Memóriák - tárak. Memória. Kapacitás Ár. Sebesség. Háttértár. (felejtő) (nem felejtő)

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Memóriák - tárak. Memória. Kapacitás Ár. Sebesség. Háttértár. (felejtő) (nem felejtő)"

Átírás

1 Memóriák

2 (felejtő) Memória Kapacitás Ár Sebesség Memóriák - tárak Háttértár (nem felejtő)

3 Memória Vezérlő egység Központi memória Aritmetikai Logikai Egység (ALU) Regiszterek Programok Adatok Ez nélkül nem létezhetne tárolt programú digitális gép I/O eszközök Központi memória Lemez Nyomtató

4 Memória Alapegység: bit (binary unit) 0 v. 1 (bináris számrendszer) BCD (Binary Coded Decimal) Decimális szám 4 biten 4 bit ( nybble ) : 16 lehetőség 6 kombináció kihasználatlan 2006: BCD 2006: B Egyszerű konverzió miatt CPU nélküli vagy beágyazott rendszerekben használják

5 Címzési módok Operatív tár Rekeszek (cellák, pl. keskeny, hosszú papírcsík) Rekesz cím (address) - sorszám (memória elejétől) egyértelműen azonosítja az adott cellát Rekeszek száma cím bitszélessége k-bites rekeszek (cím független k-tól) 10 db 8 bites rekesz cím: db 128 bites rekesz cím: 210

6 Címzési módok (Címek a: 4 bit, b: 3 bit, c: 3 bit) Tanenbaum

7 Címzési módok Rekesz legkisebb címezhető egység IBM PC 8 bit (1 byte ~ octet) Mára szinte szabványos a 8 bites rekesz Számítógép Burroughs B1700 IBM PC DEC PDP-8 IBM 1130 DEC PDP-15 XDS 940 Electrologica X8 XDS Sigma 9 Honeywell 6180 CDC 3600 CDC Cyber Bit

8 Címzési módok Szó (word) Rekeszekből (byte-okból) áll 32 bites szó esetén a szó 4 byte-os Utasítások zöme szavakkal dolgozik (32 bites gép 32 bites szavak, 64 bites gép 64 bites szavak)

9 Byte sorrend Szó byte-jai jobbról-balra big endian (SPARC, IBM) Szó byte-jai balról-jobbra little endian (Intel) Tanenbaum

10 Hibadetektáló kódok Memóriák hibázhatnak Pl. áramlökés (villám, kozmikus sugárzás) Hibadetektálás Paritás bit Bitek átbillenhetnek jelöljük ha 1 hiba történt Pl. páros paritás: a bitsorozat 1-es bitjeit páros számúra egészítsük ki:

11 Hibadetektáló kódok Hiba detektáltuk újra kell küldeni Mi a hiba? Bit-eltérés valamely pozíciókban m hasznos bit + r redundáns bit n bites kódszó Két kódszó eltérő bitpozícióinak száma: Hamming-távolság pl.: 1001 és 1010 Hamming-távolsága: 2 (Kódszó generálás: pl. Hamming-kocka)

12 Hibadetektáló kódok Hamming-távnyi bithiba kell ahhoz hogy egy kódszó a másikba forduljon m hasznos bit 2m bitminta (üzenet) n biten 2n kódszó (2m érvényes) Ha érvénytelen kódszó jön hiba érvényes kódszavak listájában a két legkisebb Hamming-távolságú szó az összes kód Hamming-távolsága

13 Hibadetektáló kódok d egyszeres bithiba felismeréséhez d+1 távolságú kódolás kell: d:=2 Hamming-táv: 2+1= , , , ha max. d=2 bit billen át, nem kapunk másik érvényes kódszót észrevehető a hiba : ?(2 hiba) v (1 hiba)

14 Hibajavító kódok d egyszeres bithiba javításához 2d+1 távolságú kódolás kell: d:=2 Hamming-táv: 2*2+1 = bithiba javítható, a hibás kód mihez áll legközelebb?

15 Hibajavító kódok Tegyük fel hogy létrehozunk egy 1 bitet javító n-hosszú kódolást, ahol m adatbit r ellenőrző bit azaz n=m+r 2m érvényes szó n db 1 bites eltérés (Hamming-táv=1) 1 db helyes kódszó (0 bit eltérés) (n+1)*2m db 1 bites hiba

16 Hibajavító kódok (n+1)*2m db 1 bites hiba Összes kód: 2n (n+1)*2m <= 2n, n = m + r (m+r+1)*2m<=2m+r (m+r+1) <=2r m adott, így r-re kapunk egy alsó határt

17 Hibajavító kódok Egyszeres hiba javításához szükséges paritás bitek (check bit) pár m-értékre Tanenbaum

18 Hibajavító kódok Richard Hamming Az elmélet alsó korlátát érte el módszerével Alapötlet: átlapoló paritás bitek, egymást is figyelik 1100 kódolása pl. AB, AC, AD, ABC felosztás Tanenbaum

19 Hibajavító kódok Hamming-kód Bitek sorszáma 1-től indul (nem 0-tól) Paritás bitek helye a 2 hatványainál van A maradék helyekre kerülnek az adatbitek A paritásbitek rendre a következő bitpozíciókat ellenőrzik: p1: 1,3,5,7,9,11, (első hatványtól minden első) p2: 2,3,6,7,10,11, (második hatványtól 2 igen, 2 nem) p3: 4,5,6,7,12,13,14,15, (harmadik hatványtól 4 igen, 4 nem)

20 Hibajavító kódok Hamming-kód Általánosan: b. bitet azok a b1,b2,b3,..,bj paritásbitek ellenőriznek, melyekre áll, hogy b1,b2,b3,..,bj pozícióinak összege b. Pl.: 7. bitet az 1., 2. és 4. bit ellenőrzi, hisz 1+2+4=

21 Hibajavító kódok Hamming-kód Pl.: Szó: Kód: p010p1pp 10p010p1p1 10p010p111 10p

22 Hibajavító kódok Hamming-kód Kapott kódszóra újra paritás biteket generálni Ahol eltérnek, ott hiba paritás bitek sorszámainak összege adja a hiba pozícióját Excel-példa

23 Memóriák cache CPU gyorsabb mint a memória Fejlesztés Lehetőség CPU várakozik a memóriára (pl. NOP parancsokkal) Lehet gyors memóriát is építeni CPU gyorsabb legyen Memória több legyen CPU és memória sebesség egyre távolabb Nagyon drága CPU mellé korlátos méretben lehet integrálni Méret sebesség kompromisszum: Gyorsítótár (cache)

24 Memóriák cache Cache logikai elhelyezkedése

25 Memóriák cache Méret A lassabb elérésű tár egy részét egyben tárolja Nagyságrendileg KB-MB Lokalitás-elv Több szó -t olvasunk cache-be egyszerre - gyorsabb A sok írás olvasás ide innen történik CPU-ban a központi memóriát cache -eljük, de más táraknál is használatos (pl. merevlemez) Gyors, de költséges CPU cache Közp. Mem.

26 Memóriák cache Sebességek c cache elérési sebessége m memória elérési sebessége h találati arány (hány hivatkozás ment cache-ből) (pl. k-szor olvasunk, akkor ált. egyszer a lassú memóriából, utána k-1-szer a cache-ből, így h=(k-1)/k 1-h hibaarány Átlagos elérési idő: c c + (1-h)m h 0 : c+m h 1 : c CPU cache m Közp. Mem.

27 Memóriák cache Egyesített gyorsítótár Adatok és utasítások ugyanott Egyszerűbb szerkezet Adatok és utasítások mozgatása egyensúlyban Osztott gyorsítótár (Harvard-architektúra) Adatok és utasítások külön cache-ben Csővezetékek miatt az utasításbeolvasó (utasítás) és az operandusbeolvasó (adat) egyszerre olvas Párhuzamos működés lehetséges (egyesítettnél nem lehetséges)

28 Memóriák - Regiszterek CPU ALU Regiszterek Dekódoló, vezérlő egység A processzor belső, átmeneti tárolói Belső sín ÁltalábanBusz a CPU bitszélességével megegyező vezérlő Cím generáló nagyságúak (pl. 32 bit-es 2^32=4GByte) Az utasítások mindig regiszterből vesznek be paramétert és ide is teszik az eredményt

29 Memóriák - Regiszterek CPU ALU Regiszterek Regisztereket különösen gyorsan kell tudni kezelni cpu sebességét befolyásolják Operandusok, utasítások, állapotjelzők Felejtő memória Belső sín Busz vezérlő Dekódoló, vezérlő egység Cím generáló

30 Memóriák központi memória Elsődleges v. operatív memória RAM (Random Access Memory) Méret: 128Mb 4Gb+ I/O csatornák használata nélkül elérhető Felejtő Modulokkal bővíthető 256 MB modul Eleinte lapkánként lehetett bővíteni Manapság 8-16 lapka van egy nyomtatott áramkörön SIMM (Single Inline Memory, egyérintkezős) és DIMM (Dual Inline Memory, kétérintkezős) Hibajavítás lehetséges, de SIMM DIMM-eknél ritka a hiba, el szokták hagyni

31 Memóriák központi memória DIP (Dual Inline Package) Pl. 8086, 286 SIPP (Single Inline Package) Pár 286-osban Sérülékeny (lábak letörnek)

32 Memóriák központi memória 32 bites adatút 30 és 72 érintkezős SIMM-ek (Single Inline Memory Module) Mindkét oldali érintkező-pár redundáns, ugyanaz a láb 30 érintkezős 8 v. 9 bites 72 érintkezős 32 v. 36 bites

33 Memóriák központi memória 64 bites adatút 168 és 184 érintkezős DIMM-ek (Dual Inline Memory Module) Mindkét oldali érintkező-pár más-más láb 168 érintkezős (SDRAM) 184 érintkezős (DDR RAM)

34 Memóriák központi memória 32 v. 64 bites adatút SO-DIMM (Small Outline DIMM) Noteszgépekben Routerek Nyomtatók mini-alaplapok

35 Memóriák operatív memória Feladat: programok adatok tárolása Írható olvasható (RAM, pedig nem azt jelenti, minden memória véletlen elérésű manapság, de így használjuk már) Fajták Statikus Dinamikus

36 Memóriák statikus RAM Static RAM (SRAM) Amíg tápellátás megjegyzi, nem kell frissíteni Elérési idő: néhány nsec Bitcellákból épül fel Pl. RS-tároló NOR kapukkal

37 Memóriák statikus RAM Kis sűrűség nagy kapacitáshoz nem ideális, illetve drága Fogyasztás a sebesség függvénye, gyors SRAM-ok (CPU cache pl.) esetén nagy Egyszerű implementálás és tervezés (nincsenek frissítések)

38 Memóriák dinamikus RAM Dynamic RAM (DRAM) Bitcella-tömb, minden cella egy tranzisztor és egy kapacitás Töltés / kisütés ~ 1 / 0 Töltések szivárognak frissítés! ( / sec) Nagy sűrűség érhető el (kevés alkatrész) Operatív memória általában DRAM-ból épül (SRAM inkább cache) Elérési idő: néhány 10 nsec

39 Memóriák dinamikus RAM FPM (Fast Page Mode) DRAM Mátrix szervezésű tömb BE: Sor-, oszlopcím KI: adott cella értéke Maximum átvitel ~ 176 MBps Aszinkron (cím és adatvonal nem u.a. órajelű) EDO (Extended Data Output) DRAM Második memóriahivatkozás a kimenet előtt engedélyezett (folyamatos írás-olvasás esetén nő a sávszélesség pipeline) Maximum átvitel ~ 264 MBps Aszinkron

40 Memóriák dinamikus RAM SDRAM (Synchronous DRAM) SRAM és DRAM hibrid Szinkron órajel Lekérés, kiolvasás egy órajelre ütemezve Fix órajel után jön válasz (latency) 2000-re minden PC ilyen memóriával jött ki

41 Memóriák dinamikus RAM RDRAM (Rambus DRAM) 3x gyorsabb órajel mint SDRAM (400 MHz) Memóriavezérlő minden modulon (2x-3x drágább) Késleltetés (latency) nagyobb (45ns, 7.5ns helyett) Hőtermelés nagyobb Párban lehet betenni (CRIMM modul) 2002-ben a kétcsatornás DDR-ek kiszorították

42 Memóriák DDR SDRAM DDR (Double Data Rate) SDRAM 2x-es adatátvitel órajel felmenő és lemenő élén is adatátvitel Kisebb feszültség (SDRAM: 3.3V, DDR: 2.5V)

43 Memóriák DDR2 SDRAM DDR (Double Data Rate 2) SDRAM Nagyobb órajel Kisebb feszültség (1.8 V)

44 Memóriák DDR3 SDRAM DDR (Double Data Rate 3) SDRAM Nem GDDR3! Kisebb feszültség (1.5 V) Több csatorna (akár 8) párhuzamosan

45 Memóriák ROM ROM (Read Only Memory) Csak olvasható memória Gyártáskor kerül be a bitminta Tartalma nem vész el Felhasználás Gépek alapprogramjainak tárolása, bekapcsoláskor futnak le Olcsóbb mint RAM Megrendelés legyártás között sok idő telhet el

46 Memóriák (E)(E)PROM PROM (Programable Read Only Memory) EPROM (Erasable PROM) 1x írható, csak olvasható Felhasználó készíthet saját ROM-ot Biztosíték-mátrix-on égetik ki a bitmintát Törölhető (erős UV sugárzással) EPROM-íróval programozható EEPROM (Electrically EPROM) Impulzusokkal törölhető Helyben programozható 10-ed olyan gyors és 100-ad olyan kapacitású mint az Sés DRAM-ok ½-ed olyan gyors és 1/64-ed kapacitású mint az EPROM

47 Memóriák Flash ROM EEPROM-hoz hasonló, de Gyorsabb elérési idő (~50 nsec) Sokkal olcsóbb Blokkokban írható/olvasható Nagyon ellenálló (forróság, nyomás) ~ írást/törlést bír ki Egyre több eszközben használják (mp3, digitális kamera, háttértár)

BEVEZETÉS AZ INFORMATIKÁBA - SZÁMÍTÓGÉP ARCHITEKTÚRÁK. Háber István Ihaber@pmmik.pte.hu

BEVEZETÉS AZ INFORMATIKÁBA - SZÁMÍTÓGÉP ARCHITEKTÚRÁK. Háber István Ihaber@pmmik.pte.hu BEVEZETÉS AZ INFORMATIKÁBA - SZÁMÍTÓGÉP ARCHITEKTÚRÁK Háber István Ihaber@pmmik.pte.hu MAI SZÁMÍTÓGÉPEK FELÉPÍTÉSE A mai digitális számítógépek többségének felépítése a Neumann-elvet követi. Három fő funkcionális

Részletesebben

MEMÓRIA TECHNOLÓGIÁK. Számítógép-architektúrák 4. gyakorlat. Dr. Lencse Gábor. tudományos főmunkatárs BME Híradástechnikai Tanszék lencse@hit.bme.

MEMÓRIA TECHNOLÓGIÁK. Számítógép-architektúrák 4. gyakorlat. Dr. Lencse Gábor. tudományos főmunkatárs BME Híradástechnikai Tanszék lencse@hit.bme. MEMÓRIA TECHNOLÓGIÁK Számítógép-architektúrák 4. gyakorlat Dr. Lencse Gábor 2011. október 3., Budapest tudományos főmunkatárs BME Híradástechnikai Tanszék lencse@hit.bme.hu Tartalom Emlékeztető: mit kell

Részletesebben

Számítógép architektúrák. Tartalom. A memória. A memória

Számítógép architektúrák. Tartalom. A memória. A memória Számítógép architektúrák A memória Tartalom Félvezető tárolók DRAM, SRAM ROM, PROM Tokozások, memóriamodulok Lokalitás elve Gyorsítótárak (cache) A memória Vadász, 2007. Ea7 2 A memória Tár: programok

Részletesebben

DIGITÁLIS ADATTÁRAK (MEMÓRIÁK)

DIGITÁLIS ADATTÁRAK (MEMÓRIÁK) DIGITÁLIS ADATTÁRAK (MEMÓRIÁK) A digitális berendezések a feladatuk ellátása közben rendszerint nagy mennyiségű adatot dolgoznak fel. Feldolgozás előtt és után rendszerint tárolni kell az adatokat ritka

Részletesebben

ELŐADÁS 2016-01-05 SZÁMÍTÓGÉP MŰKÖDÉSE FIZIKA ÉS INFORMATIKA

ELŐADÁS 2016-01-05 SZÁMÍTÓGÉP MŰKÖDÉSE FIZIKA ÉS INFORMATIKA ELŐADÁS 2016-01-05 SZÁMÍTÓGÉP MŰKÖDÉSE FIZIKA ÉS INFORMATIKA A PC FIZIKAI KIÉPÍTÉSÉNEK ALAPELEMEI Chip (lapka) Mikroprocesszor (CPU) Integrált áramköri lapok: alaplap, bővítőkártyák SZÁMÍTÓGÉP FELÉPÍTÉSE

Részletesebben

Architektúra, memóriák

Architektúra, memóriák Archiekúra, memóriák Mirıl lesz szó? Alapfogalmak DRAM ípusok Mőködés Koschek Vilmos Jellemzık vkoschek@vonalkod.hu 2 Félvezeıs memóriák Hozzáférési idı Miér is? Mőködési sebesség kérése kérése kérése

Részletesebben

Közlekedés gépjárművek elektronikája, diagnosztikája. Mikroprocesszoros technika. Memóriák, címek, alapáramkörök. A programozás alapjai

Közlekedés gépjárművek elektronikája, diagnosztikája. Mikroprocesszoros technika. Memóriák, címek, alapáramkörök. A programozás alapjai Közlekedés gépjárművek elektronikája, diagnosztikája Mikroprocesszoros technika. Memóriák, címek, alapáramkörök. A programozás alapjai TÁMOP-2.2.3-09/1-2009-0010 A Széchenyi István Térségi Integrált Szakképző

Részletesebben

statikus RAM ( tároló eleme: flip-flop ),

statikus RAM ( tároló eleme: flip-flop ), 1 Írható/olvasható memóriák (RAM) Az írható/olvasható memóriák angol rövidítése ( RAM Random Acces Memories közvetlen hozzáférésű memóriák) csak a cím szerinti elérés módjára utal, de ma már ehhez az elnevezéshez

Részletesebben

Első sor az érdekes, IBM PC. 8088 ra alapul: 16 bites feldolgozás, 8 bites I/O (olcsóbb megoldás). 16 kbyte RAM. Nem volt háttértár, 5 db ISA foglalat

Első sor az érdekes, IBM PC. 8088 ra alapul: 16 bites feldolgozás, 8 bites I/O (olcsóbb megoldás). 16 kbyte RAM. Nem volt háttértár, 5 db ISA foglalat 1 2 3 Első sor az érdekes, IBM PC. 8088 ra alapul: 16 bites feldolgozás, 8 bites I/O (olcsóbb megoldás). 16 kbyte RAM. Nem volt háttértár, 5 db ISA foglalat XT: 83. CPU ugyanaz, nagyobb RAM, elsőként jelent

Részletesebben

Számítógép Architektúrák (MIKNB113A)

Számítógép Architektúrák (MIKNB113A) PANNON EGYETEM, Veszprém Villamosmérnöki és Információs Rendszerek Tanszék Számítógép Architektúrák (MIKNB113A) 9. előadás: Memóriák Előadó: Vörösházi Zsolt Jegyzetek, segédanyagok: Könyvfejezetek: http://www.virt.vein.hu

Részletesebben

8. témakör. Memóriák 1. Számítógép sematikus felépítése: 2.A memória fogalma: 3.A memóriák csoportosítása:

8. témakör. Memóriák 1. Számítógép sematikus felépítése: 2.A memória fogalma: 3.A memóriák csoportosítása: 8. témakör 12a_08 Memóriák 1. Számítógép sematikus felépítése: 2.A memória fogalma: Gyors hozzáférésű tárak. Innen veszi, és ideírja a CPU a programok utasításait és adatait (RAM, ROM). Itt vannak a futó

Részletesebben

Máté: Számítógép architektúrák

Máté: Számítógép architektúrák Máté: Számítógép architektúrák 20100922 Programozható logikai tömbök: PLA (315 ábra) (Programmable Logic Array) 6 kimenet Ha ezt a biztosítékot kiégetjük, akkor nem jelenik meg B# az 1 es ÉS kapu bemenetén

Részletesebben

Bevitel-Kivitel. Eddig a számítógép agyáról volt szó. Szükség van eszközökre. Processzusok, memória, stb

Bevitel-Kivitel. Eddig a számítógép agyáról volt szó. Szükség van eszközökre. Processzusok, memória, stb Input és Output 1 Bevitel-Kivitel Eddig a számítógép agyáról volt szó Processzusok, memória, stb Szükség van eszközökre Adat bevitel és kivitel a számitógépből, -be Perifériák 2 Perifériákcsoportosításá,

Részletesebben

8. Fejezet Processzor (CPU) és memória: tervezés, implementáció, modern megoldások

8. Fejezet Processzor (CPU) és memória: tervezés, implementáció, modern megoldások 8. Fejezet Processzor (CPU) és memória: The Architecture of Computer Hardware and Systems Software: An Information Technology Approach 3rd Edition, Irv Englander John Wiley and Sons 2003 Wilson Wong, Bentley

Részletesebben

8. Fejezet Processzor (CPU) és memória: tervezés, implementáció, modern megoldások

8. Fejezet Processzor (CPU) és memória: tervezés, implementáció, modern megoldások 8. Fejezet Processzor (CPU) és memória: The Architecture of Computer Hardware and Systems Software: An Information Technology Approach 3rd Edition, Irv Englander John Wiley and Sons 2003 Wilson Wong, Bentley

Részletesebben

Számítógép architektúrák. Tartalom. A memória. A memória

Számítógép architektúrák. Tartalom. A memória. A memória Számítógép architektúrák A memória Tartalom Félvezető tárolók DRAM, SRAM ROM, PROM Tokozások, memóriamodulok Lokalitás elve Gyorsítótárak (cache) Vadász, 2005 Ea7 2 A memória Tár: programok és adatok tárolására.

Részletesebben

Számítógép felépítése

Számítógép felépítése Alaplap, processzor Számítógép felépítése Az alaplap A számítógép teljesítményét alapvetően a CPU és belső busz sebessége (a belső kommunikáció sebessége), a memória mérete és típusa, a merevlemez sebessége

Részletesebben

Dr. Oniga István. DIGITÁLIS TECHNIKA 10 Memóriák

Dr. Oniga István. DIGITÁLIS TECHNIKA 10 Memóriák Dr. Oniga István DIGITÁLIS TECHNIKA 10 Memóriák Memóriák Programot, és adatokat tárolnak D flip-flop egyetlen bit, a regiszter egy bináris szám tárolására alkalmasak Memóriák több számok tárolására alkalmasak

Részletesebben

elektronikus adattárolást memóriacím

elektronikus adattárolást memóriacím MEMÓRIA Feladata A memória elektronikus adattárolást valósít meg. A számítógép csak olyan műveletek elvégzésére és csak olyan adatok feldolgozására képes, melyek a memóriájában vannak. Az információ tárolása

Részletesebben

A mikroszámítógép felépítése.

A mikroszámítógép felépítése. 1. Processzoros rendszerek fő elemei mikroszámítógépek alapja a mikroprocesszor. Elemei a mikroprocesszor, memória, és input/output eszközök. komponenseket valamilyen buszrendszer köti össze, amelyen az

Részletesebben

Tartalom. Számítógép architektúrák. A memória. A tárak implementációja. A félvezető tárolók. Egy cella

Tartalom. Számítógép architektúrák. A memória. A tárak implementációja. A félvezető tárolók. Egy cella Tartalom Számítógép architektúrák A memória Félvezető tárolók DRAM, SRAM ROM, PROM Tokozások, memóriamodulok Lokalitás elve Gyorsítótárak (cache) A memória Vadász, 2007. Ea7 2 A memória Tár: programok

Részletesebben

Teljesítmény: időegység alatt végrehajtott utasítások száma. Egységek: MIPS, GIPS, MFLOPS, GFLOPS, TFLOPS, PFLOPS. Mai nagyteljesítményű GPGPU k: 1-2

Teljesítmény: időegység alatt végrehajtott utasítások száma. Egységek: MIPS, GIPS, MFLOPS, GFLOPS, TFLOPS, PFLOPS. Mai nagyteljesítményű GPGPU k: 1-2 2009. 10. 21. 1 2 Teljesítmény: időegység alatt végrehajtott utasítások száma. Egységek: MIPS, GIPS, MFLOPS, GFLOPS, TFLOPS, PFLOPS. Mai nagyteljesítményű GPGPU k: 1-2 PFLOPS. (Los Alamosban 1 PFLOPS os

Részletesebben

(A DRAM-okkal kapcsolatban a bank megnyitása, bank aktiválása, banksor megnyitása vagy a lap megnyitása kifejezések szinonímák, ugyanazt jelentik.

(A DRAM-okkal kapcsolatban a bank megnyitása, bank aktiválása, banksor megnyitása vagy a lap megnyitása kifejezések szinonímák, ugyanazt jelentik. Szinkron DRAM fontosabb időzítési paraméterek tcl trcd tras trp trc CAS Latency, várakozási idő az oszlopburst olvasási parancsától az első adat megjelenéséig A minimális idő a bank(sor) megnyitásától

Részletesebben

Számítógépek felépítése

Számítógépek felépítése Számítógépek felépítése Emil Vatai 2014-2015 Emil Vatai Számítógépek felépítése 2014-2015 1 / 14 Outline 1 Alap fogalmak Bit, Byte, Word 2 Számítógép részei A processzor részei Processzor architektúrák

Részletesebben

Digitális rendszerek. Memória lapkák

Digitális rendszerek. Memória lapkák Digitális rendszerek Memória lapkák ROM (Read-Only Memory) Csak olvasható memória 2 ROM: gyártás során programozzák fel PROM (Programmable ROM): felhasználó egyszer, és csak is egyszer programozhatja fel.

Részletesebben

Számítógép architektúrák. A memória

Számítógép architektúrák. A memória Számítógép architektúrák A memória Tartalom Félvezető tárolók DRAM, SRAM ROM, PROM Tokozások, memóriamodulok Lokalitás elve Gyorsítótárak (cache) A memória Vadász, 2007. Ea7 2 A memória Tár: programok

Részletesebben

Az integrált áramkörök kimenetének kialakítása

Az integrált áramkörök kimenetének kialakítása 1 Az integrált áramörö imeneténe ialaítása totem-pole three-state open-olletor Az áramörö általános leegyszerűsített imeneti foozata: + tápfeszültség R1 V1 K1 imenet V2 K2 U i, I i R2 ahol R1>>R2, és K1,

Részletesebben

Számítógép Architektúrák

Számítógép Architektúrák Cache memória Horváth Gábor 2016. március 30. Budapest docens BME Hálózati Rendszerek és Szolgáltatások Tanszék ghorvath@hit.bme.hu Már megint a memória... Mindenről a memória tehet. Mert lassú. A virtuális

Részletesebben

Nagy adattömbökkel végzett FORRÓ TI BOR tudományos számítások lehetőségei. kisszámítógépes rendszerekben. Kutató Intézet

Nagy adattömbökkel végzett FORRÓ TI BOR tudományos számítások lehetőségei. kisszámítógépes rendszerekben. Kutató Intézet Nagy adattömbökkel végzett FORRÓ TI BOR tudományos számítások lehetőségei Kutató Intézet kisszámítógépes rendszerekben Tudományos számításokban gyakran nagy mennyiségű aritmetikai művelet elvégzésére van

Részletesebben

Számítógép architektúrák. A memória

Számítógép architektúrák. A memória Számítógép architektúrák A memória Tartalom Félvezető tárolók DRAM, SRAM ROM, PROM Tokozások, memóriamodulok Lokalitás elve Gyorsítótárak (cache) A memória Vadász, 2007. Ea7 2 A memória Tár: programok

Részletesebben

Cache, Cache és harmadszor is Cache

Cache, Cache és harmadszor is Cache Cache, Cache és harmadszor is Cache Napjainkban, a XXI. században bátran kijelenthetjük, hogy a számítógépek korát éljük. A digitális rendszerek mára a modern ember életének meghatározó szereplőjévé váltak.

Részletesebben

Számítógép Architektúrák

Számítógép Architektúrák Multiprocesszoros rendszerek Horváth Gábor 2015. május 19. Budapest docens BME Híradástechnikai Tanszék ghorvath@hit.bme.hu Párhuzamosság formái A párhuzamosság milyen formáit ismerjük? Bit szintű párhuzamosság

Részletesebben

A számítógép egységei

A számítógép egységei A számítógép egységei A számítógépes rendszer két alapvető részből áll: Hardver (a fizikai eszközök összessége) Szoftver (a fizikai eszközöket működtető programok összessége) 1.) Hardver a) Alaplap: Kommunikációt

Részletesebben

Funkcionális áramkörök vizsgálata

Funkcionális áramkörök vizsgálata Dienes Zoltán Funkcionális áramkörök vizsgálata A követelménymodul megnevezése: Elektronikai áramkörök tervezése, dokumentálása A követelménymodul száma: 0917-06 A tartalomelem azonosító száma és célcsoportja:

Részletesebben

Alaplap. Az alaplapról. Néhány processzorfoglalat. Slot. < Hardver

Alaplap. Az alaplapról. Néhány processzorfoglalat. Slot. < Hardver 1/11 < Hardver Szerző: Sallai András Copyright Sallai András, 2014, 2015, 2017 Licenc: GNU Free Documentation License 1.3 Web: http://szit.hu Az alaplapról A számítógép alapja, ez fogja össze az egyes

Részletesebben

Dr. Illés Zoltán zoltan.illes@elte.hu

Dr. Illés Zoltán zoltan.illes@elte.hu Dr. Illés Zoltán zoltan.illes@elte.hu Operációs rendszerek kialakulása Op. Rendszer fogalmak, struktúrák Fájlok, könyvtárak, fájlrendszerek Folyamatok Folyamatok kommunikációja Kritikus szekciók, szemaforok.

Részletesebben

A Számítógépek felépítése, mőködési módjai

A Számítógépek felépítése, mőködési módjai Mechatronika, Optika és Gépészeti Informatika Tanszék Kovács Endre tud. Mts. A Számítógépek felépítése, mőködési módjai Mikroprocesszoros Rendszerek Felépítése Buszrendszer CPU OPERATÍV TÁR µ processzor

Részletesebben

Máté: Számítógép architektúrák

Máté: Számítógép architektúrák Programozható logikai tömbök: PLA (35 ábra) (Programmable Logic Array) 6 kimenet Ha ezt a biztosítékot kiégetjük, akkor nem jelenik meg B# az -es ÉS kapu bemenetén 5 35swf 24 bemenő vonal A B L 2 bemenő

Részletesebben

SZÁMÍTÓGÉPARCHITEKTÚRÁK

SZÁMÍTÓGÉPARCHITEKTÚRÁK ESSZÉ LÁNG LÁSZLÓ Zilog mokroprocesszor családok Z800 2005. December 1. Előszó A Zilog cég betörése a piacra rendkívül eredményesnek mondható volt, sőt később sikerült a csúcsra fejleszteniük a technológiájukat.

Részletesebben

Számítógép egységei. Szoftver (a fizikai eszközöket működtető programok összessége)

Számítógép egységei. Szoftver (a fizikai eszközöket működtető programok összessége) Számítógép egységei A számítógépes rendszer két alapvető részből áll: Hardver (a fizikai eszközök összessége) Szoftver (a fizikai eszközöket működtető programok összessége) 1.) Hardver a) Alaplap: Kommunikációt

Részletesebben

Számítógépek felépítése, alapfogalmak

Számítógépek felépítése, alapfogalmak 2. előadás Számítógépek felépítése, alapfogalmak Lovas Szilárd SZE MTK MSZT lovas.szilard@sze.hu B607 szoba Nem reprezentatív felmérés kinek van ilyen számítógépe? Nem reprezentatív felmérés kinek van

Részletesebben

Alaplap. Slot. Bővítőkártyák. Csatolható tárolók. Portok. < Hardver

Alaplap. Slot. Bővítőkártyák. Csatolható tárolók. Portok. < Hardver 2016/07/02 07:26 < Hardver Szerző: Sallai András Copyright Sallai András, 2014, 2015 Licenc: GNU Free Documentation License 1.3 Web: http://szit.hu Slot Az alaplap bővítőhelyei. ISA VESA-LB PCI AGP PCIE

Részletesebben

Fejezetek az Információ-Technológia Kultúrtörténetéből. Elektronikus kalkulátorok, személyi számítógépek története

Fejezetek az Információ-Technológia Kultúrtörténetéből. Elektronikus kalkulátorok, személyi számítógépek története Fejezetek az Információ-Technológia Kultúrtörténetéből Elektronikus kalkulátorok, személyi számítógépek története Dr. Kutor László http://nik.uni-obuda.hu/mobil FI-TK 8/31/1 Főbb kategóriák: számológép

Részletesebben

Számítógép architektúrák. A memória

Számítógép architektúrák. A memória Számítógép architektúrák A memória Tartalom Félvezető tárolók DRAM, SRAM ROM, PROM Tokozások, memóriamodulok Lokalitás elve Gyorsítótárak (cache) A memória Vadász, 2007. Ea7 2 A memória Tár: programok

Részletesebben

1. Az utasítás beolvasása a processzorba

1. Az utasítás beolvasása a processzorba A MIKROPROCESSZOR A mikroprocesszor olyan nagy bonyolultságú félvezető eszköz, amely a digitális számítógép központi egységének a feladatait végzi el. Dekódolja az uatasításokat, vezérli a műveletek elvégzéséhez

Részletesebben

VLIW processzorok (Működési elvük, jellemzőik, előnyeik, hátrányaik, kereskedelmi rendszerek)

VLIW processzorok (Működési elvük, jellemzőik, előnyeik, hátrányaik, kereskedelmi rendszerek) SzA35. VLIW processzorok (Működési elvük, jellemzőik, előnyeik, hátrányaik, kereskedelmi rendszerek) Működési elvük: Jellemzőik: -függőségek kezelése statikusan, compiler által -hátránya: a compiler erősen

Részletesebben

Számítógép Architektúrák I-II-III.

Számítógép Architektúrák I-II-III. Kidolgozott államvizsgatételek Számítógép Architektúrák I-II-III. tárgyakhoz 2010. június A sikeres államvizsgához kizárólag ennek a dokumentumnak az ismerete nem elégséges, a témaköröket a Számítógép

Részletesebben

Számítógép fajtái. 1) személyi számítógép ( PC, Apple Macintosh) - asztali (desktop) - hordozható (laptop, notebook, palmtop)

Számítógép fajtái. 1) személyi számítógép ( PC, Apple Macintosh) - asztali (desktop) - hordozható (laptop, notebook, palmtop) Számítógép Számítógépnek nevezzük azt a műszakilag megalkotott rendszert, amely adatok bevitelére, azok tárolására, feldolgozására, a gépen tárolt programok működtetésére alkalmas emberi beavatkozás nélkül.

Részletesebben

Digitális Rendszerek és Számítógép Architektúrák

Digitális Rendszerek és Számítógép Architektúrák PANNON EGYETEM, Veszprém Villamosmérnöki és Információs Rendszerek Tanszék Digitális Rendszerek és Számítógép Architektúrák 8. előadás: Memóriák Előadó: Vörösházi Zsolt Jegyzetek, segédanyagok: Könyvfejezetek:

Részletesebben

Számítógép architektúrák

Számítógép architektúrák Számítógép architektúrák Számítógépek felépítése Digitális adatábrázolás Digitális logikai szint Mikroarchitektúra szint Gépi utasítás szint Operációs rendszer szint Assembly nyelvi szint Probléma orientált

Részletesebben

Számítógép architektúrák I. Várady Géza varadygeza@pmmik.pte.hu

Számítógép architektúrák I. Várady Géza varadygeza@pmmik.pte.hu Számítógép architektúrák I. Várady Géza varadygeza@pmmik.pte.hu 1 Bevezetés - fogalmak Informatika sokrétű Információk Szerzése Feldolgozása Tárolása Továbbítása Információtechnika Informatika a technikai

Részletesebben

A felkészülés ideje alatt segédeszköz nem használható!

A felkészülés ideje alatt segédeszköz nem használható! A vizsgafeladat ismertetése: A szóbeli központilag összeállított vizsgakérdései (10 db) a 4. Szakmai követelmények fejezetben megadott témakörök mindegyikét tartalmazza A felkészülés ideje alatt segédeszköz

Részletesebben

Számítógép Architektúrák

Számítógép Architektúrák Számítógép Architektúrák Perifériakezelés a PCI-ban és a PCI Express-ben 2015. március 9. Budapest Horváth Gábor docens BME Hálózati Rendszerek és Szolgáltatások Tanszék ghorvath@hit.bme.hu Tartalom A

Részletesebben

A PC története. Informatika alapjai-9 Személyi számítógép (PC) 1/12. (Personal computer - From Wikipedia, the free encyclopedia)

A PC története. Informatika alapjai-9 Személyi számítógép (PC) 1/12. (Personal computer - From Wikipedia, the free encyclopedia) Informatika alapjai-9 Személyi számítógép (PC) 1/12 (Personal computer - From Wikipedia, the free encyclopedia) A személyi számítógépet ára, mérete és képességei és a használatában kialakult kultúra teszik

Részletesebben

A MEMÓRIA. A RAM-ok bemutatása

A MEMÓRIA. A RAM-ok bemutatása A MEMÓRIA A RAM-ok bemutatása RAM (Random Access Memory) Nem minden adatot kell olvasni és írni, hanem ha lehetséges csak azokat, amelyeket használunk. A "Random" szó (véletlenszerû) azt jelöli, hogy az

Részletesebben

Ismétlés: Moore törvény. Tranzisztorok mérőszáma: n*százmillió, n*milliárd.

Ismétlés: Moore törvény. Tranzisztorok mérőszáma: n*százmillió, n*milliárd. 1 2 3 Ismétlés: Moore törvény. Tranzisztorok mérőszáma: n*százmillió, n*milliárd. 4 5 Moore törvényhez érdekesség: a várakozásokhoz képest folyamatosan alulteljesített, ezért többször is újra lett fogalmazva

Részletesebben

Számítógép architektúra kidolgozott tételsor

Számítógép architektúra kidolgozott tételsor Számítógép architektúra kidolgozott tételsor Szegedi Tudományegyetem Szeged, 27. Tartalomjegyzék. Fordítás, értelmezés... 4 2. Numerikus adatok ábrázolása: fixpontos ábrázolás, konverzió számrendszerek

Részletesebben

7. Fejezet A processzor és a memória

7. Fejezet A processzor és a memória 7. Fejezet A processzor és a memória The Architecture of Computer Hardware and Systems Software: An Information Technology Approach 3rd Edition, Irv Englander John Wiley and Sons 2003 Wilson Wong, Bentley

Részletesebben

Fábián Zoltán Hálózatok elmélet

Fábián Zoltán Hálózatok elmélet Fábián Zoltán Hálózatok elmélet Miért szükséges a háttértár Az alkalmazások és adatok tárolása Háttértárak típusai Szekvenciális elérésű Mágnesszalag Lyukszalag Lyukkártya Véletlen elérésű Csak olvasható

Részletesebben

Hardver Számítógép típusok: A PC f részei Az alaplap BIOS(Basic Input-Output System) - CPU központi vezérl

Hardver Számítógép típusok: A PC f részei Az alaplap BIOS(Basic Input-Output System) - CPU központi vezérl - 1 - Hardver Számítógép típusok: Szuperszámítógép egyedi célszámítógép (időjárás előrejelzések, nukleáris robbantás szimulálása) Mainframe nagy mennyiségű adatfeldolgozáshoz, több terminálos, a feldolgozás

Részletesebben

Informatikai füzetek

Informatikai füzetek Tartalomjegyzék Bevezetés................ xiii I. ALAPISMERETEK........... 1 Információ, adat, jel............. 1 Információ..................... 1 Adat......................... 1 Jel...........................

Részletesebben

11.3.7 Feladatlap: Számítógép összetevők keresése

11.3.7 Feladatlap: Számítógép összetevők keresése 11.3.7 Feladatlap: Számítógép összetevők keresése Bevezetés Nyomtasd ki a feladatlapot és old meg a feladatokat. Ezen feladatlap megoldásához szükséged lesz az Internetre, katalógusokra vagy egy helyi

Részletesebben

Számítógép Architektúrák

Számítógép Architektúrák Memória technológiák Horváth Gábor 2017. március 9. Budapest docens BME Hálózati Rendszerek és Szolgáltatások Tanszék ghorvath@hit.bme.hu Hol tartunk? CPU Perifériák Memória 2 Mit tanulunk a memóriákról?

Részletesebben

Mikroprocesszor CPU. C Central Központi. P Processing Számító. U Unit Egység

Mikroprocesszor CPU. C Central Központi. P Processing Számító. U Unit Egység Mikroprocesszor CPU C Central Központi P Processing Számító U Unit Egység A mikroprocesszor általános belső felépítése 1-1 BUSZ Utasítás dekóder 1-1 BUSZ Az utasítás regiszterben levő utasítás értelmezését

Részletesebben

Számítógép architektúrák

Számítógép architektúrák Számítógép architektúrák Számítógépek felépítése Digitális adatábrázolás Digitális logikai szint Mikroarchitektúra szint Gépi utasítás szint Operációs rendszer szint Assembly nyelvi szint Probléma orientált

Részletesebben

Máté: Számítógép architektúrák

Máté: Számítógép architektúrák Máté: Számítógép architektúrák 20110928 Nem kombinációs áramkörök Óra (clock, 321 ábra): ciklusidő (cycle time) Pl: 500 MHz 2 nsec Finomabb felbontás késleltetéssel Aszimmetrikus óra Memória: Emlékszik

Részletesebben

Operációs rendszerek MINB240. Bevitel-Kivitel. 6. előadás Input és Output. Perifériák csoportosításá, használat szerint

Operációs rendszerek MINB240. Bevitel-Kivitel. 6. előadás Input és Output. Perifériák csoportosításá, használat szerint Operációs rendszerek MINB240 6. előadás Input és Output Operációs rendszerek MINB240 1 Bevitel-Kivitel Eddig a számítógép agyáról volt szó Processzusok, memória, stb Szükség van eszközökre Adat bevitel

Részletesebben

Digitális technika VIMIAA01

Digitális technika VIMIAA01 BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA01 Fehér Béla BME MIT Digitális Rendszerek Számítógépek

Részletesebben

Ismerkedjünk tovább a számítógéppel. Alaplap és a processzeor

Ismerkedjünk tovább a számítógéppel. Alaplap és a processzeor Ismerkedjünk tovább a számítógéppel Alaplap és a processzeor Neumann-elvű számítógépek főbb egységei A részek feladatai: Központi egység: Feladata a számítógép vezérlése, és a számítások elvégzése. Operatív

Részletesebben

Tartalomjegyzék. 1. Alapfogalmak...3. 2. Az A/D (analóg-digitális) átalakítás...4

Tartalomjegyzék. 1. Alapfogalmak...3. 2. Az A/D (analóg-digitális) átalakítás...4 Tartalomjegyzék 1. Alapfogalmak...3 2. Az A/D (analóg-digitális) átalakítás...4 Az analóg jelfolyamot, a mintavételezés, és a kvantálás segítségével megvalósított digitalizálás során alakítják át. A természetes

Részletesebben

Ez egy program. De ki tudja végrehajtani?

Ez egy program. De ki tudja végrehajtani? Császármorzsa Keverj össze 25 dkg grízt 1 mokkás kanál sóval, 4 evőkanál cukorral és egy csomag vaníliás cukorral! Adj hozzá két evőkanál olajat és két tojást, jól dolgozd el! Folyamatos keverés közben

Részletesebben

A processzor hajtja végre a műveleteket. összeadás, szorzás, logikai műveletek (és, vagy, nem)

A processzor hajtja végre a műveleteket. összeadás, szorzás, logikai műveletek (és, vagy, nem) 65-67 A processzor hajtja végre a műveleteket. összeadás, szorzás, logikai műveletek (és, vagy, nem) Két fő része: a vezérlőegység, ami a memóriában tárolt program dekódolását és végrehajtását végzi, az

Részletesebben

ismerd meg! A PC vagyis a személyi számítógép

ismerd meg! A PC vagyis a személyi számítógép ismerd meg! A PC vagyis a személyi számítógép A számítógép elsõ ránézésre A PC az angol Personal Computer rövídítése, jelentése: személyi számítógép. A szám í- tógépek rohamos elterjedésével a személyi

Részletesebben

Máté: Számítógép architektúrák

Máté: Számítógép architektúrák Október,,, -án teszt az Irinyi -os teremben a MOODLE vizsgáztató programmal az október -a előtt elhangzott előadások anyagából. A vizsgáztató program az október -ával kezdődő héten kipróbálható, gyakorolható

Részletesebben

2. Számítógépek működési elve. Bevezetés az informatikába. Vezérlés elve. Külső programvezérlés... Memória. Belső programvezérlés

2. Számítógépek működési elve. Bevezetés az informatikába. Vezérlés elve. Külső programvezérlés... Memória. Belső programvezérlés . Számítógépek működési elve Bevezetés az informatikába. előadás Dudásné Nagy Marianna Az általánosan használt számítógépek a belső programvezérlés elvén működnek Külső programvezérlés... Vezérlés elve

Részletesebben

FPGA áramkörök alkalmazásainak vizsgálata

FPGA áramkörök alkalmazásainak vizsgálata FPGA áramkörök alkalmazásainak vizsgálata Kutatási beszámoló a Pro Progressio alapítvány számára Raikovich Tamás, 2012. 1 Bevezetés A programozható logikai áramkörökön (FPGA) alapuló hardver gyorsítók

Részletesebben

A PC története. Informatika alapjai-9 Személyi számítógép (PC) 1/15. (Personal computer - From Wikipedia, the free encyclopedia)

A PC története. Informatika alapjai-9 Személyi számítógép (PC) 1/15. (Personal computer - From Wikipedia, the free encyclopedia) Informatika alapjai-9 Személyi számítógép (PC) 1/15 (Personal computer - From Wikipedia, the free encyclopedia) A személyi számítógépet ára, mérete és képességei és a használatában kialakult kultúra teszik

Részletesebben

Szegmentálás. Memória kezelési stratégia mely a felhasználó nézőpontját támogatja Például:

Szegmentálás. Memória kezelési stratégia mely a felhasználó nézőpontját támogatja Például: Szegmentálás 1 Szegmentálás Memória kezelési stratégia mely a felhasználó nézőpontját támogatja Például: Egy program szegmensekből áll Mindegyik szegmens külön címtér Egy eljárás nullás címen kezdődik

Részletesebben

Számítógépek, számítógép rendszerek

Számítógépek, számítógép rendszerek Számítógépek, számítógép rendszerek 8. A memória Dr. Vadász Dénes Miskolc, 2005. február TARTALOM TARTALOM... a 8. A memória... 1 8.1. A félvezető tárolók... 2 8.2. Az alapvető DRAM operációk... 3 8.3.

Részletesebben

Máté: Számítógép architektúrák 2010.10.06.

Máté: Számítógép architektúrák 2010.10.06. szinkron : Minden eseményt egy előző esemény okoz! Nincs órajel, WIT, van viszont: MSYN# (kérés Master SYNchronization), SSYN# (kész Slave SYNchronization). Ugyanazon a en gyors és lassú mester szolga

Részletesebben

2. Tétel Milyen fontosabb közhasznú információs forrásokat ismer?

2. Tétel Milyen fontosabb közhasznú információs forrásokat ismer? Szóbeli érettségi tételek INFORMATIKÁBÓL 2016 1. Tétel Ismertesse az információ fogalmát! Ismertesse az informatikai rendszerek és a társadalom kölcsönhatását! Jellemezze az információs technológiai forradalmat

Részletesebben

Szupermikroprocesszorok és alkalmazásaik

Szupermikroprocesszorok és alkalmazásaik Szupermikroprocesszorok és alkalmazásaik VAJDA FERENC MTA Központi Fizikai Kutató Intézet Mérés- és Számítástechnikai Kutató Intézet 1. Bevezetés ÖSSZEFOGLALÁS Egy rétegezett modell alapján mutatjuk be

Részletesebben

Processzus. Operációs rendszerek MINB240. Memória gazdálkodás. Operációs rendszer néhány célja. 5-6-7. előadás Memóriakezelés

Processzus. Operációs rendszerek MINB240. Memória gazdálkodás. Operációs rendszer néhány célja. 5-6-7. előadás Memóriakezelés Processzus Operációs rendszerek MINB40 5-6-7. előadás Memóriakezelés Egy vagy több futtatható szál Futáshoz szükséges erőforrások Memória (RAM) Program kód (text) Adat (data) Különböző bufferek Egyéb Fájlok,

Részletesebben

A program SZÁMÍTÓGÉP ARCHITEKTÚRÁK. Legáltalánosabb architektúra. Eszközök szerepe. A vezérlők programozása. A vezérlők (adapterek, kontrollerek)

A program SZÁMÍTÓGÉP ARCHITEKTÚRÁK. Legáltalánosabb architektúra. Eszközök szerepe. A vezérlők programozása. A vezérlők (adapterek, kontrollerek) A program SZÁMÍTÓGÉP ARCHITEKTÚRÁK Eszközök, osztályaik, architektúrájuk Vezérlők, kontrollerek, adapterek Az IT-k, szerepük, kezelésük Strukturált eszközök: diszkek, CD-k, DVD-k felépítés, alapfogalmak,

Részletesebben

ADATKAPCSOLATI PROTOKOLLOK

ADATKAPCSOLATI PROTOKOLLOK ADATKAPCSOLATI PROTOKOLLOK Hálózati alapismeretek OSI 1 Adatkapcsolati réteg működése Az adatkapcsolati protokollok feladata egy összeállított keret átvitele két csomópont között. Az adatokat a hálózati

Részletesebben

INFORMATIKA MATEMATIKAI ALAPJAI

INFORMATIKA MATEMATIKAI ALAPJAI INFORMATIKA MATEMATIKAI ALAPJAI Készítette: Kiss Szilvia ZKISZ informatikai szakcsoport Az információ 1. Az információ fogalma Az érzékszerveinken keresztül megszerzett új ismereteket információnak nevezzük.

Részletesebben

7.hét: A sorrendi hálózatok elemei II.

7.hét: A sorrendi hálózatok elemei II. 7.hét: A sorrendi hálózatok elemei II. Tárolók Bevezetés Bevezetés Regiszterek Számlálók Memóriák Regiszter DEFINÍCIÓ Tárolóegységek összekapcsolásával, egyszerű bemeneti kombinációs hálózattal kiegészítve

Részletesebben

DSP architektúrák dspic30f család

DSP architektúrák dspic30f család DSP architektúrák dspic30f család A Microchip 2004 nyarán piacra dobta a dspic30f családot, egy 16 bites fixpontos DSC. Mivel a mikróvezérlők tantárgy keretén belül a PIC családdal már megismerkedtetek,

Részletesebben

Cél: Halk gép. A gép: Eredeti hűtés:

Cél: Halk gép. A gép: Eredeti hűtés: A gép: Alaplap tulajdonságai Alaplap neve Asus A7N8X Deluxe Front Side Bus tulajdonságai Busz típusa DEC Alpha EV6 Busz szélessége 64 bit Valódi órajel 168 MHz (DDR) Effektív órajel 336 MHz Sávszélesség

Részletesebben

V. FEJEZET MÓDOSÍTOTT MŰSZAKI LEÍRÁS

V. FEJEZET MÓDOSÍTOTT MŰSZAKI LEÍRÁS V. FEJEZET MÓDOSÍTOTT MŰSZAKI LEÍRÁS 1. RÉSZ: SZAGGATÓ BERENDEZÉS ÉS JÁRMŰVEZÉRLŐ EGYSÉG, VALAMINT HAJTÁSLÁNCHOZ KAPCSOLÓDÓ EGYÉB ELEKTROMOS ESZKÖZÖK BESZERZÉSE SORSZÁM AJÁNLATKÉRŐI KÓDSZÁM TERMÉK MEGNEVEZÉSE*

Részletesebben

6. Háttértárak. Mágneses elvű háttértárak. Ezek az eszközök ki-, bemeneti perifériák, az adatok mozgása kétirányú.

6. Háttértárak. Mágneses elvű háttértárak. Ezek az eszközök ki-, bemeneti perifériák, az adatok mozgása kétirányú. 6. Háttértárak Ezek az eszközök ki-, bemeneti perifériák, az adatok mozgása kétirányú. Miért van rájuk szükség? Belső memória bővítése Programok és adatok tárolása, rögzítése Meglévő programok, adatok

Részletesebben

1. Fejezet: Számítógép rendszerek

1. Fejezet: Számítógép rendszerek 1. Fejezet: Számítógép The Architecture of Computer Hardware and Systems Software: An Information Technology Approach 3. kiadás, Irv Englander John Wiley and Sons 2003 Wilson Wong, Bentley College Linda

Részletesebben

Digitális technika II. (vimia111) 5. gyakorlat: Tervezés adatstruktúra-vezérlés szétválasztással, vezérlőegység generációk

Digitális technika II. (vimia111) 5. gyakorlat: Tervezés adatstruktúra-vezérlés szétválasztással, vezérlőegység generációk Digitális technika II. (vimia111) 5. gyakorlat: Tervezés adatstruktúra-vezérlés szétválasztással, vezérlőegység generációk Elméleti anyag: Processzoros vezérlés általános tulajdonságai o z induló készletben

Részletesebben

VGN-TT21XN/B. Extrém stílus és hordozhatóság

VGN-TT21XN/B. Extrém stílus és hordozhatóság VGN-TT21XN/B Extrém stílus és hordozhatóság Különösen kifinomult notebook, intenzív noir színben, nagy teljesítményű funkciókkal és biztonsági megoldásokkal. Fejezet: Extrém stílus és hordozhatóság 1 FŐ

Részletesebben

Bináris egység: bit (binary unit) bit ~ b; byte ~ B (Gb Gigabit;GB Gigabyte) Gb;GB;Gib;GiB mind más. Elnevezés Jele Értéke Elnevezés Jele Értéke

Bináris egység: bit (binary unit) bit ~ b; byte ~ B (Gb Gigabit;GB Gigabyte) Gb;GB;Gib;GiB mind más. Elnevezés Jele Értéke Elnevezés Jele Értéke Kódolások Adatok kódolása Bináris egység: bit (binary unit) bit ~ b; byte ~ B (Gb Gigabit;GB Gigabyte) Gb;GB;Gib;GiB mind más. Elnevezés Jele Értéke Elnevezés Jele Értéke Kilo K 1 000 Kibi Ki 1 024 Mega

Részletesebben

Bepillantás a gépházba

Bepillantás a gépházba Bepillantás a gépházba Neumann-elvű számítógépek főbb egységei A részek feladatai: Központi egység: Feladata a számítógép vezérlése, és a számítások elvégzése. Operatív memória: A számítógép bekapcsolt

Részletesebben

Máté: Számítógép architektúrák

Máté: Számítógép architektúrák Sín műveletek z eddigiek közönséges műveletek voltak. lokkos átvitel (3.4. ábra): kezdő címen kívül az adatre kell tenni a mozgatandó adatok számát. Esetleges várakozó ciklusok után ciklusonként egy adat

Részletesebben

Számítógép Architektúrák

Számítógép Architektúrák Számítógép Architektúrák Utasításkészlet architektúrák 2015. április 11. Budapest Horváth Gábor docens BME Hálózati Rendszerek és Szolgáltatások Tsz. ghorvath@hit.bme.hu Számítógép Architektúrák Horváth

Részletesebben

Az INTEL D-2920 analóg mikroprocesszor alkalmazása

Az INTEL D-2920 analóg mikroprocesszor alkalmazása Az INTEL D-2920 analóg mikroprocesszor alkalmazása FAZEKAS DÉNES Távközlési Kutató Intézet ÖSSZEFOGLALÁS Az INTEL D 2920-at kifejezetten analóg feladatok megoldására fejlesztették ki. Segítségével olyan

Részletesebben

Négyprocesszoros közvetlen csatolású szerverek architektúrája:

Négyprocesszoros közvetlen csatolású szerverek architektúrája: SzA49. AMD többmagos 2 és 4 processzoros szerverarchitektúrái (a közvetlenül csatolt architektúra főbb jegyei, négyprocesszoros közvetlen csatolású szerverek architektúrája, többmagos szerverprocesszorok

Részletesebben