vonatkozó információt Utasítás típusok: regiszter-memória ok: a regiszterek és a memória közötti adatforgalom betöltés, tárolás) Ilyenkor egy regiszter és egy memória cím megadása szükséges a címrészen regiszter-regiszter ok: összeadás, kivonás, Az eredmény is regiszterben keletkezik Ilyenkor három regiszter megadása szükséges a címrészen Máté: Architektúrák előadás 9 Címzési módszerek Három cím: cél = forrás forrás2 A memória sok rekeszt tartalmaz, de csak kevés regiszter van Egy regiszter néhány bittel címezhető Regiszterek használata rövidíti a címeket, de nyújtja a programot, ha az operandus csak egyszer kell A legtöbb operandust többször használjuk Implicit operandusok: Két cím: regiszter2 = regiszter2 forrás Egy cím: akkumulátor = akkumulátor forrás Nulla cím: verem, pl az IJVM IADD a Máté: Architektúrák előadás 2 lépés 2 n-2 n- n n e = a a 2 a n kiszámítása 3, 2 és címes gépen 3 címes e = a a 2 e = e a 3 e = e a n- e = e a n kész 2 címes e = a e = e a 2 e = e a n-2 e = e a n- e = e a n kész címes A = a A = A a 2 A = A a n-2 A = A a n- A = A a n e = A kész Máté: Architektúrák előadás 2 perandus megadás Közvetlen operandus immediate operand): Az operandus megadása az ban 57 ábra) MV R Direkt címzés direct addressing): A memóriacím megadása a címrészen Az mindig ugyanazt a címet használja Az operandus értéke változhat, de a címe nem fordításkor ismert kell legyen!) Regiszter címzés register addressing): Mint a direkt címzés, csak nem memóriát, hanem regisztert címez Máté: Architektúrák előadás 22 #4 Egy tömb elemeinek összeadásához e = e a k vagy A = A a k alakú okra van szükség Vagy mindegyik t szerepeltetjük a programban, vagy minden elem hozzáadása után úgy módosítjuk az összeadó t, hogy legközelebb a következő elem hozzáadását végezze Regiszter-indirekt címzés register indirect addresing): A címrészen valamelyik regisztert adjuk meg, de a megadott regiszter nem az operandust tartalmazza, hanem azt a memóriacímet, amely az operandust tartalmazza mutató - pointer) Rövidebb és a cím változtatható Önmódosító program Neumann János ötlete) Ma már kerülendő cache problémák!), pl regiszter-indirekt címzéssel kikerülhetjük Máté: Architektúrák előadás 23 Máté: Architektúrák előadás 24 előadás 4

5 Pl: A szóból álló A tömb elemeinek összeadása két címes gépen egy elem 4 bájt), ~ 58 ábra MV R, # ; gyűjtsük az eredményt R-ben, ; kezdetben ez legyen MV R2, #A ; R2-be töltjük az A tömb címét MV R3, #A 4 ; a tömb utáni első cím C: ADD R, R2) ; regiszter-indirekt címzés a tömb ; aktuális elemének elérésére ADD R2, #4 ; R2 tartalmát növeljük 4-gyel CMP R2, R3 ; végeztünk? BLT C ; ugrás a C címkéhez, ha nem ; kész az összegzés Máté: Architektúrák előadás 25 Indexelt címzés indexed addressing): Egy eltolási érték offset) és egy index) regiszter tartalmának összege lesz az operandus címe, 59-2 ábra MV R, # ; gyűjtsük az eredményt R-ben, ; kezdetben ez legyen MV R2, # ; az index kezdő értéke MV R3, #4 ; a tömb mögé mutató index C: ADD R, AR2); indexelt címzés a tömb ; aktuális elemének elérésére ADD R2, #4 ; R2 tartalmát növeljük 4-gyel CMP R2, R3 ; végeztünk? BLT C ; ugrás a C címkéhez, ha nem ; kész az összegzés Máté: Architektúrák előadás 26 Bázisindex címzés based-indexed addressing): Egy eltolási érték offset) és két egy bázis és egy index) regiszter tartalmának összege lesz az operandus címe Ha R5 A címét tartalmazza, akkor C: ADD R, AR2) helyett a C: ADD R, R2R5) is írható Ez a módszer előnyös, ha nem csak az A tömb elemeit szeretnénk összegezni Máté: Architektúrák előadás 27 Verem címzés stack addressing): Az operandus a verem tetején van Nem kell operandust megadni az ban Fordított Lengyel Jelölés Postfix Polish Notation - Lukasiewicz) Postfix jelölés: a kifejezéseket olyan formában adjuk meg, hogy az első operandus után a másodikat, majd ezután adjuk meg a jelet: infix: x y, postfix: xy Előnyei: nem kell zárójel, sem precedencia szabályok, jól alkalmazható veremcímzés esetén Máté: Architektúrák előadás 28 Dijkstra algoritmusa Infix jelölés konvertálása postfix-re 52, 22 ábra): az infix elemek egy váltóhoz switch) érkeznek - a változók és konstansok Kaliforniába mennek ), a többi esetben a verem tetejétől függően 522 ábra): váltó A B C ) a kocsi Texas felé megy : ), a verem teteje Kaliforniába megy 2: ), a kocsi eltűnik a verem tetejével együtt 3: ), vége az algoritmusnak 4: ), hibás az infix formula 5:?) Máté: Architektúrák előadás 29 Minden változó és konstans menjen Kaliforniába ), a többi esetben a döntési tábla szerint járjunk el 52 ábra): váltó A verem teteje -? A B C ) A váltó előtti kocsi - Máté: Architektúrák előadás 3 )? Kaliforniában kész a postfix forma? változó Kaliforniába New Yorkból Texasba Texasból Kaliforniába Törlődjön a következő és az utolsó texasi kocsi Hibás az infix formula A döntési tábla tartalmazza a prioritási szabályokat! előadás 5

6 ABC) A BC) A BC) A BC) AB C) A verem teteje változó Kaliforniába A váltó előtti kocsi - )? -? AB C) ABC ) ABC ) A verem teteje - A váltó előtti kocsi - )?? ABC ABC Máté: Architektúrák előadás 3 Máté: Architektúrák előadás 32 Fordított lengyel jelölésű formulák kiértékelése Pl 524 ábra): 8 2 5) 3 2 4) infix postfix lvassuk a formulát balról jobbra! Ha a következő jel operandus: rakjuk a verembe, jel: hajtsuk végre a műveletet a verem tetején van a jobb, alatta a bal operandus!) Máté: Architektúrák előadás 33 Lépés ) 3 2 4) infix Maradék formula Utasítás Verem BIPUSH BIPUSH 2 8, BIPUSH 5 8, 2, IMUL 8, IADD BIPUSH 8, BIPUSH 3 8,, BIPUSH 2 8,, 3, IMUL 8,, IADD 8, BIPUSH 4 8, 7, 4 - ISUB 8, 3 IDIV 6 Máté: Architektúrák előadás 34 rtogonalitási elv: Jó architektúrában a ok és a címzési módszerek majdnem) szabadon párosíthatók Három címes elképzelés 525 ábra): Műv Műv Műv cél cél forrás forrás forrás2 eltolás típus: aritmetikai ok 2 típus: közvetlen adat megadás, index módú LAD és STRE 3 típus: elágazó, eljárás hívó ok, LAD és STRE, ezek R-t használnák Műv eltolás Máté: Architektúrák előadás 35 Két címes elképzelés 526 ábra) Műv mód reg eltolás mód reg eltolás Feltételesen: 32 bites direkt operandus vagy eltolás Feltételesen: 32 bites direkt operandus vagy eltolás A mód 3 bitje lehetővé teszi a közvetlen operandus, direkt, regiszter, regiszter indirekt, index és verem címzési módokat Két további mód bevezetésére is lehetőség van Máté: Architektúrák előadás 36 előadás 6

7 Melyek a Pentium 4 processzor legfontosabb elődjei? Milyen üzemmódjai vannak a Pentium 4-nek? Milyen a Pentium 4 memória szervezése? Milyen regiszterei vannak a Pentium 4-nek? Mit jelent a Little endian tárolási mód? Mit jelent a Loadstore architektúra? Milyen az UltraSPARC III memória szervezése? Milyen regiszterei vannak az UltraSPARC III-nak? Mit tud az UltraSPARC III G regiszteréről? Mi a CWP Current Window Pointer) szerepe? Hogy működik az UltraSPARC III regiszter ablak technikája? Máté: Architektúrák előadás 37 Hány regiszter készlete van a 85-nek? Hol helyezkednek el a 85 regiszterei? Mire jó a bit-címezhető memória? Írja le a 85 RAM-jának a szerkezetét! Mire szolgál a 85 IE, IP, TCN és TMD regisztere? Milyen operandus megadási módokat ismer? Mi a közvetlen operandus megadás? Mi a direkt címzés? Mi a regiszter címzés? Mi a regiszter-indirekt címzés? Mi az indexelt címzés? Mi a bázisindex címzés? Máté: Architektúrák előadás 38 Hány címes ok lehetségesek? Adjon mindegyikre példát! Milyen címzési módokat ismer? Részletezze ezeket! Mit jelent a fordított lengyel jelölés? Milyen előnyei vannak a postfix jelölésnek? Írja át postfix alakúra az alábbi formulákat! AB, ABC, ABC, ABC Írja át infix alakúra az alábbi postfix formulákat! AB, AB C, ABC, ABCDE Hogy működik Dijkstra algoritmusa? Hogy értékelhetők ki a postfix alakú formulák? Mik az ISA szint fő tervezési szempontjai? Hogy viszonyulhat egymáshoz az és a memória cella hossza? Mit értünk kiterjesztésen? Mit nevezünk menekülő nak? Mi az ortogonalitási elv? Milyen formájú 3 címes gépet tervezne? Milyen formájú 2 címes gépet tervezne? Máté: Architektúrák előadás 39 Máté: Architektúrák előadás 4 Az előadáshoz kapcsolódó Fontosabb tételek A Pentium 4, az UltraSPARC III és az I-85 regiszterei Három, kettő egy és nulla címes ok perandus megadás módjai Közvetlen operandus, direkt, regiszter, regiszter-indirekt, indexelt, bázisindex címzés, implicit operandus Veremcímzés Fordított lengyel postfix) jelölés Dijkstra algoritmusa Postfix alakú formulák kiértékelése Máté: Architektúrák előadás 4 előadás 7

Máté: Számítógép architektúrák

Máté: Számítógép architektúrák Máté: Számítógép architektúrák 211117 Utasításrendszer architektúra szintje ISA) Amit a fordító program készítőjének tudnia kell: memóriamodell, regiszterek, adattípusok, ok A hardver és szoftver határán

Részletesebben

Számítógép architektúrák

Számítógép architektúrák Számítógép architektúrák Számítógépek felépítése Digitális adatábrázolás Digitális logikai szint Mikroarchitektúra szint Gépi szint Operációs rendszer szint Assembly nyelvi szint Probléma orientált (magas

Részletesebben

Máté: Számítógép architektúrák

Máté: Számítógép architektúrák I-51 (19) Cél: beépített rendszerekben való alkalmazás Fő szempont: olcsóság (ma már 1-15 ), sokoldalú alkalmazhatóság A memóriával, be- és kivitellel együtt egyetlen lapkára integrált számítógép Mikrovezérlő

Részletesebben

Máté: Assembly programozás

Máté: Assembly programozás Dr. Máté Eörs docens Képfeldolgozás és Számítógépes Grafika Tanszék Árpád tér 2. II. em. 213 6196, 54-6196 (6396, 54-6396) http://www.inf.u-szeged.hu/~mate Tantárgy leírás: http://www.inf.u-szeged.hu/oktatas/kurzusleirasok/

Részletesebben

Digitális rendszerek. Utasításarchitektúra szintje

Digitális rendszerek. Utasításarchitektúra szintje Digitális rendszerek Utasításarchitektúra szintje Utasításarchitektúra Jellemzők Mikroarchitektúra és az operációs rendszer közötti réteg Eredetileg ez jelent meg először Sokszor az assembly nyelvvel keverik

Részletesebben

A 32 bites x86-os architektúra regiszterei

A 32 bites x86-os architektúra regiszterei Memória címzési módok Jelen nayagrészben az Intel x86-os architektúrára alapuló 32 bites processzorok programozását tekintjük. Egy program futása során (legyen szó a program vezérléséről vagy adatkezelésről)

Részletesebben

Adatelérés és memóriakezelés

Adatelérés és memóriakezelés Adatelérés és memóriakezelés Jelen nayagrészben az Intel x86-os architektúrára alapuló 32 bites processzorok programozását tekintjük. Egy program futása során (legyen szó a program vezérléséről vagy adatkezelésről)

Részletesebben

találhatók. A memória-szervezési modell mondja meg azt, hogy miként

találhatók. A memória-szervezési modell mondja meg azt, hogy miként Memória címzési módok Egy program futása során (legyen szó a program vezérléséről vagy adatkezelésről) a program utasításai illetve egy utasítás argumentumai a memóriában találhatók. A memória-szervezési

Részletesebben

Bevezetés az informatikába

Bevezetés az informatikába Bevezetés az informatikába 3. előadás Dr. Istenes Zoltán Eötvös Loránd Tudományegyetem Informatikai Kar Programozáselmélet és Szoftvertechnológiai Tanszék Matematikus BSc - I. félév / 2008 / Budapest Dr.

Részletesebben

Máté: Számítógép architektúrák

Máté: Számítógép architektúrák Pentium 4 utasításformái (514 ábra) Több generáción keresztül kialakult architektúra Csak egy operandus lehet memória cím Prefix, escape (bővítésre), MOD, SIB (Scale Index Base) 0 5 1 2 0 1 0 1 0 4 0 4

Részletesebben

Operandus típusok Bevezetés: Az utasítás-feldolgozás menete

Operandus típusok Bevezetés: Az utasítás-feldolgozás menete Operandus típusok Bevezetés: Az utasítás-feldolgozás menete Egy gépi kódú utasítás általános formája: MK Címrész MK = műveleti kód Mit? Mivel? Az utasítás-feldolgozás általános folyamatábrája: Megszakítás?

Részletesebben

Assembly programozás levelező tagozat

Assembly programozás levelező tagozat Assembly programozás levelező tagozat Szegedi Tudományegyetem Képfeldolgozás és Számítógépes Grafika Tanszék 2011-2012-2 Tematika Assembly nyelvi szint. Az Intel 8086/88 regiszter készlete, társzervezése,

Részletesebben

Assembly. Iványi Péter

Assembly. Iványi Péter Assembly Iványi Péter További Op. rsz. funkcionalitások PSP címének lekérdezése mov ah, 62h int 21h Eredmény: BX = PSP szegmens címe További Op. rsz. funkcionalitások Paraméterek kimásolása mov di, parameter

Részletesebben

Aritmetikai utasítások I.

Aritmetikai utasítások I. Aritmetikai utasítások I. Az értékadó és aritmetikai utasítások során a címzési módok különböző típusaira látunk példákat. A 8086/8088-as mikroprocesszor memóriája és regiszterei a little endian tárolást

Részletesebben

Számítógépek felépítése

Számítógépek felépítése Számítógépek felépítése Emil Vatai 2014-2015 Emil Vatai Számítógépek felépítése 2014-2015 1 / 14 Outline 1 Alap fogalmak Bit, Byte, Word 2 Számítógép részei A processzor részei Processzor architektúrák

Részletesebben

Számítógép Architektúrák

Számítógép Architektúrák Számítógép Architektúrák Utasításkészlet architektúrák 2015. április 11. Budapest Horváth Gábor docens BME Hálózati Rendszerek és Szolgáltatások Tsz. ghorvath@hit.bme.hu Számítógép Architektúrák Horváth

Részletesebben

Máté: Számítógép architektúrák

Máté: Számítógép architektúrák Pentium 4 utasításformái (4 ábra) Több generáción keresztül kialakult architektúra Csak egy operandus lehet memória cím Prefix, escape (bővítésre), MOD, SIB (Scale Index Base) 0- prefix - művkód 6 utasítás

Részletesebben

Programozás alapjai. 10. előadás

Programozás alapjai. 10. előadás 10. előadás Wagner György Általános Informatikai Tanszék Pointerek, dinamikus memóriakezelés A PC-s Pascal (is) az IBM PC memóriáját 4 fő részre osztja: kódszegmens adatszegmens stackszegmens heap Alapja:

Részletesebben

1. Az utasítás beolvasása a processzorba

1. Az utasítás beolvasása a processzorba A MIKROPROCESSZOR A mikroprocesszor olyan nagy bonyolultságú félvezető eszköz, amely a digitális számítógép központi egységének a feladatait végzi el. Dekódolja az uatasításokat, vezérli a műveletek elvégzéséhez

Részletesebben

Assembly. Iványi Péter

Assembly. Iványi Péter Assembly Iványi Péter Miért? Ma már ritkán készül program csak assembly-ben Általában bizonyos kritikus rutinoknál használják Miért nem használjuk? Magas szintű nyelven könnyebb programozni Nehéz más gépre

Részletesebben

Archi2 Gyak. (Processzorok Utasításszintű Kezelése) 2014 ősz

Archi2 Gyak. (Processzorok Utasításszintű Kezelése) 2014 ősz Archi2 Gyak (Processzorok Utasításszintű Kezelése) 2014 ősz Ajánlott irodalom Agárdi Gábor: Gyakorlati Assembly, LSI Oktatóközpont, 1996, ISBN 963 577 117 7 Agárdi G.: Gyakorlati Assembly haladóknak, LSI

Részletesebben

Mi az assembly? Gyakorlatias assembly bevezető. Sokféle assembly van... Mit fogunk mi használni? A NASM fordítóprogramja. Assembly programok fordítása

Mi az assembly? Gyakorlatias assembly bevezető. Sokféle assembly van... Mit fogunk mi használni? A NASM fordítóprogramja. Assembly programok fordítása Mi az assembly Gyakorlatias assembly bevezető Fordítóprogramok előadás (A, C, T szakirány) programozási nyelvek egy csoportja gépközeli: az adott processzor utasításai használhatóak általában nincsenek

Részletesebben

Járműfedélzeti rendszerek I. 3. előadás Dr. Bécsi Tamás

Járműfedélzeti rendszerek I. 3. előadás Dr. Bécsi Tamás Járműfedélzeti rendszerek I. 3. előadás Dr. Bécsi Tamás ATmega128 CPU Single-level pipelining Egyciklusú ALU működés Reg. reg., reg. konst. közötti műveletek 32 x 8 bit általános célú regiszter Egyciklusú

Részletesebben

Assembly Címzési módok. Iványi Péter

Assembly Címzési módok. Iványi Péter Assembly Címzési módok Iványi Péter Gépi kód Gépi kód = amit a CPU megért 1-13 byte hosszúak lehetnek az utasítások Kb. 20 000 variációja van a gépi kódú utasításoknak Számítógép architektúrától függ Feszültség

Részletesebben

Máté: Számítógép architektúrák

Máté: Számítógép architektúrák .7. ábra. A NetBurst csővezeték Branch Target Buffer elágazási cél puffer Branch Target Buffer elágazási cél puffer Bemeneti rész ekódoló egység L1 BTB μrom Nyomkövető Nyomkövető BTB Bemeneti rész ekódoló

Részletesebben

Processzorok Utasításszintű Kezelése tavasz

Processzorok Utasításszintű Kezelése tavasz Processzorok Utasításszintű Kezelése 2014 tavasz Ajánlott irodalom Agárdi Gábor: Gyakorlati Assembly, LSI Oktatóközpont, 1996, ISBN 963 577 117 7 Agárdi G.: Gyakorlati Assembly haladóknak, LSI oktatóközpont,

Részletesebben

Mikroprocesszor CPU. C Central Központi. P Processing Számító. U Unit Egység

Mikroprocesszor CPU. C Central Központi. P Processing Számító. U Unit Egység Mikroprocesszor CPU C Central Központi P Processing Számító U Unit Egység A mikroprocesszor általános belső felépítése 1-1 BUSZ Utasítás dekóder 1-1 BUSZ Az utasítás regiszterben levő utasítás értelmezését

Részletesebben

Vezérlésfolyam gráf és X86 utasításkészlet

Vezérlésfolyam gráf és X86 utasításkészlet Vezérlésfolyam gráf és X86 utasításkészlet Kód visszafejtés. Izsó Tamás 2016. november 3. Izsó Tamás Vezérlésfolyam gráf és X86 utasításkészlet / 1 Intervallum algoritmus Procedure Intervals(G={N, E, h})

Részletesebben

5-6. ea Created by mrjrm & Pogácsa, frissítette: Félix

5-6. ea Created by mrjrm & Pogácsa, frissítette: Félix 2. Adattípusonként különböző regisztertér Célja: az adatfeldolgozás gyorsítása - különös tekintettel a lebegőpontos adatábrázolásra. Szorzás esetén karakterisztika összeadódik, mantissza összeszorzódik.

Részletesebben

Architektúra, megszakítási rendszerek

Architektúra, megszakítási rendszerek Architektúra, megszakítási ek Mirıl lesz szó? Megszakítás fogalma Megszakítás folyamata Többszintű megszakítási ek Koschek Vilmos Példa: Intel Pentium vkoschek@vonalkodhu Koschek Vilmos Fogalom A számítógép

Részletesebben

Balaton Marcell Balázs. Assembly jegyzet. Az Assembly egy alacsony szintű nyelv, mely a gépi kódú programozás egyszerűsítésére született.

Balaton Marcell Balázs. Assembly jegyzet. Az Assembly egy alacsony szintű nyelv, mely a gépi kódú programozás egyszerűsítésére született. Balaton Marcell Balázs Assembly jegyzet Az Assembly egy alacsony szintű nyelv, mely a gépi kódú programozás egyszerűsítésére született. 1. Regiszterek Regiszterek fajtái a. Szegmensregiszterek cs (code):

Részletesebben

Mutatók és mutató-aritmetika C-ben március 19.

Mutatók és mutató-aritmetika C-ben március 19. Mutatók és mutató-aritmetika C-ben 2018 március 19 Memória a Neumann-architektúrában Neumann-architektúra: a memória egységes a címzéshez a természetes számokat használjuk Ugyanabban a memóriában van:

Részletesebben

SzA19. Az elágazások vizsgálata

SzA19. Az elágazások vizsgálata SzA19. Az elágazások vizsgálata (Az elágazások csoportosítása, a feltételes utasítások használata, a műveletek eredményének vizsgálata az állapottér módszerrel és közvetlen adatvizsgálattal, az elágazási

Részletesebben

Paraméter átadás regisztereken keresztül

Paraméter átadás regisztereken keresztül Eljárások paramétereinek átadási módjai Az eljárások deklarációjánál nincs mód arra, hogy paramétereket adjunk meg, ezért más, közvetett módon tudunk átadni paramétereket az eljárásoknak. Emlékeztetőül:

Részletesebben

Utasításszintű architektúra Adattér

Utasításszintű architektúra Adattér Budapesti Műszaki Főiskola Regionális Oktatási és Innovációs Központ Székesfehérvár Utasításszintű architektúra Adattér Dr. Seebauer Márta főiskolai tanár seebauer.marta@roik.bmf.hu ISA Instruction Set

Részletesebben

SZÁMÍTÓGÉP ARCHITEKTÚRÁK

SZÁMÍTÓGÉP ARCHITEKTÚRÁK SZÁMÍTÓGÉP ARCHITEKTÚRÁK Kártyás ajtónyitó tervezése Horváth Gábor BME Hálózati Rendszerek és Szolgáltatások Tanszék ghorvath@hit.bme.hu, belso@hit.bme.hu Budapest, 2018-02-19 Hálózati Rendszerek és Szolgáltatások

Részletesebben

Programozási nyelvek 6. előadás

Programozási nyelvek 6. előadás Programozási nyelvek 6. előadás Szempontok Programozási nyelvek osztályozása Felhasználói kör (amatőr, professzionális) Emberközelség (gépi nyelvektől a természetes nyelvekig) Számítási modell (hogyan

Részletesebben

VI. SZOFTVERES PROGRAMOZÁSÚ VLSI ÁRAMKÖRÖK

VI. SZOFTVERES PROGRAMOZÁSÚ VLSI ÁRAMKÖRÖK VI. SZOFTVERES PROGRAMOZÁSÚ VLSI ÁRAMKÖRÖK 1 Az adatok feldolgozását végezhetjük olyan általános rendeltetésű digitális eszközökkel, amelyeket megfelelő szoftverrel (programmal) vezérelünk. A mai digitális

Részletesebben

Aritmetikai kifejezések lengyelformára hozása

Aritmetikai kifejezések lengyelformára hozása Aritmetikai kifejezések lengyelformára hozása Készítették: Santák Csaba és Kovács Péter, 2005 ELTE IK programtervező matematikus szak Aritmetikai kifejezések kiértékelése - Gyakran felmerülő programozási

Részletesebben

Karunkról Kari digitális könyvtár

Karunkról Kari digitális könyvtár . előadás Jegyzet www.inf.elte.hu Karunkról Kari digitális könyvtár i az assembly? gépi kód: a számítógép által közvetlenül értelmezett és végrehajtott jelsorozat assembly: a gépi kód emberek számára könnyen

Részletesebben

Műveletek. Dr. Seebauer Márta. Budapesti Műszaki Főiskola Regionális Oktatási és Innovációs Központ Székesfehérvár

Műveletek. Dr. Seebauer Márta. Budapesti Műszaki Főiskola Regionális Oktatási és Innovációs Központ Székesfehérvár Budapesti Műszaki Főiskola Regionális Oktatási és Innovációs Központ Székesfehérvár Műveletek Dr. Seebauer Márta főiskolai tanár seebauer.marta@roik.bmf.hu Az adatmanipulációs fa A adatmanipulációs fa

Részletesebben

Architektúra, címzési módok

Architektúra, címzési módok Architektúra, címzési módok Mirıl lesz szó? Címzés fogalma, címzési módok Virtuális tárkezelés Koschek Vilmos Példa: Intel vkoschek@vonalkodhu Fogalom A címzési mód az az út (algoritmus), ahogyan az operandus

Részletesebben

Intel x86 utasításkészlet

Intel x86 utasításkészlet Intel x86 utasításkészlet Kód visszafejtés. Izsó Tamás 2013. október 31. Izsó Tamás Intel x86 utasításkészlet/ 1 Section 1 Intel mikroprocesszor Izsó Tamás Intel x86 utasításkészlet/ 2 Intel mikroprocesszor

Részletesebben

Számítógép architektúrák

Számítógép architektúrák Számítógép architektúrák Kártyás ajtónyitó tervezése 2016. március 7. Budapest Horváth Gábor docens BME Hálózati Rendszerek és Szolgáltatások Tanszék ghorvath@hit.bme.hu Számítógép Architektúrák Horváth

Részletesebben

Máté: Számítógép architektúrák 2010.12.01.

Máté: Számítógép architektúrák 2010.12.01. Máté: Számítógép architektúrák... A feltételes ugró utasítások eldugaszolják a csővezetéket Feltételes végrehajtás (5.5 5. ábra): Feltételes végrehajtás Predikáció ió C pr. rész Általános assembly Feltételes

Részletesebben

BEÁGYAZOTT RENDSZEREK TERVEZÉSE Részletes Hardver- és Szoftvertervezés

BEÁGYAZOTT RENDSZEREK TERVEZÉSE Részletes Hardver- és Szoftvertervezés BEÁGYAZOTT RENDSZEREK TERVEZÉSE 1 A beágyazott szoftver- és hardver integrálásának a folyamata jól felkészült szakemberek munkáját igényli, amelyek gyakorlottak hibakeresési és felderítési metódusok alkalmazásában.

Részletesebben

Aritmetikai utasítások

Aritmetikai utasítások Aritmetikai utasítások Az értékadó és aritmetikai utasítások során a címzési módok különböző típusaira látunk példát. A 8086/8088-as processzor memóriája és regiszterei a little endian tárolást követik,

Részletesebben

Máté: Számítógép architektúrák

Máté: Számítógép architektúrák MPC új tartalma, JMPC JMPC esetén MPC 8 alacsonyabb helyértékű bitjének és MR 8 bitjének bitenkénti vagy kapcsolata képződik MPC-ben az adatút ciklus vége felé (MR megérkezése után). Ilyenkor Addr 8 alacsonyabb

Részletesebben

Máté: Számítógép architektúrák

Máté: Számítógép architektúrák Az GOTO offset utasítás. P relatív: P értékéhez hozzá kell adni a két bájtos, előjeles offset értékét. Mic 1 program: Main1 P = P + 1; fetch; goto() goto1 OP=P 1 // Main1 nél : P=P+1 1. bájt goto P=P+1;

Részletesebben

Az interrupt Benesóczky Zoltán 2004

Az interrupt Benesóczky Zoltán 2004 Az interrupt Benesóczky Zoltán 2004 1 Az interrupt (program megszakítás) órajel generátor cím busz környezet RESET áramkör CPU ROM RAM PERIF. adat busz vezérlõ busz A periféria kezelés során információt

Részletesebben

Programozási nyelvek a közoktatásban alapfogalmak I. előadás

Programozási nyelvek a közoktatásban alapfogalmak I. előadás Programozási nyelvek a közoktatásban alapfogalmak I. előadás Szempontok Programozási nyelvek osztályozása Felhasználói kör (amatőr, professzionális) Emberközelség (gépi nyelvektől a természetes nyelvekig)

Részletesebben

Bevezetés a számítástechnikába

Bevezetés a számítástechnikába Bevezetés a számítástechnikába, Címzési módok, Assembly Fodor Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék foa@almos.vein.hu 2010. november 2/9. ú utasítás

Részletesebben

Adatszerkezetek Adatszerkezet fogalma. Az értékhalmaz struktúrája

Adatszerkezetek Adatszerkezet fogalma. Az értékhalmaz struktúrája Adatszerkezetek Összetett adattípus Meghatározói: A felvehető értékek halmaza Az értékhalmaz struktúrája Az ábrázolás módja Műveletei Adatszerkezet fogalma Direkt szorzat Minden eleme a T i halmazokból

Részletesebben

Számítógépek felépítése, alapfogalmak

Számítógépek felépítése, alapfogalmak 2. előadás Számítógépek felépítése, alapfogalmak Lovas Szilárd, Krankovits Melinda SZE MTK MSZT kmelinda@sze.hu B607 szoba Nem reprezentatív felmérés kinek van ilyen számítógépe? 2 Nem reprezentatív felmérés

Részletesebben

assume CS:Code, DS:Data, SS:Stack Start: xor di, di mov si, 1 Torles int 10h mov dl, 40 xor bh, bh mov ah, 02h Kesleltet int 16h

assume CS:Code, DS:Data, SS:Stack Start: xor di, di mov si, 1 Torles int 10h mov dl, 40 xor bh, bh mov ah, 02h Kesleltet int 16h Fealadat3: labda.asm Feladat meghatározása A program célja az assembly rutinok időzítési lehetőségeinek bemutatása. Az időzítés az AH00, INT1Ah funkció segítségével történik. A program egy labda leesését

Részletesebben

Utolsó módosítás:

Utolsó módosítás: Utolsó módosítás:2010. 09. 15. 1 2 Kicsit konkrétabban: az utasítás hatására a belső regiszterek valamelyikének értékét módosítja, felhasználva regiszter értékeket és/vagy kívülről betöltött adatot. A

Részletesebben

assume CS:Code, DS:Data, SS:Stack Start mov dl, 100 mov dh, 100 push dx Rajz

assume CS:Code, DS:Data, SS:Stack Start mov dl, 100 mov dh, 100 push dx Rajz Feladat5: rajzolo.asm Feladat meghatározása A feladat célja bemutatni egy egyszerű grafikai program segítségével a közvetlen címzést (grafikus VGA 320*200). A program a kurzor mozgató gombok segítségével

Részletesebben

A mikroszámítógép felépítése.

A mikroszámítógép felépítése. 1. Processzoros rendszerek fő elemei mikroszámítógépek alapja a mikroprocesszor. Elemei a mikroprocesszor, memória, és input/output eszközök. komponenseket valamilyen buszrendszer köti össze, amelyen az

Részletesebben

Számítógép felépítése

Számítógép felépítése Alaplap, processzor Számítógép felépítése Az alaplap A számítógép teljesítményét alapvetően a CPU és belső busz sebessége (a belső kommunikáció sebessége), a memória mérete és típusa, a merevlemez sebessége

Részletesebben

Az integrált áramkörök kimenetének kialakítása

Az integrált áramkörök kimenetének kialakítása 1 Az integrált áramörö imeneténe ialaítása totem-pole three-state open-olletor Az áramörö általános leegyszerűsített imeneti foozata: + tápfeszültség R1 V1 K1 imenet V2 K2 U i, I i R2 ahol R1>>R2, és K1,

Részletesebben

2017/12/16 21:33 1/7 Hardver alapok

2017/12/16 21:33 1/7 Hardver alapok 2017/12/16 21:33 1/7 Hardver alapok < Hardver Hardver alapok Szerző: Sallai András Copyright Sallai András, 2011, 2013, 2014 Licenc: GNU Free Documentation License 1.3 Web: http://szit.hu Bevezetés A számítógépet

Részletesebben

Mikrorendszerek tervezése

Mikrorendszerek tervezése BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Mikrorendszerek tervezése Megszakítás- és kivételkezelés Fehér Béla Raikovich

Részletesebben

2016/08/31 02:45 1/6 Hardver alapok

2016/08/31 02:45 1/6 Hardver alapok 2016/08/31 02:45 1/6 Hardver alapok < Hardver Hardver alapok Szerző: Sallai András Copyright Sallai András, 2011, 2013, 2014 Licenc: GNU Free Documentation License 1.3 Web: http://szit.hu Bevezetés A számítógépet

Részletesebben

Jelfeldolgozás a közlekedésben

Jelfeldolgozás a közlekedésben Jelfeldolgozás a közlekedésben 2015/2016 II. félév 8051 és C8051F020 mikrovezérlők Fontos tudnivalók Elérhetőség: ST. 108 E-mail: lovetei.istvan@mail.bme.hu Fontos tudnivalók: kjit.bme.hu Aláírás feltétele:

Részletesebben

A számítógép alapfelépítése

A számítógép alapfelépítése Informatika alapjai-6 számítógép felépítése 1/8 számítógép alapfelépítése Nevezzük számítógépnek a következő kétféle elrendezést: : Harvard struktúra : Neumann struktúra kétféle elrendezés alapvetően egyformán

Részletesebben

1. ábra: Perifériára való írás idődiagramja

1. ábra: Perifériára való írás idődiagramja BELÉPTETŐ RENDSZER TERVEZÉSE A tárgy első részében tanult ismeretek részbeni összefoglalására tervezzük meg egy egyszerű mikroprocesszoros rendszer hardverét, és írjuk meg működtető szoftverét! A feladat

Részletesebben

Máté: Számítógép architektúrák

Máté: Számítógép architektúrák A mikroprogram Mic 1: 4.. ábra. 51x3 bites vezérlőtár a mikroprogramnak, MPC (MicroProgram Counter): mikroprogram utasításszámláló. MIR (MicroInstruction Register): mikroutasítás regiszter. Az adatút ciklus

Részletesebben

A tervfeladat sorszáma: 1 A tervfeladat címe: ALU egység 8 regiszterrel és 8 utasítással

A tervfeladat sorszáma: 1 A tervfeladat címe: ALU egység 8 regiszterrel és 8 utasítással .. A tervfeladat sorszáma: 1 A ALU egység 8 regiszterrel és 8 utasítással Minimálisan az alábbi képességekkel rendelkezzen az ALU 8-bites operandusok Aritmetikai funkciók: összeadás, kivonás, shift, komparálás

Részletesebben

A processzor hajtja végre a műveleteket. összeadás, szorzás, logikai műveletek (és, vagy, nem)

A processzor hajtja végre a műveleteket. összeadás, szorzás, logikai műveletek (és, vagy, nem) 65-67 A processzor hajtja végre a műveleteket. összeadás, szorzás, logikai műveletek (és, vagy, nem) Két fő része: a vezérlőegység, ami a memóriában tárolt program dekódolását és végrehajtását végzi, az

Részletesebben

Adatok ábrázolása, adattípusok

Adatok ábrázolása, adattípusok Adatok ábrázolása, adattípusok Összefoglalás Adatok ábrázolása, adattípusok Számítógépes rendszerek működés: információfeldolgozás IPO: input-process-output modell információ tárolása adatok formájában

Részletesebben

Assembly Rekurzív függvények, EXE, C programok. Iványi Péter

Assembly Rekurzív függvények, EXE, C programok. Iványi Péter Assembly Rekurzív függvények, EXE, C programok Iványi Péter Algoritmusok előadás Rekurzív függvény FÜGGVÉNY nyomtat(n) print n HA n!= 0 nyomtat(n-1) ELÁGAZÁS VÉGE FÜGGVÉNY VÉGE Rekurzív függvény org 100h

Részletesebben

Algoritmuselmélet 7. előadás

Algoritmuselmélet 7. előadás Algoritmuselmélet 7. előadás Katona Gyula Y. Budapesti Műszaki és Gazdaságtudományi Egyetem Számítástudományi Tsz. I. B. 137/b kiskat@cs.bme.hu 2002 Március 11. ALGORITMUSELMÉLET 7. ELŐADÁS 1 Múltkori

Részletesebben

Máté: Számítógép architektúrák

Máté: Számítógép architektúrák NEXT ADDRESS JMPC JAMN JAMZ SLL8 SRA1 F0 F1 ENA EN INVA INC H OPC TOS LV SP PC MDR MAR WRITE READ FETCH 4 sín Mikroutasítások 24 bit: az adatút vezérléséhez bit: a következő utasítás címének megadásához,

Részletesebben

C programozási nyelv Pointerek, tömbök, pointer aritmetika

C programozási nyelv Pointerek, tömbök, pointer aritmetika C programozási nyelv Pointerek, tömbök, pointer aritmetika Dr. Schuster György 2011. június 16. C programozási nyelv Pointerek, tömbök, pointer aritmetika 2011. június 16. 1 / 15 Pointerek (mutatók) Pointerek

Részletesebben

Gábor Dénes Főiskola Győr. Mikroszámítógépek. Előadás vázlat. 2004/2005 tanév 4. szemeszter. Készítette: Markó Imre 2006

Gábor Dénes Főiskola Győr. Mikroszámítógépek. Előadás vázlat. 2004/2005 tanév 4. szemeszter. Készítette: Markó Imre 2006 Gábor Dénes Főiskola Győr Mikroszámítógépek Előadás vázlat 102 2004/2005 tanév 4. szemeszter A PROCESSZOR A processzorok jellemzése A processzor felépítése A processzorok üzemmódjai Regiszterkészlet Utasításfelépítés,

Részletesebben

Java II. I A Java programozási nyelv alapelemei

Java II. I A Java programozási nyelv alapelemei Java II. I A Java programozási nyelv alapelemei Miskolci Egyetem Általános Informatikai Tanszék Utolsó módosítás: 2008. 02. 19. Java II.: Alapelemek JAVA2 / 1 A Java formalizmusa A C, illetve az annak

Részletesebben

DSP architektúrák dspic30f család memória kezelése

DSP architektúrák dspic30f család memória kezelése DSP architektúrák dspic30f család memória kezelése Az adatmemória Az adatmemória 16 bites, két külön memóriazóna van kiépítve, az X és az Y memória, mindkettőnek címgeneráló egysége és adat sínrendszere

Részletesebben

Bonyolultságelmélet. Monday 26 th September, 2016, 18:50

Bonyolultságelmélet. Monday 26 th September, 2016, 18:50 Bonyolultságelmélet Monday 26 th September, 2016, 18:50 A kiszámítás modelljei 2 De milyen architektúrán polinom? A kiszámításnak számos (matematikai) modellje létezik: Általános rekurzív függvények λ-kalkulus

Részletesebben

2. Fejezet : Számrendszerek

2. Fejezet : Számrendszerek 2. Fejezet : Számrendszerek The Architecture of Computer Hardware and Systems Software: An Information Technology Approach 3. kiadás, Irv Englander John Wiley and Sons 2003 Wilson Wong, Bentley College

Részletesebben

A számok kiírása is alapvetően karakterek kiírásán alapul, azonban figyelembe kell venni, hogy a számjegyeket, mint karaktereket kell kiírni.

A számok kiírása is alapvetően karakterek kiírásán alapul, azonban figyelembe kell venni, hogy a számjegyeket, mint karaktereket kell kiírni. Példák számok kiírására A számok kiírása is alapvetően karakterek kiírásán alapul, azonban figyelembe kell venni, hogy a számjegyeket, mint karaktereket kell kiírni. Decimális számok kiírása Az alábbi

Részletesebben

Intel x86 utasításkészlet + disassembler működése

Intel x86 utasításkészlet + disassembler működése Intel x86 utasításkészlet + disassembler működése Kód visszafejtés. Izsó Tamás 2016. november 10. Izsó Tamás Intel x86 utasításkészlet + disassembler működése / 1 Section 1 Intel X86 utasításkészlet Izsó

Részletesebben

A fordítóprogramok szerkezete. Kódoptimalizálás. A kódoptimalizálás célja. A szintézis menete valójában. Kódoptimalizálási lépések osztályozása

A fordítóprogramok szerkezete. Kódoptimalizálás. A kódoptimalizálás célja. A szintézis menete valójában. Kódoptimalizálási lépések osztályozása A fordítóprogramok szerkezete Forrásprogram Forrás-kezelő (source handler) Kódoptimalizálás Fordítóprogramok előadás (A,C,T szakirány) Lexikális elemző (scanner) Szintaktikus elemző (parser) Szemantikus

Részletesebben

Utasításfajták Memóriacímzés Architektúrák Végrehajtás Esettanulmányok. 2. előadás. Kitlei Róbert november 28.

Utasításfajták Memóriacímzés Architektúrák Végrehajtás Esettanulmányok. 2. előadás. Kitlei Róbert november 28. 2. előadás Kitlei Róbert 2008. november 28. 1 / 21 Adatmozgató irányai regiszter és memória között konstans betöltése regiszterbe vagy memóriába memóriából memóriába közvetlenül másoló utasítás nincsen

Részletesebben

A mikroprocesszor egy RISC felépítésű (LOAD/STORE), Neumann architektúrájú 32 bites soft processzor, amelyet FPGA val valósítunk meg.

A mikroprocesszor egy RISC felépítésű (LOAD/STORE), Neumann architektúrájú 32 bites soft processzor, amelyet FPGA val valósítunk meg. Mikroprocesszor A mikroprocesszor egy RISC felépítésű (LOAD/STORE), Neumann architektúrájú 32 bites soft processzor, amelyet FPGA val valósítunk meg. A mikroprocesszor részei A mikroprocesszor a szokásos

Részletesebben

Megszakítások és kivételek

Megszakítások és kivételek Megszakítások és kivételek Megszakítások Megszakítás a számítási rendszernek küldött jelzés, mely valamilyen esemény felléptéről értesíti. Egy megszakítás felléptekor a rendszer: megszakítja az aktív program

Részletesebben

Assembly utasítások listája

Assembly utasítások listája Assembly utasítások listája Bevezetés: Ebben a segédanyagban a fontosabb assembly utasításokat szedtem össze. Az utasítások csoportosítva vannak. A fontos kategóriába azok az utasítások tartoznak, amiknek

Részletesebben

SZÁMÍTÓGÉPEK BELSŐ FELÉPÍTÉSE - 1

SZÁMÍTÓGÉPEK BELSŐ FELÉPÍTÉSE - 1 INFORMATIKAI RENDSZEREK ALAPJAI (INFORMATIKA I.) 1 NEUMANN ARCHITEKTÚRÁJÚ GÉPEK MŰKÖDÉSE SZÁMÍTÓGÉPEK BELSŐ FELÉPÍTÉSE - 1 Ebben a feladatban a következőket fogjuk áttekinteni: Neumann rendszerű számítógép

Részletesebben

The Architecture of Computer Hardware and Systems Software: An InformationTechnology Approach 3. kiadás, Irv Englander John Wiley and Sons 2003

The Architecture of Computer Hardware and Systems Software: An InformationTechnology Approach 3. kiadás, Irv Englander John Wiley and Sons 2003 . Fejezet : Számrendszerek The Architecture of Computer Hardware and Systems Software: An InformationTechnology Approach. kiadás, Irv Englander John Wiley and Sons Wilson Wong, Bentley College Linda Senne,

Részletesebben

Stack Vezérlés szerkezet Adat 2.

Stack Vezérlés szerkezet Adat 2. Stack Vezérlés szerkezet Adat 2. Kód visszafejtés. Izsó Tamás 2013. november 14. Izsó Tamás Stack Vezérlés szerkezet Adat 2./ 1 Változó típusú paraméterekátadása 1. #include < s t d i o. h> int64 myfunc

Részletesebben

A programozás alapjai

A programozás alapjai A programozás alapjai Változók A számítógép az adatokat változókban tárolja A változókat alfanumerikus karakterlánc jelöli. A változóhoz tartozó adat tipikusan a számítógép memóriájában tárolódik, szekvenciálisan,

Részletesebben

A regiszterek az assembly programozás változói. A processzor az egyes mőveleteket kizárólag regiszterek közremőködésével tudja végrehajtani.

A regiszterek az assembly programozás változói. A processzor az egyes mőveleteket kizárólag regiszterek közremőködésével tudja végrehajtani. 1. Regiszterek A regiszterek az assembly programozás változói. A processzor az egyes mőveleteket kizárólag regiszterek közremőködésével tudja végrehajtani. Általános célú regiszterek AX akkumulátor: aritmetikai

Részletesebben

Máté: Számítógép architektúrák

Máté: Számítógép architektúrák Mikroarchitektúra szint Feladata az ISA (Instruction Set Architecture gépi utasítás szint) megvalósítása. Nincs rá általánosan elfogadott, egységes elv. A ISA szintű utasítások függvények, ezeket egy főprogram

Részletesebben

Digitális technika VIMIAA01 9. hét Fehér Béla BME MIT

Digitális technika VIMIAA01 9. hét Fehér Béla BME MIT BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA01 9. hét Fehér Béla BME MIT Eddig Tetszőleges

Részletesebben

Digitális technika VIMIAA01 9. hét

Digitális technika VIMIAA01 9. hét BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA01 9. hét Fehér Béla BME MIT Eddig Tetszőleges

Részletesebben

A hibát az alábbi Python program segítségével tudjuk előidézni:

A hibát az alábbi Python program segítségével tudjuk előidézni: Bevezető Az ismertetésre kerülő biztonsági hiba 0day kategóriába tartozik, ezért sem a termék, sem a teljes hiba kihasználását lehetővé tevő kód bemutatása nem történik meg. A leírás célja az alkalmazott

Részletesebben

Informatika 1 2. el adás: Absztrakt számítógépek

Informatika 1 2. el adás: Absztrakt számítógépek Informatika 1 2. el adás: Budapesti M szaki és Gazdaságtudományi Egyetem 2015-09-08 1 2 3 A egy M = Q, Γ, b, Σ, δ, q 0, F hetes, ahol Q az 'állapotok' nem üres halmaza, Γ a 'szalag ábécé' véges, nem üres

Részletesebben

Programozás alapjai C nyelv 4. gyakorlat. Mit tudunk már? Feltételes operátor (?:) Típus fogalma char, int, float, double

Programozás alapjai C nyelv 4. gyakorlat. Mit tudunk már? Feltételes operátor (?:) Típus fogalma char, int, float, double Programozás alapjai C nyelv 4. gyakorlat Szeberényi Imre BME IIT Programozás alapjai I. (C nyelv, gyakorlat) BME-IIT Sz.I. 2005.10.10.. -1- Mit tudunk már? Típus fogalma char, int, float,

Részletesebben

Egér (mice, mouse, 2.33. ábra): az egér mozgatása egy mutató mozgását váltja ki a képernyın.

Egér (mice, mouse, 2.33. ábra): az egér mozgatása egy mutató mozgását váltja ki a képernyın. Egér (mice, mouse, 2.33. ábra): az egér mozgatása egy mutató mozgását váltja ki a képernyın. Mechanikus: gumi golyó, potenciométerek. Optikai: LED (Light Emitting Diode), rácsozott asztal, fényérzékelı.

Részletesebben

Bevezetés az informatikába

Bevezetés az informatikába Bevezetés az informatikába 4. előadás Dr. Istenes Zoltán Eötvös Loránd Tudományegyetem Informatikai Kar Programozáselmélet és Szoftvertechnológiai Tanszék Matematikus BSc - I. félév / 2008 / Budapest Dr.

Részletesebben

sallang avagy Fordítótervezés dióhéjban Sallai Gyula

sallang avagy Fordítótervezés dióhéjban Sallai Gyula sallang avagy Fordítótervezés dióhéjban Sallai Gyula Az előadás egy kis példaprogramon keresztül mutatja be fordítók belső lelki világát De mit is jelent, az hogy fordítóprogram? Mit csinál egy fordító?

Részletesebben