Sugárvédelem alapjai. Atomenergetikai alapismeretek. Dr. Czifrus Szabolcs BME NTI

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Sugárvédelem alapjai. Atomenergetikai alapismeretek. Dr. Czifrus Szabolcs BME NTI"

Átírás

1 Sugárvédelem alapjai Atomenergetikai alapismeretek Dr. Czifrus Szabolcs BME NTI

2 2 Rövid történeti áttekintés 1895: W. K. Röntgen elektroncső-kísérlet közben felfedezi a később róla elnevezett sugárzást. 1896: H. Becquerel: az első magfizikai jelenség észlelése uránsóból kilépő radioaktív sugárzás: azt találta, hogy sugárzás intenzitása arányos az urán koncentrációjával, így arra következtetett, hogy ez a sugárzás az uránatom tulajdonsága. 1898: Marie Curie-Sklodowska, P. Curie: radioaktivitás szó alkalmazása, sugárzásdetektor készítése, rádium és polónium felfedezése. Curie házaspár kísérletei a radioaktív sugárzásnak két összetevőjét mutatta ki: a nagyon rövid hatótávolságú alfa-sugárzást és a bétasugárzást 1925: Létrejön az International Committee on Radiological Units (ICRU) - nemzetközi sugárvédelmi bizottság 1928: Létrejön az első nemzetközi sugárvédelmi szervezet, neve 1950 óta ICRP International Commission on Radiation Protection. 1957: Létrejön az International Atomic Energy Agency (IAEA), vagy magyarul Nemzetközi Atomenergia Ügynökség (NAÜ)

3 3 Természetes eredetű radioaktivitás Kozmikus sugárzás (szoláris, galaktikus, befogott részecskék) Kozmogén nuklidok: állandóan keletkeznek a kozmikus sugárzás hatására ( 3 H, 14 C) Ősi nuklidok: keletkezés a szoláris folyamatokban és az ősrobbanáskor (nagyon hosszú felezési idő) Fontosabb ősi nuklidok: 40 K, 87 Rb, 238 U

4 4 Mesterséges eredetű radioaktivitás Nukleáris reaktorok hulladékai (hasadási ( 131 I, 137 Cs) aktivációs ( 239 Pu) és korróziós ( 60 Co) termékek) Nukleáris robbantások, fegyverkísérletek hulladékai Ipari sugárforrások (nagybesugárzók, sűrűségmérők, radiográfiás források, geofizikai mérőforrások, folyamatszabályozás, méréstechnika) Orvosi (diagnosztikai és terápiás) sugárforrások TENORM (Technologically-Enhanced, Naturally- Occurring Radioactive Material): mesterséges okból megnövekedett természetes sugárterhelés (pl. szén-, olaj- és gáztüzelésű erőművek hulladéka (salak, hamu, pernye); nukleáris üzemanyag előállítása során keletkező hulladék)

5 5 arcápoló krém, púder, szappan, lemosó tej, ajak rúzs, fogkrém

6 6 A sugárzások és az anyagi közeg kölcsönhatása A közeg kölcsönhatásra képes alkotórészei: elektronok, az atom elektromágneses erőtere, atommag. A közeg és a sugárzás közötti kölcsönhatás szerint: Közvetlenül ionizáló sugárzások: α, β, γ, röntgen az elektronoknak képesek azok ionizációjához elegendő energiát átadni. Közvetve ionizáló sugárzás: neutron atommagokkal való kölcsönhatás során ionizációra képes részecskék jelennek meg. Az elektronokkal való ütközés nem minden esetben vezet azok ionizációjára. A sugárzás által több lépésben átadott energia egy része (általában %-a) nem ionizációt, csak gerjesztést eredményez, azaz összességében a közeg termikus energiáját növeli meg.

7 7 γ-sugárzás kölcsönhatásai - Fotoeffektus

8 8 γ-sugárzás kölcsönhatásai Compton szórás

9 9 γ-sugárzás kölcsönhatásai - Párkeltés

10 10 Fotoeffektus és Compton-szórás hatáskeresztmetszetének energiafüggése

11 11

12 12 γ-sugárzás kölcsönhatásai Exponenciális sugárgyengülési törvény di = I(x)σNdx I: részecskeáram σ: mikroszkópikus hatáskeresztmetszet N: magok száma 1 cm 3 -ben μ = σn = kölcsönhatási valószínűség [1/m] Feltevés: párhuzamos nyaláb Megoldás: I x = I 0 e μx

13 13 LET Linear Energy Transfer lineáris energiaátadási tényező LET = de dx α- β- sugárzásra: LET értéke vízben: α-ra: 100 kev/μm β-ra: 5-10 kev/μm

14 14 Dózismennyiségek Külső és belső sugárterhelés meghatározása

15 15 Dózismennyiségek D = de dm ΔE m J, Gray, Gy kg Fizikai (elnyelt) dózis: az anyag tömegegységében elnyelt összes sugárzási energia, csak fizikai kölcsönhatásokat foglal magába. Bármelyik ionizáló sugárzásra értelmezhető. Csak ionizáló sugárzásra értelmezett, de nem csak ionizációs energiát jelent. Nem tartalmazza az anyagból kilépett (szórt, szekunder) sugárzási energiát. Egyesíti a különböző forrásokból származó energiabeviteleket.

16 16 Dózisteljesítmény D = dd dt Időegység alatt elnyelt dózis

17 17 Egyenérték dózis H = D w R Sv, sievert w R : sugárzási tényező A sejti méretű élő térfogatba bevitt energia (mikrodózis) dönti el az elnyelt dózis veszélyességét (kártételét). Antropomorf dózisfogalom és mértékegység: az emberi szövetek, sejtek viselkedése befolyásolja a dózisértéket. w R α 20 β, γ 1 n 5 20

18 18 Egyenérték dózis

19 19 Effektív dózis E = H w T Sv T w T = 1 w T : szöveti súlyozó tényező A gyorsan osztódó, rövid ciklusidejű sejtek a legérzékenyebbek. ivarszervek 0.2 legérzékenyebbek Közepesen érzékenyek tüdő, gyomor, belek, vörös csontvelő w T 0.12 máj, vese, pajzsmirigy stb kissé érzékeny bőr, csontfelszín 0.01

20 20

21 21 Egyéb dózisfogalmak Lekötött egyenértékdózis: inkorporálódott és a szervezetben jelenlévő radioaktív anyag egyenértékdózisa H C (τ) = t t+τ dh E dt dt Hasonlóan: lekötött effektív dózis 50/70 éves integrálási idő Kollektív dózis: egy embercsoport tagjainak egy adott sugárforrástól származó effektív dózisának összege. Csak az emisszió mértékéül használható. C = i H E,i n i Sv

22 22 Belső sugárterhelés dózisa H T = 1 m T S u s R w R E R f R Q R (S T) A H T szöveti egyenértékdózist egy adott radioizotópra határozzuk meg. u S : az egyes forrás-szövetekben bekövetkező bomlások száma [darab] w R: sugárzási tényező [Sv/Gy] E R : sugárzási energia [kev] f R : részecske-gyakoriság [részecske/bomlás] m T : a célpont-szövet tömege [kg] Q az R sugárzásfajtának az S (source) szövetből kiinduló és a T (target) szövetben energiát leadó hányada (elnyelési hányad) S=T is lehetséges

23 23 Belső sugárterhelés dózisa DCF = E A Intake DCF = dóziskonverziós tényező [Sv/Bq]: egységnyi inkorporált aktivitás (A intake ) adott útvonalon (belégzés vagy lenyelés) és adott kémiai formában történő bevitele által kiváltott egyenérték-dózis (szervekre). Eltérő lehet: Beviteli útvonal szerint (belégzés vagy lenyelés), Kémiai forma szerint (a testnedvekben oldható vagy nem oldható) Életkor szerint.

24 24 Néhány számadat A kozmikus sugárzás járulékai: tengerszinten mindössze 0,27 msv/év, 4000 méteres magasságban azonban már 2 msv/év, 8 km magasságban akár 34 μsv/h. A kozmogén radioaktív izotópok belélegzésétől és nagyobbrészt a fogyasztásától eredő átlag belső sugárterhelése 10 μsv/év. Sugárterhelés repülőgépen 7-12 km magasban pl. Európa- Észak- Amerika repülőút alatt μsv. Űrhajósok sugárterhelése km magasságban az űrállomáson 0,3 msv/nap. A természetes sugárterhelés több, mint fele (1,26 msv/év) a 222 Rn-tól származik.

25 25 Külső dózisterhelés számítása dd dt = φ E μ ρ ahol φ E = A f E 4 r 2 π Érvényesség: pontszerű γ-sugárforrásra, gyengítetlen (primer) fotonsugárzásra. φ E : energiaáram-sűrűség [J/(m 2 s)] A=dN/dt : a sugárforrás aktivitása [Bq] f : részecske-(foton)gyakoriság [foton/bomlás] E : fotonenergia [J/foton]

26 26 Külső dózisterhelés számítása Négyzetes gyengülési törvény a dózisszámítás alapja: μ dd dt = k γ A j f ρ j E j j r 2 ahol k γ = 4 π j: összegzés az egyes energiákra, k pedig a közegekre kγ: dózistényező, szokásos dimenziója: [(μgy/h)/(gbq/m 2 )]

27 27 Exponenciális sugárgyengülési törvény Feltevés: párhuzamos nyaláb Megoldás: D x = D 0 e μx Az ábra forrása: A hozzáférés ideje:

28 28 Shielding (fizikai sugárvédelmi falak) sugárgyengítésének számítása D(x) = D 0 B(μx) e μx B build-up tényező: a szórt sugárzás részaránya a dózist okozó intenzitásban B=B(μx) Az ábra forrása: A hozzáférés ideje:

29 29 Az ionizáló sugárzások biológiai hatásai

30 30 A biológiai hatások osztályozása Szomatikus: egy biológiai egyeden jelentkezik Genetikai: egy populáción jelentkezik VAGY

31 31 A biológiai hatások osztályozása Direkt hatás a sugárenergia elnyelődése és a kiválasztott elsődleges folyamat ugyanazon molekulán következik be, amelyen a fixálódott szerkezeti és működésbeli változásokat észleljük. Indirekt hatás az energiaabszorpció, majd az általa kiváltott hatás különböző molekulákon jön létre. Legfontosabb példa a szabad gyök képződés. Sugárérzékeny: - DNS - sejtmembránok többszörösen telítetlen zsírsavak

32 32 A biológiai hatások osztályozása Determinisztikus: A károsodás súlyossága függ a dózistól, a hatás egy bizonyos küszöbdózis fölött következik be. Sztochasztikus: A károsodás valószínűsége függ a dózistól, küszöbdózis nincs.

33 33 A hatásmechanizmusról dióhéjban Az ábra forrása: Dr. Sáfrány Géza Sugárbiológia előadás

34 34 A hatásmechanizmusról dióhéjban

35 35 A hatásmechanizmusról dióhéjban Relatív biológiai hatás (RBE): azt mutatja meg, hogy egy adott sugárzás biológiai hatása milyen viszonyban van 250 kev-os röntgen sugárzás hatásával.

36 36 Az ionizáló sugárzás determinisztikus hatása Küszöbdózishoz kötött (0,3 0,4 Gy) Szövetpusztulást okoz a sugárzás Életveszélyes károsodások: központi idegrendszer, emésztőrendszer, vérképző rendszer

37 37 Az ionizáló sugárzás determinisztikus hatása Akut/azonnali hatás 1 Gy-nél nagyobb dózis (egész test) esetén 1. Kezdeti szakasz (hányás, étvágytalanság, émelygés, fejfájás, levertség, mozgáskoordinációs zavar) 2. Lappangási szakasz (2-3 Gy dózisnál 3-4 hét is lehet, 10 Gy felett nincs lappangás) 3. Kritikus szakasz (magas láz, pontszerű bőrbevérzések, vérképben elváltozások, immunrendszer károsodása, 3-4 Gy egésztest dózis esetén 60 napon belül halál a betegek kb. 50%-ánál) 4. Regeneráció szakasza (kedvező lefolyás, a 3 szakasz tünetei visszafejlődnek)

38 38 Az ionizáló sugárzás sztochasztikus hatása A fő célpont a sejtmag DNS-állománya, nincs küszöbdózis (kis dózisok hatása nem igazolt) Sejtmutációt okoz a sugárzás (javító mechanizmus) Kockázat-dózis-függvény lineáris (?)

39 39 A kockázat effektív dózis függvény meghatározása Elfogadott forma: LNT (linear no threshold) Kérdőjelek: A függvény megállapításához tiszta adatok (pontos mérések, minta és kontroll csoport szükségesek) Hormézis: a kis dózisok immunitást okoznak? A kis dózisoknál nincs sejthalál javul a mutáns sejtek túlélési hányada? A függvény összes kockázatra vonatkozik, de a tumor szervekben jelenik meg. Primer tumor vagy áttét? Mennyi időn át adhatók össze a dózisok?

40 40 A sugárvédelem dóziskorlátok alapelvei, dóziskorlátozási rendszer

41 41 Sugárvédelmi szabályozás Nemzetközi ajánlások, irányelvek: ICRP #60 (1991) IAEA Safety Series #115 (1996), 96/29 EU Directive Új ajánláscsomag: ICRP #103(2007) IAEA General Safety Requirements GSR Part 3 (2013) Magyar jogszabályok: évi CXVI. tv. (atomtörvény) kisebb módosítások 2011-ben. Személyi sugárvédelem: egészségügy, OAH (487/2015 kormányrendelet), OKI - OSSKI Környezeti sugárvédelem: környezetvédelem, felügyelőségek (15/2001. KöM. rendelet) Nukleáris biztonság: Országos Atomenergia Hivatal

42 42 A sugárvédelem alapelvei (ICRP 26, 60,103) Determinisztikus hatáshoz vezető dózis legyen lehetetlen. Csak az alkalmazásokhoz kapcsolható dózis korlátozható, a természetes eredetű nem a korlátozás a többletdózisra vonatkozik. Indokoltság: a sugárforrás alkalmazásának több előnye legyen, mint kára. Az indokoltság nem tisztán sugárvédelmi, hanem széleskörű társadalmi feladat (ICRP 103). Optimálás: az alkalmazás a lehető legnagyobb előnnyel kell, hogy járjon ALARA (As Low As Reasonably Achievable). Egyéni korlátozás immissziós és emissziós korlátok nem léphetők át, ha a tervezési alap helyes volt.

43 43 Sugárvédelmi szabályozás Elhanyagolható dózis 10 µsv/év közvetlenül nem deklarálták ( de minimis non curat lex ) DL dóziskorlát - immisszió korlátozása effektív dózis külső és belső sugárterhelés összege foglalkozási korlát 20 msv/év (100 msv/ 5 év) lakossági korlát 1 msv/év normális és baleseti helyzetekre külön szabályozás DC - dózismegszorítás - emisszió korlátozása kiemelt létesítmények 0.1 0,03 msv/év kibocsátási szintek egyes radionuklidokra: Bq/év DL s DC DC A max,i : A dózismegszorítás betartása esetén még bevihető maximális aktivitások i A max,i DCF i

44 44 Sugárvédelmi szabályozás Az egy személybe az i-edik nuklidból bejutó aktivitás sokkal kisebb, mint a kibocsátható. A normális üzemelés során kibocsátott aktivitás nem koncentrálódhat egyetlen személyben. Az emissziós korlátozás két lényegi eleme: a létesítmény környezetében élő lakosságra vonatkozó dózismegszorítás és a létesítményből levegőbe és vízi úton A i,max A i,ki kibocsátott aktivitás (kibocsátási határértékek) közötti kapcsolatot a TERJEDÉSI MODELLEK teremtik meg. A modell és egy valóságos terjedési folyamat összevetése a validálás.

45 45 Példa sugárdózis minimalizálására Egy ember egy sugárforrással dolgozik (pl. geofizikai mérések során) A forrás gamma-sugárzó Co-60 izotópot tartalmaz, melynek gamma-energiája 1 MeV felett van Milyen módszerekkel csökkenthető a munkát végző személy által elszenvedett dózis?

46 46 Munkavállalókra Lakossági és munkavállalói dóziskorlátok Évi 20 msv effektív dózis 5 évre átlagolva (ICRP), azaz 100 msv/5 év, de egy évben nem lehet több, mint 50 msv Szemlencsére Bőrre Végtagokra 150 msv egyenérték dózis 500 msv 1 cm 2 területre átlagolva 500 msv Tanulók, gyakornokok év között Évi 6 msv effektív dózis Szemlencsére Bőrre Végtagokra A lakosság tagjaira Évi 1 msv effektív dózis Szemlencsére Bőrre 50 msv egyenérték dózis 150 msv 1 cm 2 területre átlagolva 150 msv 15 msv egyenérték dózis 50 msv 1 cm 2 területre átlagolva

47 47 Érdekesség: sugárbalesetek

48 48 Sugárbalesetek Taiwan: radioaktív anyag került acélba, melyet utána betonvasnak használtak fel. Több ezer lakásba bekerült a dózisok enyhék voltak 1982-ben fedezték fel 1983 Mexikó: sugárterápiás célra használt Co- 60 izotópot talált valaki, majd elszennyezte vele a teherautóját. Acélt szállított vele: kb tonna acél lett szennyezett. Felhasználták asztallábakhoz, betonvasnak 1987 Brazília: egy elhagyatott klinikán feltörtek egy terápiás berendezést és elvittek egy 40 TBqes Cs-137 forrást I-131 szivárgás Hasonlók előfordultak később is Miért fontosak ezek?

49 49 Szabályozás erősítése: minőségbiztosítás, szállítókonténerek, ellenőrzések Tanulva a balesetekből, ezek megelőzése érdekében sok változást hajtottak végre Orvosi terápiás gyakorlat: nagyon szigorú ellenőrzések, minőségbiztosítás Izotópgyártás: többszörös ellenőrzés, védelem a kijutás ellen Illicit trafficing elleni védekezés minden ország saját érdeke, de nemzetközi szabályozás is van Határokon sugárzásmérő kapuk Sugárzásmérő járművek speciális célokra

50 50 Sugárforrások szállítása Közúti, vízi, vasúti és légi szállítás külön szabályozva Közúti szállítás Európában: egységes szabályozás ADR: Accord européen relatif au transport international des marchandies Dangereuses par Route - Veszélyes Áruk Nemzetközi Közúti Szállításáról szóló Európai Megállapodás A radioaktív és nukleáris anyagok csak egy kategória a kilenc közül: 7. osztály Sugárvédelmi előírások különböző csomagolás-fajtákra Számítások, mérések, tesztek Harmonikus szabályozás a NAÜ dokumentummal

51 51 Dózismérés

52 52 A dózismérés alapelve A dózismérő valamilyen sugárzásdetektor Megkülönböztetünk dózisteljesítmény- és dózismérőket Bragg-Gray elv: A dózismérő (m) és az emberi testszövet (x) tömegabszorpciós együtthatójának aránya ne függjön a sugárzás energiájától. Mikor lesz ez igaz? f m = D x D m = φ E φ E μ ρ x μ ρ m

53 53 Külső sugárterhelés mérése Dózismérés: utólagos kiértékelés személyi dozimetria filmdózismérő - kémiai változás TLD: szilárdtest-dózismérő (termolumineszcencia) Elektronikus dózismérők: impulzusüzemű gáztöltésű detektorok, szcintillációs számlálók, félvezetők (diódák) Dózisteljesítmény-mérés: azonnali kiértékelés területi dozimetria impulzusüzemű gáztöltésű detektorok: GMcső, ionizációs kamra GM-cső??? Nem ezt tanultuk előnyök és hátrányok szerves (pl. plasztik) szcintillációs detektor

54 54 TLD kifűtése: fényintenzitás mérése melegítés közben

55 Külső sugárterhelés mérése 55 Követelmények: energiafüggetlenség : a (mért dózis) / (valódi dózis) aránya ne függjön az egyes részecskék energiájától Intenzitás/dózisteljesítmény arányosság széles dózisteljesítmény-intervallumban Felejtés = 0 a dózis ne változzon a mérés és a kiértékelés között

56 Belső sugárterhelés meghatározása 56 Közvetlen dózismérés nem lehetséges Közvetett mérés: az inkorporált aktivitás meghatározása Nehézség: pillanatnyi mérések, tartózkodási idő ismerete szükséges Vizsgálati módszerek: inkorporálható közeg (levegő, víz, élelmiszer) analízise: radiokémiai feldolgozás + α- és β- sugárzók mérése; γ-spektrometria testnedv-, exkrétumanalízis: α- és β-sugárzók mérése, γ- spektrometria; testrész- és egésztest-analízis (számlálás): γ-spektrometria

57 57 Az atomreaktor, mint sugárforrás

58 58 Az üzemelő atomreaktor, mint sugárforrás α, β, γ, n-sugárzás is megtalálható α - források: üzem közben a kis áthatolóképesség miatt kis jelentőségű β - források: üzem közben a kis áthatolóképesség miatt kis jelentőségű

59 Az üzemelő atomreaktor, mint 59 sugárforrás γ - források: ~10 20 foton/s 1375 MW esetében trícium-aktivitás: 1 2 H(n, γ) 3 1 H nitrogén-aktivitás: n-források: Sugárvédelmi szempontból a prompt neutronok fontosak Nagy neutronforrás-erősség (~10 20 neutron/s 1375 MW esetében) A szerkezeti elemek aktivációja (γ,n) reakciók 16 8O(n, p) 16 7 N 17 8O(n, p) 17 7 N

60 60 A leállított atomreaktor, mint sugárforrás α, β, γ, n-sugárzás is megtalálható α - források: Elsősorban a transzuránok, melyek a kiégett üzemanyagban találhatók; a nagyaktivitású hulladék hőfejlődését és sugárkárosodását befolyásolják β - források: A leállított reaktor ill. a kiégett üzemanyag remanens hőfejlődését nagymértékben befolyásolják γ -források: béta-bomlás kísérői Sugárvédelmi szempontból a legfontosabbak Kiemelkedően fontos nuklidok a felaktivált szerkezetekben: Co-60, Eu-152 és -154

61 61 Kiégett fűtőelem Elhelyezése különböző stratégiák szerint történik az egyes országokban Pl: USA, Svédország, Magyarország üzemanyagciklus nem záródik Pl: Franciaország, Oroszország: reprocesszálás Sugárvédelmi szempontból különleges szerepe van a kiégett fűtőelemnek Elhelyezése: több ezer évre biztosítani kell a biztonságát Mélységi tárolók kiválasztás - Boda Finnország, Svédország: első a világon 450 m mélységű tároló De: 4. generációs reaktorok lehetséges alternatívát jelentenek a radioaktív anyagok transzmutálása szempontjából

62 62 A dózistér számítása, árnyékolás-tervezés

63 63 Sugárvédelmi számítások: árnyékolás (shielding) tervezése Két, alapvetően különböző módszer: Sugárgyengülés, build-up faktorral kiegészítve Nagyon gyors, egyszerű Jó becslés A build-up faktorok nem mindig megbízhatók Monte Carlo módszer Lassabb Tetszőleges modellezési pontosság (geometria, anyagi jellemzők) Kompromisszumok nélküli dózistérszámítás

64 64 Sugárvédelmi számítások: Monte Carlo módszer

65 65 Példa sugárvédelmi számításra (árnyékolástervezés) ESS: European Spallation Source (Lund, Sweden) Jelenleg épül, a világ legnagyobb neutronforrása lesz

66 66 Felhasznált irodalom Csom Gyula: Atomerőművek üzemtana I. kötet IV. fejezet, Műegyetemi Kiadó, Fehér István, Deme Sándor: Sugárvédelem, ELTE Eötvös Kiadó, Pesznyák Csilla, Sáfrány Géza: Sugárbiológia elektronikus tankönyv, Zagyvai Péter: Sugárvédelem és jogi szabályozása c. tárgyhoz készített diasorai

67 67 Köszönöm a figyelmet!

Sugárvédelem alapjai. Nukleáris alapok. Papp Ildikó

Sugárvédelem alapjai. Nukleáris alapok. Papp Ildikó Sugárvédelem alapjai Nukleáris alapok Papp Ildikó 2 Emlékeztető A sugárzások és az anyagi közeg kölcsönhatása Dózisfogalmak 3 Pici történelem 1896: Henri Becquerel uránsók Azt találta, hogy sugárzás intenzitása

Részletesebben

Sugárvédelem alapjai. Atomenergetikai alapismeretek. Dr. Czifrus Szabolcs BME NTI

Sugárvédelem alapjai. Atomenergetikai alapismeretek. Dr. Czifrus Szabolcs BME NTI Sugárvédelem alapjai Atomenergetikai alapismeretek Dr. Czifrus Szabolcs BME NTI 2 Tartalom Emlékeztető a múlt félévből A sugárzások és az anyagi közeg kölcsönhatása Dózisfogalmak, külső- belső sugárterhelés

Részletesebben

Sugárvédelem. 2. előadás

Sugárvédelem. 2. előadás Sugárvédelem 2. előadás 2 A biológiai hatások osztályozása Szomatikus: egy biológiai egyeden jelentkezik Genetikai: egy populáción jelentkezik VAGY 3 A biológiai hatások osztályozása Direkt hatás a sugárenergia

Részletesebben

Sugárvédelem alapjai

Sugárvédelem alapjai Sugárvédelem alapjai Atomenergetikai alapismeretek Papp Ildikó 2016.04.05. 2 Tartalom Emlékeztető a múlt félévből A sugárzások és az anyagi közeg kölcsönhatása Dózisfogalmak, külső- belső sugárterhelés

Részletesebben

A sugárvédelem alapjai

A sugárvédelem alapjai A sugárvédelem alapjai 1. Dózisfogalmak 2. Az ionizáló sugárzások egészséget károsító hatásai 3. Sugárvédelmi szabályozás - korlátok 4. A dózismérés sajátosságai 5. Természetes radioaktivitás 6. Radioaktív

Részletesebben

Sugárvédelem kurzus fogorvostanhallgatók számra. Töltött részecskék elnyelődése. Sugárzások és anyag kölcsönhatása. A sugárzások elnyelődése

Sugárvédelem kurzus fogorvostanhallgatók számra. Töltött részecskék elnyelődése. Sugárzások és anyag kölcsönhatása. A sugárzások elnyelődése Sugárvédelem kurzus fogorvostanhallgatók számra 2. Az ionizáló sugárzás és az anyag kölcsönhatása. Fizikai dózisfogalmak és az ionizáló sugárzás mérése Sugárzások és anyag kölcsönhatása. A sugárzások elnyelődése

Részletesebben

Radioaktivitás biológiai hatása

Radioaktivitás biológiai hatása Radioaktivitás biológiai hatása Dózis definíciók Hatások Biofizika előadások 2013 december Orbán József PTE ÁOK Biofizikai Intézet A radioaktív sugárzás elleni védekezés 3 pontja Minimalizált kitettségi

Részletesebben

Dozimetria és sugárvédelem

Dozimetria és sugárvédelem PR/B10ZP0318N0019FD003 Dozimetria és sugárvédelem Dr. Zagyvai Péter egyetemi docens Atomenergetikai Tanszék Nukleáris Technikai Intézet Természettudományi Kar Budapesti Műszaki és Gazdaságtudományi Egyetem

Részletesebben

Radioaktív elemek környezetünkben: természetes és mesterséges háttérsugárzás. Kovács Krisztina, Alkímia ma

Radioaktív elemek környezetünkben: természetes és mesterséges háttérsugárzás. Kovács Krisztina, Alkímia ma Radioaktív elemek környezetünkben: természetes és mesterséges háttérsugárzás Tartalom bevezetés, alapfogalmak természetes háttérsugárzás mesterséges háttérsugárzás összefoglalás OSJER Bevezetés - a radiokémiai

Részletesebben

Dozimetriai alapfogalmak. Az ionizáló sugárzás mérése

Dozimetriai alapfogalmak. Az ionizáló sugárzás mérése Dozimetriai alapfogalmak. Az ionizáló sugárzás mérése A DÓZISFOGALOM FEJLŐDÉSE A sugárzás mértékét számszerűen jellemző mennyiségek ERYTHEMA DÓZIS: meghatározott sugárminőséggel (180 kv, 1 mm Al szűrés),

Részletesebben

Nukleáris környezetvédelem Környezeti sugárvédelem

Nukleáris környezetvédelem Környezeti sugárvédelem Nukleáris környezetvédelem Környezeti sugárvédelem Előadások: 2018. IX. 3. XII. 3. Félévközi dolgozatok: 2018. X. 15., XII. 3. Laborgyakorlatok: péntekenként, egyéni beosztás szerint, csoportokban vezető:

Részletesebben

Nemzeti Népegészségügyi Központ Sugárbiológiai és Sugáregészségügyi Főosztály

Nemzeti Népegészségügyi Központ Sugárbiológiai és Sugáregészségügyi Főosztály Nemzeti Népegészségügyi Központ Sugárbiológiai és Sugáregészségügyi Főosztály Bővített fokozatú sugárvédelmi tanfolyam 2019. március 18-21. Szóbeli és írásbeli vizsga napja: 2019. március 21. Képzési idő:

Részletesebben

Az ionizáló sugárzások előállítása és alkalmazása

Az ionizáló sugárzások előállítása és alkalmazása Az ionizáló sugárzások előállítása és alkalmazása Dr. Voszka István Semmelweis Egyetem Biofizikai és Sugárbiológiai Intézet Wilhelm Conrad Röntgen 1845-1923 Antoine Henri Becquerel 1852-1908 Ionizáló sugárzások

Részletesebben

A sugárvédelem alapelvei. dr Osváth Szabolcs Fülöp Nándor OKK OSSKI

A sugárvédelem alapelvei. dr Osváth Szabolcs Fülöp Nándor OKK OSSKI A sugárvédelem alapelvei dr Osváth Szabolcs Fülöp Nándor OKK OSSKI A sugárvédelem célja A sugárvédelem célkitűzései: biztosítani hogy determinisztikus hatások ne léphessenek fel, és hogy a sztochasztikus

Részletesebben

-A radioaktivitás a nem stabil (úgynevezett radioaktív) atommagok bomlásának folyamata. -Nagyenergiájú ionizáló sugárzást kelt Az elnevezés: - radio

-A radioaktivitás a nem stabil (úgynevezett radioaktív) atommagok bomlásának folyamata. -Nagyenergiájú ionizáló sugárzást kelt Az elnevezés: - radio -A radioaktivitás a nem stabil (úgynevezett radioaktív) atommagok bomlásának folyamata. -Nagyenergiájú ionizáló sugárzást kelt Az elnevezés: - radio (sugároz) - activus (cselekvő) Különféle foszforeszkáló

Részletesebben

Országos Onkológiai Intézet, Sugárterápiás Centrum 2. Országos Onkológiai Intézet, Nukleáris Medicina Osztály 4

Országos Onkológiai Intézet, Sugárterápiás Centrum 2. Országos Onkológiai Intézet, Nukleáris Medicina Osztály 4 99m Tc-MDP hatására kialakuló dózistér mérése csontszcintigráfia esetén a beteg közvetlen közelében Király R. 1, Pesznyák Cs. 1,2,Sinkovics I. 3, Kanyár B. 4 1 Országos Onkológiai Intézet, Sugárterápiás

Részletesebben

Ionizáló sugárzások dozimetriája

Ionizáló sugárzások dozimetriája Ionizáló sugárzások dozimetriája A becsült átlagos évi dózis természetes és mesterséges forrásokból 3.6 msv. környezeti foglalkozási katonai nukleáris ipari orvosi A terhelés megoszlása a források között

Részletesebben

FIZIKA. Radioaktív sugárzás

FIZIKA. Radioaktív sugárzás Radioaktív sugárzás Atommag összetétele: Hélium atommag : 2 proton + 2 neutron 4 He 2 A He Z 4 2 A- tömegszám proton neutron együttesszáma Z- rendszám protonok száma 2 Atommag összetétele: Izotópok: azonos

Részletesebben

1. A radioaktív sugárzás hatásai az emberi szervezetre

1. A radioaktív sugárzás hatásai az emberi szervezetre 1. A radioaktív sugárzás hatásai az emberi szervezetre Az ember állandóan ki van téve a különböző természetes, vagy mesterséges eredetű ionizáló sugárzások hatásának. Ez a szervezetet érő sugárterhelés

Részletesebben

Az ionizáló sugárzások előállítása és alkalmazása

Az ionizáló sugárzások előállítása és alkalmazása Az ionizáló sugárzások előállítása és alkalmazása Dr. Voszka István Semmelweis Egyetem Biofizikai és Sugárbiológiai Intézet Wilhelm Conrad Röntgen 1845-1923 Antoine Henri Becquerel 1852-1908 Ionizáló sugárzások

Részletesebben

Radioaktivitás biológiai hatása

Radioaktivitás biológiai hatása Radioaktivitás biológiai hatása Dózis definíciók Hatások PTE ÁOK Biofizikai Intézet, 2012 december Orbán József A radioaktív sugárzás elleni védekezés 3 pontja Minimalizált kitettségi idő Maximalizált

Részletesebben

Sugárvédelem nukleáris létesítményekben. Átfogó [fenntartó] SVK Osváth Szabolcs (OKK-OSSKI-LKSO)

Sugárvédelem nukleáris létesítményekben. Átfogó [fenntartó] SVK Osváth Szabolcs (OKK-OSSKI-LKSO) Sugárvédelem nukleáris létesítményekben Átfogó [fenntartó] SVK Osváth Szabolcs (OKK-OSSKI-LKSO) Tartalom Ki mit nevez nukleárisnak? Hasadóanyagok Neutronos láncreakció, neutronsugárzás Felaktiválódás,

Részletesebben

ÉRTELMEZŐ INFORMÁCIÓK ÉS MEGHATÁROZÁSOK A SUGÁRVÉDELEMBEN

ÉRTELMEZŐ INFORMÁCIÓK ÉS MEGHATÁROZÁSOK A SUGÁRVÉDELEMBEN ÉRTELMEZŐ INFORMÁCIÓK ÉS MEGHATÁROZÁSOK A SUGÁRVÉDELEMBEN ALARA-elv A sugárveszélyes munkahelyen foglalkoztatott személyek sugárterhelését az ésszerűen elérhető legalacsonyabb szinten kell tartani a gazdasági

Részletesebben

A természetes és mesterséges sugárterhelés forrásai, szintjei. Salik Ádám

A természetes és mesterséges sugárterhelés forrásai, szintjei. Salik Ádám A természetes és mesterséges sugárterhelés forrásai, szintjei. Salik Ádám A természetes és mesterséges sugárterhelés forrásai Természetes eredetű Kozmikus sugárzás (szoláris, galaktikus) Kozmogén radioaktív

Részletesebben

Sugárvédelmi feladatok az egészségügyben. Speciális munkakörökben dolgozók munkavégzésére vonatkozó általános és különös szabályok.

Sugárvédelmi feladatok az egészségügyben. Speciális munkakörökben dolgozók munkavégzésére vonatkozó általános és különös szabályok. Sugárvédelmi feladatok az egészségügyben. Speciális munkakörökben dolgozók munkavégzésére vonatkozó általános és különös szabályok. Dr. Kóbor József,biofizikus, klinikai fizikus, PTE Sugárvédelmi Szolgálat

Részletesebben

SUGÁRVÉDELMI EREDMÉNYEK 2014-BEN

SUGÁRVÉDELMI EREDMÉNYEK 2014-BEN SUGÁRVÉDELMI EREDMÉNYEK 2014-BEN 1. BEVEZETÉS Az atomerőműben folyó sugárvédelemi tevékenység fő területei 2014-ben is a munkahelyi sugárvédelem és a nukleáris környezetvédelem voltak. A sugárvédelemmel

Részletesebben

Sugárzások kölcsönhatása az anyaggal

Sugárzások kölcsönhatása az anyaggal Radioaktivitás Biofizika előadások 2013 december Sugárzások kölcsönhatása az anyaggal PTE ÁOK Biofizikai Intézet, Orbán József Összefoglaló radioaktivitás alapok Nukleononkénti kötési energia (MeV) Egy

Részletesebben

Sugárterápia. Ionizáló sugárzások elnyelődésének következményei

Sugárterápia. Ionizáló sugárzások elnyelődésének következményei Sugárterápia Sugárterápia: ionizáló sugárzások klinikai alkalmazása malignus daganatok eltávolításában. A sugárkezelés során célunk az ionizáló sugárzás terápiás dózisának elérése a kezelt daganatban a

Részletesebben

A sugárzás biológiai hatásai

A sugárzás biológiai hatásai A sugárzás biológiai hatásai Dózisegységek Besugárzó dózis - C/kg Elnyelt dózis - J/kg=gray (Gy) 1 Gy=100 rad Levegőben átlagos ionizációs energiája 53,9*10-19 J. Az elektron töltése 1,6*10-19 C, tehát

Részletesebben

Az ionizáló sugárzások el állítása és alkalmazása

Az ionizáló sugárzások el állítása és alkalmazása Az ionizáló sugárzások elállítása és alkalmazása Dr. Voszka István Semmelweis Egyetem Biofizikai és Sugárbiológiai Intézet Wilhelm Conrad Röntgen 1845-1923 Antoine Henri Becquerel 1852-1908 Ionizáló sugárzások

Részletesebben

Deme Sándor MTA EK. 40. Sugárvédelmi Továbbképző Tanfolyam Hajdúszoboszló, 2015. április 21-23.

Deme Sándor MTA EK. 40. Sugárvédelmi Továbbképző Tanfolyam Hajdúszoboszló, 2015. április 21-23. A neutronok személyi dozimetriája Deme Sándor MTA EK 40. Sugárvédelmi Továbbképző Tanfolyam Hajdúszoboszló, 2015. április 21-23. Előzmény, 2011 Jogszabályi háttér A személyi dozimetria jogszabálya (16/2000

Részletesebben

Sugárterápia. Ionizáló sugárzások elnyelődésének következményei. Konzultáció: minden hétfőn 15 órakor. 1. Fizikai történések

Sugárterápia. Ionizáló sugárzások elnyelődésének következményei. Konzultáció: minden hétfőn 15 órakor. 1. Fizikai történések Sugárterápia 40% 35% 30% 25% 20% 15% % 5% 0% 2014/2015. tanév FOK biofizika kollokvium jegyspektruma 5 4,5 4 3,5 3 2,5 2 1,5 1 Konzultáció: minden hétfőn 15 órakor Ionizáló sugárzások elnyelődésének következményei

Részletesebben

Az atommag összetétele, radioaktivitás

Az atommag összetétele, radioaktivitás Az atommag összetétele, radioaktivitás Az atommag alkotórészei proton: pozitív töltésű részecske, töltése egyenlő az elektron töltésével, csak nem negatív, hanem pozitív: 1,6 10-19 C tömege az elektron

Részletesebben

Sugárvédelem és jogi alapjai

Sugárvédelem és jogi alapjai Sugárvédelem és jogi alapjai Fejezetek: 1. Mag- és sugárfizikai alapok 2. Dózismennyiségek 3. Az ionizáló sugárzás egészségkárosító hatásai, sugárvédelmi szabályzás 4. Sugárzásmérés alapjai 5. Természetes

Részletesebben

Átfogó fokozatú sugárvédelmi továbbképzés

Átfogó fokozatú sugárvédelmi továbbképzés 2018. szeptember 10. Átfogó fokozatú sugárvédelmi továbbképzés 2018. szeptember 10., 17., 24. vizsga napja 25. OKI 1221 Budapest Anna u. 5. 8:50 Megnyító Sugárfizikai és dozimetriai ismeretek 1. Ionizáló

Részletesebben

Háttérsugárzás. A sugáregészségtan célkitűzése. A sugárvédelem alapelvei, dóziskorlátok. Sugáregészségtan és fogorvoslás

Háttérsugárzás. A sugáregészségtan célkitűzése. A sugárvédelem alapelvei, dóziskorlátok. Sugáregészségtan és fogorvoslás A sugáregészségtan célkitűzése A sugárvédelem alapelvei, dóziskorlátok A sugáregészségtan célja az ionizáló és nemionizáló sugárzások hatásának megismerése az emberi szervezetben - annak érdekében, hogy

Részletesebben

Az atommag összetétele, radioaktivitás

Az atommag összetétele, radioaktivitás Az atommag összetétele, radioaktivitás Az atommag alkotórészei proton: pozitív töltésű részecske, töltése egyenlő az elektron töltésével, csak nem negatív, hanem pozitív: 1,6 10-19 C tömege az elektron

Részletesebben

Sugárzás kölcsönhatása az anyaggal 1. Fény kölcsönhatása az anyaggal. 2. Ionizáló sugárzás kölcsönhatása az anyaggal KAD

Sugárzás kölcsönhatása az anyaggal 1. Fény kölcsönhatása az anyaggal. 2. Ionizáló sugárzás kölcsönhatása az anyaggal KAD Sugárzás kölcsönhatása az anyaggal 1. Fény kölcsönhatása az anyaggal 2. Ionizáló sugárzás kölcsönhatása az anyaggal KAD 2012.10.03 1976 2 1. 3 4 n 1 >n 2 5 6 7 8 9 10 11 12 13 14 2. Az ionizáló sugárzások

Részletesebben

Felhasználható szakirodalom

Felhasználható szakirodalom Sugárvédelem II. Fejezetek: 1. Bevezetés (áttekintés - ismétlés): fizikai és biológiai dózisfogalmak; az ionizáló sugárzás károsító hatásai; sugárvédelmi elvek és szabályozás 2. A külső dózis- és dózisteljesítmény

Részletesebben

Sugárfizikai és sugárvédelmi ismeretek. SZTE Nukleáris Medicina Intézet

Sugárfizikai és sugárvédelmi ismeretek. SZTE Nukleáris Medicina Intézet Sugárfizikai és sugárvédelmi ismeretek SZTE Nukleáris Medicina Intézet A lakosság sugárterhelése 1 A lakosság sugárterhelése 2 Percent contribution of various sources of exposure to the total collective

Részletesebben

Atomfizika. Radioaktív sugárzások kölcsönhatásai. 2010. 10. 18. Biofizika, Nyitrai Miklós

Atomfizika. Radioaktív sugárzások kölcsönhatásai. 2010. 10. 18. Biofizika, Nyitrai Miklós Atomfizika. Radioaktív sugárzások kölcsönhatásai. 2010. 10. 18. Biofizika, Nyitrai Miklós Emlékeztető Radioaktív sugárzások keletkezése, típusai A Z A Z α-bomlás» α-sugárzás A Z 4 X X + 2 X A Z 4 2 X 4

Részletesebben

Sugárzások és anyag kölcsönhatása

Sugárzások és anyag kölcsönhatása Sugárzások és anyag kölcsönhatása Az anyaggal kölcsönhatásba lépő részecskék Töltött részecskék Semleges részecskék Nehéz Könnyű Nehéz Könnyű T D p - + n Radioaktív sugárzás + anyag energia- szóródás abszorpció

Részletesebben

Atomreaktorok üzemtana. Az üzemelő és leállított reaktor, mint sugárforrás

Atomreaktorok üzemtana. Az üzemelő és leállított reaktor, mint sugárforrás Atomreaktorok üzemtana Az üzemelő és leállított reaktor, mint sugárforrás Atomreaktorban és környezetében keletkező sugárzástípusok és azok forrásai Milyen típusú sugárzások keletkeznek? Melyik ellen milyen

Részletesebben

SE Bővített fokozatú sugárvédelmi tanfolyam, 2005 márc. 21-24 IONIZÁLÓ SUGÁRZÁSOK DOZIMETRIÁJA. (Dr. Kanyár Béla, SE Sugárvédelmi Szolgálat)

SE Bővített fokozatú sugárvédelmi tanfolyam, 2005 márc. 21-24 IONIZÁLÓ SUGÁRZÁSOK DOZIMETRIÁJA. (Dr. Kanyár Béla, SE Sugárvédelmi Szolgálat) SE Bővített fokozatú sugárvédelmi tanfolyam, 2005 márc. 21-24 IONIZÁLÓ SUGÁRZÁSOK DOZIMETRIÁJA (Dr. Kanyár Béla, SE Sugárvédelmi Szolgálat) A sugárzások a károsító hatásuk mértékének megítélése szempontjából

Részletesebben

FIZIKA. Atommag fizika

FIZIKA. Atommag fizika Atommag összetétele Fajlagos kötési energia Fúzió, bomlás, hasadás Atomerőmű működése Radioaktív bomlástörvény Dozimetria 2 Atommag összetétele: Hélium atommag : 2 proton + 2 neutron 4 He 2 He Z A 4 2

Részletesebben

Környezetgazdálkodás. 1868-ban gépészmérnöki diplomát szerzett. 2016.04.11. Dr. Horváth Márk. 1901-ben ő lett az első Fizikai Nobel-díj tulajdonosa.

Környezetgazdálkodás. 1868-ban gépészmérnöki diplomát szerzett. 2016.04.11. Dr. Horváth Márk. 1901-ben ő lett az első Fizikai Nobel-díj tulajdonosa. 2016.04.11. Környezetgazdálkodás Dr. Horváth Márk https://nuclearfree.files.wordpress.com/2011/10/radiation-worker_no-background.jpg 1868-ban gépészmérnöki diplomát szerzett. 1901-ben ő lett az első Fizikai

Részletesebben

Az ionizáló sugárzások fajtái, forrásai

Az ionizáló sugárzások fajtái, forrásai Az ionizáló sugárzások fajtái, forrásai magsugárzás Magsugárzások Röntgensugárzás Függelék. Intenzitás 2. Spektrum 3. Atom Repetitio est mater studiorum. Röntgen Ionizációnak nevezzük azt a folyamatot,

Részletesebben

Radioaktív sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktív sugárzások detektálása.

Radioaktív sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktív sugárzások detektálása. Radioaktív sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktív sugárzások detektálása. Magsugárzások (α, β, γ) kölcsönhatása atomi rendszerekkel (170-174, 540-545 o.) Direkt és

Részletesebben

DÓZISTELJESÍTMÉNY DILEMMA SUGÁRTERÁPIÁS BUNKEREK KÖRNYEZETÉBEN

DÓZISTELJESÍTMÉNY DILEMMA SUGÁRTERÁPIÁS BUNKEREK KÖRNYEZETÉBEN DÓZISTELJESÍTMÉNY DILEMMA SUGÁRTERÁPIÁS BUNKEREK KÖRNYEZETÉBEN dr. Ballay László OSSKI-AMOSSO A DÓZISTELJESÍTMÉNY DILEMMA FELVETÉSE SUGÁRVÉDELMI MÉRÉSEK: DÓZISTELJESÍTMÉNY MÉRÉSEK A helyszínen csak a dózisteljesítmény

Részletesebben

IVÓVIZEK RADIOANALITIKAI VIZSGÁLATA

IVÓVIZEK RADIOANALITIKAI VIZSGÁLATA IVÓVIZEK RADIOANALITIKAI VIZSGÁLATA Ádámné Sió Tünde, Kassai Zoltán ÉTbI Radioanalitikai Referencia Laboratórium 2015.04.23 Jogszabályi háttér Alapelv: a lakosság az ivóvizek fogyasztása során nem kaphat

Részletesebben

Sugárvédelmi Ellenőrző és Jelző Rendszerének vizsgálata

Sugárvédelmi Ellenőrző és Jelző Rendszerének vizsgálata Sugárvédelmi Ellenőrző és Jelző Rendszerének vizsgálata Zagyvai Péter Osváth Szabolcs Huszka Ádám BME NTI, 2014. 1/5 1. Bevezetés Minden nukleáris létesítmény bizonyos mértékű veszélyforrást jelent az

Részletesebben

Sugárvédelmi mérések és berendezések

Sugárvédelmi mérések és berendezések Sugárvédelmi mérések és berendezések Zagyvai Péter Osváth Szabolcs Huszka Ádám BME NTI, 2014. 1/6 1. Bevezetés Minden nukleáris létesítmény bizonyos mértékű veszélyforrást jelent az ember és környezete

Részletesebben

SUGÁRVÉDELMI EREDMÉNYEK 2016-BAN. Dr. Bujtás Tibor

SUGÁRVÉDELMI EREDMÉNYEK 2016-BAN. Dr. Bujtás Tibor SUGÁRVÉDELMI EREDMÉNYEK 2016-BAN Dr. Bujtás Tibor 1. BEVEZETÉS Az atomerőműben folyó sugárvédelemi tevékenység fő területei 2016-ban is a munkahelyi sugárvédelem és a nukleáris környezetvédelem voltak.

Részletesebben

Radioaktív hulladékok osztályozása (javaslat a szabályozás fejlesztésére)

Radioaktív hulladékok osztályozása (javaslat a szabályozás fejlesztésére) Radioaktív hulladékok osztályozása (javaslat a szabályozás fejlesztésére) Sebestyén Zsolt Nukleáris biztonsági felügyelő 1 Tartalom 1. Feladat forrása 2. VLLW kategória indokoltsága 3. Az osztályozás hazai

Részletesebben

ÉRTELMEZŐ INFORMÁCIÓK MEGHATÁROZÁSOK

ÉRTELMEZŐ INFORMÁCIÓK MEGHATÁROZÁSOK MSSZ_V15.1_M2 ÉRTELMEZŐ INFORMÁCIÓK MEGHATÁROZÁSOK ALARA-elv A sugárveszélyes munkahelyen foglalkoztatott személyek sugárterhelését az ésszerűen elérhető legalacsonyabb szinten kell tartani a gazdasági

Részletesebben

A terhelés megoszlása a források között. A becsült átlagos évi dózis természetes és mesterséges forrásokból 3.6 msv.

A terhelés megoszlása a források között. A becsült átlagos évi dózis természetes és mesterséges forrásokból 3.6 msv. A becsült átlagos évi dózis természetes és mesterséges forrásokból 3.6 msv. A terhelés megoszlása a források között környezeti 238 U Radon Kb. 54% ipari termékek 3% egyéb 1% nukleáris medicina 4% orvosi

Részletesebben

Sugárvédelem és jogi szabályozása

Sugárvédelem és jogi szabályozása Fejezetek: Sugárvédelem és jogi szabályozása 1. Mag- és sugárfizikai alapok 2. Dózismennyiségek 3. Az ionizáló sugárzás egészségkárosító hatásai, sugárvédelmi szabályzás 4. Sugárzásmérés alapjai 5. Természetes

Részletesebben

Átfogó fokozatú sugárvédelmi képzés október október október 02

Átfogó fokozatú sugárvédelmi képzés október október október 02 Átfogó fokozatú sugárvédelmi képzés 2018. október 01-12. 2018. október 01. 1. Atom szerkezete, izotópok 9:00 Lajos Máté (Homoki Zsolt) Téma: Atomok, atommagok, összetételük, szerkezetük, magmodellek, kötési

Részletesebben

Radioaktív sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktív sugárzások detektálása.

Radioaktív sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktív sugárzások detektálása. Különböző sugárzások tulajdonságai Típus töltés Energia hordozó E spektrum Radioaktí sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktí sugárzások detektálása. α-sugárzás pozití

Részletesebben

NEUTRON SUGÁRZÁS ELLENI BIOLÓGIAI VÉDELEM VIZSGÁLATA MONTE CARLO MODELLEZÉSSEL

NEUTRON SUGÁRZÁS ELLENI BIOLÓGIAI VÉDELEM VIZSGÁLATA MONTE CARLO MODELLEZÉSSEL NEUTRON SUGÁRZÁS ELLENI BIOLÓGIAI VÉDELEM VIZSGÁLATA MONTE CARLO MODELLEZÉSSEL Hajdú Dávid 1,2, Zagyvai Péter 1,2, Dian Eszter 1,2,3 1 MTA Energiatudományi Kutatóintézet 2 Budapesti Műszaki és Gazdaságtudományi

Részletesebben

OKK ORSZÁGOS SUGÁRBIOLÓGIAI ÉS SUGÁREGÉSZSÉGÜGYI KUTATÓ IGAZGATÓSÁG ÁTFOGÓ FOKOZATÚ SUGÁRVÉDELMI ISMERETEKET NYÚJTÓ KÖTELEZŐ TANFOLYAM

OKK ORSZÁGOS SUGÁRBIOLÓGIAI ÉS SUGÁREGÉSZSÉGÜGYI KUTATÓ IGAZGATÓSÁG ÁTFOGÓ FOKOZATÚ SUGÁRVÉDELMI ISMERETEKET NYÚJTÓ KÖTELEZŐ TANFOLYAM OKK ORSZÁGOS SUGÁRBIOLÓGIAI ÉS SUGÁREGÉSZSÉGÜGYI KUTATÓ IGAZGATÓSÁG ÁTFOGÓ FOKOZATÚ SUGÁRVÉDELMI ISMERETEKET NYÚJTÓ KÖTELEZŐ TANFOLYAM A képzés helye: OSSKI, 1221 Budapest, Anna u. 5, (illetve megállapodás

Részletesebben

ESEO-TRITEL: az ESEO műhold dózismérője

ESEO-TRITEL: az ESEO műhold dózismérője ESEO-TRITEL: az ESEO műhold dózismérője Hirn Attila MTA EK SVL Űrdozimetriai Kutatócsoport hirn.attila@energia.mta.hu BME, Űrtechnológia előadás, 2015. május 13. Tartalom Bevezetés Alapvető dózisfogalmak

Részletesebben

EGÉSZTESTSZÁMLÁLÁS. Mérésleírás Nukleáris környezetvédelem gyakorlat környezetmérnök hallgatók számára

EGÉSZTESTSZÁMLÁLÁS. Mérésleírás Nukleáris környezetvédelem gyakorlat környezetmérnök hallgatók számára EGÉSZTESTSZÁMLÁLÁS Mérésleírás Nukleáris környezetvédelem gyakorlat környezetmérnök hallgatók számára Zagyvai Péter - Osváth Szabolcs Bódizs Dénes BME NTI, 2008 1. Bevezetés Az izotópok stabilak vagy radioaktívak

Részletesebben

Nemzeti Népegészségügyi Központ Sugárbiológiai és Sugáregészségügyi Főosztály

Nemzeti Népegészségügyi Központ Sugárbiológiai és Sugáregészségügyi Főosztály Nemzeti Népegészségügyi Központ Sugárbiológiai és Sugáregészségügyi Főosztály Átfogó fokozatú sugárvédelmi ismereteket nyújtó kötelező tanfolyam tervezett program 2019. szeptember 30 október 10. Vizsga

Részletesebben

Sugárvédelem és jogi szabályozása

Sugárvédelem és jogi szabályozása Fejezetek: Sugárvédelem és jogi szabályozása 1. Mag- és sugárfizikai alapok 2. Dózismennyiségek 3. Az ionizáló sugárzás egészségkárosító hatásai, sugárvédelmi szabályzás 4. Sugárzásmérés alapjai 5. Természetes

Részletesebben

A dozimetria célja, feladata. Milyen hatásokat kell jellemezni? Miért kellenek dozimetriai fogalmak? Milyen mennyiséggel jellemezzük a káros hatást?

A dozimetria célja, feladata. Milyen hatásokat kell jellemezni? Miért kellenek dozimetriai fogalmak? Milyen mennyiséggel jellemezzük a káros hatást? Bővített fokozatú sugárvédelmi tanfolyam Semmelweis Egyetem DOZIMETRIA: dózisfogalmak, dózisszámítások Taba Gabriella,SE Sugárvédelmi Szolgálat 2016.03.21. EOK Hevesy György előadóterem (Tűzoltó u. 37-47.)

Részletesebben

Nukleáris környezetvédelem Környezeti sugárvédelem

Nukleáris környezetvédelem Környezeti sugárvédelem Nukleáris környezetvédelem Környezeti sugárvédelem 1. Dózisfogalmak 2. Az ionizáló sugárzások egészségkárosító hatásai 3. A dózis meghatározásának mérési és számítási módszerei 4. A sugárvédelmi szabályzás

Részletesebben

Nemzeti Népegészségügyi Központ Sugárbiológiai és Sugáregészségügyi Főosztály

Nemzeti Népegészségügyi Központ Sugárbiológiai és Sugáregészségügyi Főosztály Nemzeti Népegészségügyi Központ Sugárbiológiai és Sugáregészségügyi Főosztály Átfogó fokozatú sugárvédelmi TOVÁBBKÉPZŐ tanfolyam tervezett program 2019. szeptember 09; 16; 23; 25. Vizsga napja: 2019. szeptember

Részletesebben

TESTLab KALIBRÁLÓ ÉS VIZSGÁLÓ LABORATÓRIUM AKKREDITÁLÁS

TESTLab KALIBRÁLÓ ÉS VIZSGÁLÓ LABORATÓRIUM AKKREDITÁLÁS TESTLab KALIBRÁLÓ ÉS VIZSGÁLÓ LABORATÓRIUM AKKREDITÁLÁS ACCREDITATION OF TESTLab CALIBRATION AND EXAMINATION LABORATORY XXXVIII. Sugárvédelmi Továbbképző Tanfolyam - 2013 - Hajdúszoboszló Eredet Laboratóriumi

Részletesebben

RADIOAKTÍV ANYAGOK SZÁLLÍTÁSÁNAK ENGEDÉLYEZÉSE hatósági fórum OAH székház, 2016.szeptember 19.

RADIOAKTÍV ANYAGOK SZÁLLÍTÁSÁNAK ENGEDÉLYEZÉSE hatósági fórum OAH székház, 2016.szeptember 19. RADIOAKTÍV ANYAGOK SZÁLLÍTÁSÁNAK ENGEDÉLYEZÉSE hatósági fórum OAH székház, 2016.szeptember 19. a szállításra vonatkozó sugárvédelmi programmal szemben támasztott elvárások, a sugárvédelmi szempontok egységes

Részletesebben

SUGÁRVÉDELMI ÉRTÉKELÉS 2012. ÉVRE

SUGÁRVÉDELMI ÉRTÉKELÉS 2012. ÉVRE SUGÁRVÉDELMI ÉRTÉKELÉS 2012. ÉVRE 1. BEVEZETÉS Az atomerőműben folyó sugárvédelemi tevékenység fő területei 2012-ben is a munkahelyi sugárvédelem és a nukleáris környezetvédelem voltak. A sugárvédelemmel

Részletesebben

Sugárvédelem és jogi szabályozása

Sugárvédelem és jogi szabályozása Fejezetek: Sugárvédelem és jogi szabályozása 1. Mag- és sugárfizikai alapok 2. Dózismennyiségek 3. Az ionizáló sugárzás egészségkárosító hatásai, sugárvédelmi szabályzás 4. Sugárzásmérés alapjai 5. Természetes

Részletesebben

A gamma-sugárzás kölcsönhatásai

A gamma-sugárzás kölcsönhatásai Ref. [3] A gamma-sugárzás kölcsönhatásai Az anyaggal való kölcsönhatás kis valószínűségű hatótávolság nagy A sugárzás gyengülését 3 féle kölcsönhatás okozza. fotoeffektus Compton-szórás párkeltés A gamma-fotonok

Részletesebben

rvédelem Dr. Fröhlich Georgina Ionizáló sugárzások a gyógyításban ELTE TTK, Budapest Országos Onkológiai Intézet Sugárterápiás Központ Budapest

rvédelem Dr. Fröhlich Georgina Ionizáló sugárzások a gyógyításban ELTE TTK, Budapest Országos Onkológiai Intézet Sugárterápiás Központ Budapest Sugárv rvédelem Dr. Fröhlich Georgina Országos Onkológiai Intézet Sugárterápiás Központ Budapest Ionizáló sugárzások a gyógyításban ELTE TTK, Budapest Bevezetés ionizáló sugárzás kölcsönhatása az anyaggal

Részletesebben

Bővített fokozatú SUGÁRVÉDELMI TANFOLYAM

Bővített fokozatú SUGÁRVÉDELMI TANFOLYAM Bővített fokozatú SUGÁRVÉDELMI TANFOLYAM Sugárfizikai alapismeretek. A röntgen sugárzás keletkezése és tulajdonságai. Salik Ádám, sugárvédelmi szakértő salik.adam@osski.hu, 30-349-9300 ORSZÁGOS SUGÁRBIOLÓGIAI

Részletesebben

Sugárvédelem és jogi szabályozása

Sugárvédelem és jogi szabályozása Fejezetek: Sugárvédelem és jogi szabályozása 1. Mag- és sugárfizikai alapok 2. Dózismennyiségek 3. Az ionizáló sugárzás egészségkárosító hatásai, sugárvédelmi szabályzás 4. Sugárzásmérés alapjai 5. Természetes

Részletesebben

Izotópos méréstechnika, alkalmazási lehetőségek

Izotópos méréstechnika, alkalmazási lehetőségek Radioizotópok orvosi, gyógyszerészi alkalmazása Izotópos méréstechnika, alkalmazási lehetőségek Dr. Voszka István Az alkalmazás alapja:- A radioaktív izotóp ugyanúgy viselkedik a szervezetben, mint stabil

Részletesebben

Sugárvédelem és jogi szabályozása

Sugárvédelem és jogi szabályozása Fejezetek: Sugárvédelem és jogi szabályozása 1. Mag- és sugárfizikai alapok 2. Dózismennyiségek 3. Az ionizáló sugárzás egészségkárosító hatásai, sugárvédelmi szabályzás 4. Sugárzásmérés alapjai 5. Természetes

Részletesebben

Sugárvédelmi feladatok az egészségügybe. Speciális munkakörökben dolgozók munkavégzésre vonatkozó általános és különös szabályok.

Sugárvédelmi feladatok az egészségügybe. Speciális munkakörökben dolgozók munkavégzésre vonatkozó általános és különös szabályok. Sugárvédelmi feladatok az egészségügybe. Speciális munkakörökben dolgozók munkavégzésre vonatkozó általános és különös szabályok. Dr. Csepura György PhD Hajdú-Bihar Megyei Kormányhivatal Népegészségügyi

Részletesebben

NUKLEÁRIS LÉTESÍTMÉNYEKRE VONATKOZÓ SUGÁRVÉDELMI KÖVETELMÉNYEK KORSZERŰSÍTÉSE

NUKLEÁRIS LÉTESÍTMÉNYEKRE VONATKOZÓ SUGÁRVÉDELMI KÖVETELMÉNYEK KORSZERŰSÍTÉSE NUKLEÁRIS LÉTESÍTMÉNYEKRE VONATKOZÓ SUGÁRVÉDELMI KÖVETELMÉNYEK KORSZERŰSÍTÉSE Sebestyén Zsolt, Laczkó Balázs, Ötvös Nándor, Petőfi Gábor, Tomka Péter Országos Atomenergia Hivatal Hajdúszoboszló, 2017.04.26.

Részletesebben

Neutron- és gamma-dózisteljesítmény mérése az Oktatóreaktor 4. vízszintes csatornájánál

Neutron- és gamma-dózisteljesítmény mérése az Oktatóreaktor 4. vízszintes csatornájánál Neutron- és gamma-dózisteljesítmény mérése az Oktatóreaktor 4. szintes csatornájánál Osváth Szabolcs, BME NI, 2012 Bevezetés Az oktatóreaktor 4. szintes csatornájának körkeresztmetszetű nyílásából közelítőleg

Részletesebben

MAGYAR KÖZLÖNY 209. szám

MAGYAR KÖZLÖNY 209. szám MAGYAR KÖZLÖNY 209. szám MAGYARORSZÁG HIVATALOS LAPJA 2015. december 30., szerda Tartalomjegyzék 487/2015. (XII. 30.) Korm. rendelet Az ionizáló sugárzás elleni védelemről és a kapcsolódó engedélyezési,

Részletesebben

3. Nukleá ris fizikái álápismeretek

3. Nukleá ris fizikái álápismeretek 3. Nukleá ris fizikái álápismeretek 3.1. A radioaktív bomlás típusai Radioaktív bomlásnak nevezzük az olyan magátalakulásokat, amelyek spontán mennek végbe, és a bomlás során olyan másik atommag is keletkezik,

Részletesebben

Az atommagtól a konnektorig

Az atommagtól a konnektorig Az atommagtól a konnektorig (Az atomenergetika alapjai) Dr. Aszódi Attila, Boros Ildikó BME Nukleáris Technikai Intézet Pázmándi Tamás KFKI Atomenergia Kutatóintézet Szervező: 1 Az atom felépítése kb.

Részletesebben

Radioaktivitás és mikrorészecskék felfedezése

Radioaktivitás és mikrorészecskék felfedezése Radioaktivitás és mikrorészecskék felfedezése Mag és részecskefizika 1. előadás 2017. Február 17. A félév tematikája 1. Mikrorészecskék felfedezése 2. Kvark gondolat bevezetése, béta-bomlás, neutrínóhipotézis

Részletesebben

Sugárvédelem és jogi alapjai

Sugárvédelem és jogi alapjai Sugárvédelem és jogi alapjai Fejezetek: 1. Mag- és sugárfizikai alapok 2. Dózismennyiségek 3. Az ionizáló sugárzás egészségkárosító hatásai, sugárvédelmi szabályzás 4. Sugárzásmérés alapjai 5. Természetes

Részletesebben

Charles Simonyi űrdozimetriai méréseinek eredményei

Charles Simonyi űrdozimetriai méréseinek eredményei Magyar Tudományos Akadémia KFKI Atomenergia Kutatóintézet Charles Simonyi űrdozimetriai méréseinek eredményei Apáthy István, Pázmándi Tamás Sugárvédelmi és Környezetfizikai Laboratórium Űrdozimetriai Csoport

Részletesebben

LAKOSSÁGI SUGÁRTERHELÉS 2010. október 6 (szerda), 15:40-16:50, Árkövy terem

LAKOSSÁGI SUGÁRTERHELÉS 2010. október 6 (szerda), 15:40-16:50, Árkövy terem SE FOK Sugárvédelem, 2010/2011 LAKOSSÁGI SUGÁRTERHELÉS 2010. október 6 (szerda), 15:40-16:50, Árkövy terem Dr. Kanyár Béla, SE Sugárvédelmi Szolgálat 1 Sugárterhelések osztályozásának szempontjai - Sugárforrás

Részletesebben

SUGÁRVÉDELMI HELYZET 2003-BAN

SUGÁRVÉDELMI HELYZET 2003-BAN 1 SUGÁRVÉDELMI HELYZET 2003-BAN 1. BEVEZETÉS Az atomerőműben folyó sugárvédelemi tevékenység fő területei 2003-ban is a munkahelyi sugárvédelem és a nukleáris környezetvédelem voltak. A sugárvédelemmel

Részletesebben

Radioaktív anyagok terjedése a környezetben

Radioaktív anyagok terjedése a környezetben Tartalom: Radioaktív anyagok terjedése a környezetben 1. Ismétlés: dózisfogalmak, sugárvédelmi szabályozás 2. Radioaktív anyagok transzportja élő szervezetekben 3. Radioaktív anyagok terjedése a levegőben

Részletesebben

50 év a sugárvédelem szolgálatában

50 év a sugárvédelem szolgálatában Magyar Tudományos Akadémia KFKI Atomenergia Kutatóintézet Fehér István, Andrási Andor, Deme Sándor 50 év a sugárvédelem szolgálatában XXXV. Sugárvédelmi Továbbképző Tanfolyam Hajdúszoboszló, 2010. április

Részletesebben

A munkavállalók személyi dozimetriai ellenőrzésének aktualitásai

A munkavállalók személyi dozimetriai ellenőrzésének aktualitásai A munkavállalók személyi dozimetriai ellenőrzésének aktualitásai ÉS 100 msv / 5 év Fülöp Nándor, Elek Richárd, Glavatszkih Nándor, Papp Eszter és az OSzDSz 487/2015 (XII. 30.) Korm. r. Expozíciós kategória

Részletesebben

Ionizáló sugárzások egészségügyi hatásai. Dr. Vincze Árpád

Ionizáló sugárzások egészségügyi hatásai. Dr. Vincze Árpád Ionizáló sugárzások egészségügyi hatásai Dr. Vincze Árpád A sugárzás és az anyag kölcsönhatásai Fizikai hatások Kémiai hatások Biokémiai hatások Biológiai hatások Kémiai - biokémia hatások 3. Kémiai elváltozás

Részletesebben

SUGÁRVÉDELMI EREDMÉNYEK 2007-BEN

SUGÁRVÉDELMI EREDMÉNYEK 2007-BEN SUGÁRVÉDELMI EREDMÉNYEK 2007-BEN 1. BEVEZETÉS Az atomerőműben folyó sugárvédelemi tevékenység fő területei 2007-ben is a munkahelyi sugárvédelem és a nukleáris környezetvédelem voltak. A sugárvédelemmel

Részletesebben

Izotóp geológia: Elemek izotópjainak használata geológiai folyamatok értelmezéséhez.

Izotóp geológia: Elemek izotópjainak használata geológiai folyamatok értelmezéséhez. Radioaktív izotópok Izotópok Egy elem különböző tömegű (tömegszámú - A) formái; Egy elem izotópjainak a magjai azonos számú protont (rendszám - Z) és különböző számú neutront (N) tartalmaznak; Egy elem

Részletesebben

Fichtinger Gyula, Horváth Kristóf

Fichtinger Gyula, Horváth Kristóf A sugárvédelmi hatósági feladatok átvételével kapcsolatos feladatok és kihívások Fichtinger Gyula, Horváth Kristóf Országos Atomenergia Hivatal 2015.04.21. Sugárvédelmi hatósági feladatok átvétele 1 Tartalom

Részletesebben

CSERNOBIL 20/30 ÉVE A PAKSI ATOMERŐMŰ KÖRNYEZETELLENŐRZÉSÉBEN. Germán Endre PA Zrt. Sugárvédelmi Osztály

CSERNOBIL 20/30 ÉVE A PAKSI ATOMERŐMŰ KÖRNYEZETELLENŐRZÉSÉBEN. Germán Endre PA Zrt. Sugárvédelmi Osztály CSERNOBIL 20/30 ÉVE A PAKSI ATOMERŐMŰ KÖRNYEZETELLENŐRZÉSÉBEN Germán Endre PA Zrt. Sugárvédelmi Osztály XXXI. Sugárvédelmi Továbbképző Tanfolyam Keszthely, 2006. május 9 11. Környezeti ártalmak és a légzőrendszer

Részletesebben

A PAKSI ATOMERŐMŰ NEM SUGÁR- VESZÉLYES MUNKAKÖRBEN FOGLALKOZTATOTT DOLGOZÓI ÉS LÁTOGATÓI SUGÁRTERHELÉSE

A PAKSI ATOMERŐMŰ NEM SUGÁR- VESZÉLYES MUNKAKÖRBEN FOGLALKOZTATOTT DOLGOZÓI ÉS LÁTOGATÓI SUGÁRTERHELÉSE A PAKSI ATOMERŐMŰ NEM SUGÁR- VESZÉLYES MUNKAKÖRBEN FOGLALKOZTATOTT DOLGOZÓI ÉS LÁTOGATÓI SUGÁRTERHELÉSE Kerekes Andor, Ozorai János, Ördögh Miklós, + Szabó Péter SOM System Kft., + PA Zrt. Bevezetés, előzmények

Részletesebben

A sugárvédelem jogszabályi megalapozása. Salik Ádám 06-30/ NNK SUGÁRBIOLÓGIAI ÉS SUGÁREGÉSZSÉGÜGYI KUTATÓINTÉZET (OSSKI)

A sugárvédelem jogszabályi megalapozása. Salik Ádám 06-30/ NNK SUGÁRBIOLÓGIAI ÉS SUGÁREGÉSZSÉGÜGYI KUTATÓINTÉZET (OSSKI) A sugárvédelem jogszabályi megalapozása Salik Ádám SALIK.ADAM@OSSKI.HU 06-30/349-9300 NNK SUGÁRBIOLÓGIAI ÉS SUGÁREGÉSZSÉGÜGYI KUTATÓINTÉZET (OSSKI) 487/2015. (XII. 30.) Kormányrendelet az ionizáló sugárzás

Részletesebben

Az Országos Képzési Jegyzékről és az Országos Képzési Jegyzék módosításának eljárásrendjéről szóló 133/2010. (IV. 22.) Korm.

Az Országos Képzési Jegyzékről és az Országos Képzési Jegyzék módosításának eljárásrendjéről szóló 133/2010. (IV. 22.) Korm. Az Országos Képzési Jegyzékről és az Országos Képzési Jegyzék módosításának eljárásrendjéről szóló 133/2010. (IV. 22.) Korm. rendelet alapján: Szakképesítés, szakképesítés-elágazás, rész-szakképesítés,

Részletesebben