Sugárvédelem. 2. előadás

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Sugárvédelem. 2. előadás"

Átírás

1 Sugárvédelem 2. előadás

2 2 A biológiai hatások osztályozása Szomatikus: egy biológiai egyeden jelentkezik Genetikai: egy populáción jelentkezik VAGY

3 3 A biológiai hatások osztályozása Direkt hatás a sugárenergia elnyelődése és a kiválasztott elsődleges folyamat ugyanazon molekulán következik be, amelyen a fixálódott szerkezeti és működésbeli változásokat észleljük. Indirekt hatás az energiaabszorpció, majd az általa kiváltott hatás különböző molekulákon jön létre. Legfontosabb példa a szabad gyök képződés. VAGY

4 4 A biológiai hatások osztályozása Determinisztikus: A károsodás súlyossága függ a dózistól, a hatás egy bizonyos küszöbdózis fölött következik be. Sztochasztikus: A károsodás valószínűsége függ a dózistól, küszöbdózis nincs.

5 5 A hatásmechanizmusról dióhéjban Az ábra forrása: Dr. Sáfrány Géza Sugárbiológia előadás

6 6 A hatásmechanizmusról dióhéjban

7 7 A hatásmechanizmusról dióhéjban Relatív biológiai hatás (RBE): azt mutatja meg, hogy egy adott sugárzás biológiai hatása milyen viszonyban van 250 kev-os röntgen sugárzás hatásával.

8 8 Az ionizáló sugárzás determinisztikus hatása Küszöbdózishoz kötött ( Gy) Szövetpusztulást okoz a sugárzás Életveszélyes károsodások: központi idegrendszer, emésztőrendszer, vérképző rendszer

9 9 Az ionizáló sugárzás determinisztikus hatása Akut/azonnali hatás 1 Gy-nél nagyobb dózis (egész test) esetén 1. Kezdeti szakasz (hányás, étvágytalanság, émelygés, fejfájás, levertség, mozgáskoordinációs zavar) 2. Lappangási szakasz (2-3 Gy dózisnál 3-4 hét is lehet, 10 Gy felett nincs lappangás)

10 10 Az ionizáló sugárzás determinisztikus hatása 3. Kritikus szakasz (magas láz, pontszerű bőrbevérzések, vérképben elváltozások, immunrendszer károsodása, 3-4 Gy egésztest dózis esetén 60 napon belül halál a betegek kb. 50%-ánál) 4. Regeneráció szakasza (kedvező lefolyás, a 3 szakasz tünetei visszafejlődnek)

11 11 Az ionizáló sugárzás sztochasztikus hatása A fő célpont a sejtmag DNS-állománya, nincs küszöbdózis (kis dózisok hatása nem igazolt) Sejtmutációt okoz a sugárzás (javító mechanizmus) Kockázat-dózis-függvény lineáris (?)

12 12 A kockázat effektív dózis függvény meghatározása Elfogadott forma: LNT (linear no threshold) Kérdőjelek: A függvény megállapításához tiszta adatok (pontos mérések, minta és kontroll csoport szükségesek) Hormézis: a kis dózisok immunitást okoznak? A kis dózisoknál nincs sejthalál javul a mutáns sejtek túlélési hányada? A függvény összes kockázatra vonatkozik, de a tumor szervekben jelenik meg. Primer tumor vagy áttét? Mennyi időn át adhatók össze a dózisok?

13 A sugárhatást befolyásoló tényezők Az atomreaktor, mint sugárforrás A sugárvédelmi dóziskorlátok alapelvei, dóziskorlátozási rendszer

14 14 A sugárhatást befolyásoló tényezők 1. Sugárzás minősége Csak az elnyelődő (kölcsönható) részecskék váltanak ki hatást LET érték (ionizációs képesség)

15 15 A sugárhatást befolyásoló tényezők 2. Időfaktor A szövetek regenerációs képessége eltérő Frakcionált dózis

16 16 3. Anyagcsere, biológiai tényezők Élénkebb anyagcsere-folyamatok érzékenyebbek Sejtciklus során az M és G2 fázis a legérzékenyebb A gyors osztódó szövetek sugárérzékenyebbek A kevésbé differenciált sejtek érzékenyebbek M: mitózis M G1: növekedés G2 S: DNS szintézis S G1 Az osztódást végleg befejező sejtek G2: növekedés, felkészülés az osztódásra

17 17 4. Oxigéneffektus Oxigenizált szövetek károsodása kifejezettebb Hipoxia/anoxia csökkenti a sugárérzékenységet Rtg. Gamma sugárzás esetén kifejezettebb O 2 jelenléte elősegíti a szabad gyökök képződését

18 18 Az atomreaktor, mint sugárforrás

19 19 Az üzemelő atomreaktor, mint sugárforrás α, β, γ, n-sugárzás is megtalálható α - források: üzem közben a kis áthatolóképesség miatt kis jelentőségű β - források: üzem közben a kis áthatolóképesség miatt kis jelentőségű

20 20 Az üzemelő atomreaktor γ - források: ~10 20 foton/s 1375 MW esetében trícium-aktivitás: nitrogén-aktivitás: 1 2 H(n, γ) 3 1 H 16 8O(n, p) 16 7 N n-források: Sugárvédelmi szempontból a prompt neutronok fontosak Nagy neutronforrás-erősség (~10 20 neutron/s 1375 MW esetében) A szerkezeti elemek aktivációja (γ,n) reakciók 17 8O(n, p) 17 7 N

21 21 A leállított atomreaktor α, β, γ, n-sugárzás is megtalálható α - források: A kiégett üzemanyag és a nagyaktivitású hulladék hőfejlődését és sugárkárosodását befolyásolják. β - források: A leállított reaktor ill. a kiégett üzemanyag remanens hőfejlődését nagymértékben befolyásolják.

22 22 A leállított atomreaktor, mint sugárforrás n-források: Spontán hasadásból és (α,n), (γ,n) reakciókból Neutronforrás-erősség: ~ neutron/s

23 23 Rövid történeti áttekintés 1895: W. K. Röntgen elektroncső-kísérlet közben felfedezi a később róla elnevezett sugárzást. 1896: H. Becquerel: az első magfizikai jelenség észlelése uránsóból kilépő radioaktív sugárzás. 1898: Marie Curie-Sklodowska, P. Curie: radioaktivitás szó alkalmazása, sugárzásdetektor készítése, rádium és polónium felfedezése. 1925: Létrejön az International Committee on Radiological Units (ICRU) - nemzetközi sugárvédelmi bizottság megalakítását 1928: Létrejön az első nemzetközi sugárvédelmi szervezet, neve 1950 óta ICRP International Commission on Radiation Protection. 1957: Létrejön az International Atomic Energy Agency (IAEA), vagy magyarul Nemzetközi Atomenergia Ügynökség (NAÜ)

24 24 Sugárvédelmi szabályozás Nemzetközi ajánlások, irányelvek: ICRP #60 (1991) IAEA Safety Series #115 (1996), 96/29 EU Directive Új ajánláscsomag: ICRP #103(2007) IAEA General Safety Requirements GSR Part 3 (Interim) (2011) Magyar jogszabályok: évi CXVI. tv. (atomtörvény) kisebb módosítások 2011-ben. Személyi sugárvédelem: egészségügy, ÁNTSZ (16/2000. SzEM-rendelet) Környezeti sugárvédelem: környezetvédelem, felügyelőségek (15/2001. KöM. rendelet) Nukleáris biztonság: Országos Atomenergia Hivatal

25 25 A sugárvédelem alapelvei (ICRP 26, 60,103) Determinisztikus hatáshoz vezető dózis legyen lehetetlen. Csak az alkalmazásokhoz kapcsolható dózis korlátozható, a természetes eredetű nem a korlátozás a többletdózisra vonatkozik. Indokoltság: a sugárforrás alkalmazásának több előnye legyen, mint kára. Az indokoltság nem tisztán sugárvédelmi, hanem széleskörű társadalmi feladat (ICRP 103). Optimálás: az alkalmazás a lehető legnagyobb előnnyel kell, hogy járjon ALARA (As Low As Reasonably Achievable). Egyéni korlátozás immissziós és emissziós korlátok nem léphetők át, ha a tervezési alap helyes volt.

26 26 Sugárvédelmi szabályozás Elhanyagolható dózis 10 µsv/év közvetlenül nem deklarálták DL dóziskorlát - immisszió korlátozása effektív dózis külső és belső sugárterhelés összege foglalkozási korlát 20 msv/év (100 msv/5 év) lakossági korlát 1 msv/év normális és baleseti helyzetekre külön szabályozás DC - dózismegszorítás - emisszió korlátozása kiemelt létesítmények msv/év kibocsátási szintek egyes radionuklidokra: Bq/év DL s DC DC A max,i : A dózismegszorítás betartása esetén még bevihető max. aktivitások i A max,i DCF i

27 27 Sugárvédelmi szabályozás Az egy személybe az i-edik nuklidból bejutó aktivitás sokkal kisebb, mint a kibocsátható. A normális üzemelés során kibocsátott aktivitás nem koncentrálódhat egyetlen személyben. Az emissziós korlátozás két lényegi eleme, a létesítmény környezetében élő lakosságra vonatkozó dózismegszorítás és a létesítményből levegőbe és vízi úton A i,max A i,ki kibocsátott aktivitás (kibocsátási határértékek) közötti kapcsolatot a TERJEDÉSI MODELLEK teremtik meg. A modell és egy valóságos terjedési folyamat összevetése a validálás.

28 28 Munkavállalókra Lakossági és munkavállalói dóziskorlátok Évi 20 msv effektív dózis 5 évre átlagolva (ICRP), azaz 100 msv/5 év, de egy évben nem lehet több, mint 50 msv Szemlencsére Bőrre Végtagokra 150 msv egyenérték dózis 500 msv 1 cm 2 területre átlagolva 500 msv Tanulók, gyakornokok év között Évi 6 msv effektív dózis Szemlencsére Bőrre Végtagokra A lakosság tagjaira Évi 1mSv effektív dózis Szemlencsére Bőrre 50 msv egyenérték dózis 150 msv 1 cm 2 területre átlagolva 150 msv 15 msv egyenérték dózis 50 msv 1 cm 2 területre átlagolva

29 29 Dózismérés

30 30 A dózismérés alapelve Bragg-Gray elv: A dózismérő (m) és az emberi testszövet (x) tömegabszorpciós együtthatójának aránya ne függjön a sugárzás energiájától. f m = D x D m = φ E φ E μ ρ x μ ρ m

31 31 KERMA kinetic energy released in mass absorption E f = E el m + E el m+δm + E f részecske kerma sugárzási kerma E f az m tömegbe belépő foton energiája; E f* a kilépő szórt fotonok maradék energiája; Szekunder részecske egyensúly (SzRE): az elnyelő közeg egy, a beeső primer sugárzás irányára merőleges differenciális vastagságú szeletében a primer kölcsönhatás során energiát felvett, a szeletet elhagyó részecskék száma és energiája megegyezik a külső szeletekből az adott szeletbe érkező szekunder részecskék számával és energiájával.

32 32 KERMA Az emberi szervezetbe irányuló foton- és elektronsugárzásra az SzRE 70 μm mélységben beáll.

33 33 Külső sugárterhelés mérése Dózismérés: utólagos kiértékelés személyi dozimetria filmdózismérő - kémiai változás TLD: szilárdtest-dózismérő (termolumineszcencia) Elektronikus dózismérők: impulzusüzemű gáztöltésű detektorok, félvezető detektorok, buborék detektorok Dózisteljesítmény-mérés: azonnali kiértékelés területi dozimetria impulzusüzemű gáztöltésű detektorok szerves szcintillációs detektor

34 34 Külső sugárterhelés mérése Követelmények: energiafüggetlenség : a kijelzett dózis ne függjön az egyes részecskék energiájától Intenzitás/dózisteljesítmény arányosság Felejtés = 0 a dózis ne változzék a mérés és a kiértékelés között

35 35 Belső sugárterhelés meghatározása Közvetlen dózismérés nem lehetséges Közvetett mérés: az inkorporált aktivitás meghatározása Nehézség: pillanatnyi mérések, tartózkodási idő ismerete szükséges Vizsgálati módszerek: inkorporálható közeg (levegő, víz, élelmiszer) analízise: radiokémiai feldolgozás + α- és β-sugárzók mérése; γ- spektrometria testnedv-, exkrétumanalízis: α- és β-sugárzók mérése, γ-spektrometria; testrész- és egésztest-analízis: γ-spektrometria

36 36 Számolós példák Témakör: Dózisfogalmak 1a.) Mekkora a belső sugárterhelése egy év alatt annak a 70 kg-os püspökszilágyi dolgozónak, aki 9 kbq 241 Am-ot lélegzett be? Az Am α-bomló, felezési ideje 432,6 év. Az α részecske energiája 5485,16 kev, elnyelési hányada 1, részecske-gyakorisága 1. b.) Mekkora lenne ez a dózis, ha a dolgozó az izotópot lenyelte volna? Ebben az esetben a dóziskonverziós tényező 1,2 msv/bq.

37 37 2. Mekkora effektív dózist kapott az a páciens, aki 200 MBq radioaktív jódot ( 131 I) tartalmazó injekciót kapott egy vizsgálat alkalmával? A 131 I felezési ideje 8.04 nap. Tételezzük fel, hogy a jód a pajzsmirigyben 100%-ban megkötődik, es kiürülési sebessége elhanyagolható a radioaktív bomlással történő fogyáshoz képest. A pajzsmirigy tömege 50 g, szöveti súlytényezője A 131 I bomlásának sugárzási jellemzői: Béta-sugárzás: átlagos energia 200 kev, bomlási gyakoriság 100%, a sugárzás elnyelési valószínűsége a pajzsmirigyben 100%. Gamma-sugárzás: energia 365 kev, bomlási gyakoriság 81%, a sugárzás elnyelési valószínűsége a pajzsmirigyben 15%. A test más szöveteit érő dózistól eltekintünk. 1 ev = 1, J

38 38 3. Egy növénysterilizáló besugárzó állomás tervezésénél kiderült, hogy a forrás tervezett helyétől 8 m távolságra játszótér van. A 60 Co sugárforrás aktivitása 1 TBq, a testszövetre vonatkozó dózisállandó 305 (μsv/h)/(gbq/m 2 ). Az épület köré sugárvédelmi falat terveznek betonból. A beton sűrűsége 2700 kg/m 3, tömegabszorpciós együtthatója a 60 Co átlagos energiájára m 2 /kg. Tapasztalat szerint a build-up tényező az ilyen létesítményeknél alkalmazott vastagságú védőbetonra legfeljebb 1,5 lesz. Milyen vastag védőfalat tervezzünk, ha a besugárzó állomásra a hatóság 30 μsv éves dózismegszorítást állapított meg? A fal vékonyítása érdekében ólom betétet alkalmaznak olyan elrendezésben, hogy két azonos vastagságú betonréteg közé ólomréteget tesznek. Milyen vastag legyen az ólomréteg, hogy a védőfal vastagsága az eredeti fele legyen? Az ólom tömegabszorpciós együtthatója 0,08 cm 2 /g, sűrűsége 11,7 g/cm 3. Azt tételezzük fel, hogy a játszóteret egy gyerek egész éven át napi 6 órában használja, a besugárzó állomás hetente 5 munkanapon működik.

39 39 Köszönöm a figyelmet!

Sugárvédelem alapjai

Sugárvédelem alapjai Sugárvédelem alapjai Atomenergetikai alapismeretek Papp Ildikó 2016.04.05. 2 Tartalom Emlékeztető a múlt félévből A sugárzások és az anyagi közeg kölcsönhatása Dózisfogalmak, külső- belső sugárterhelés

Részletesebben

A sugárvédelem alapjai

A sugárvédelem alapjai A sugárvédelem alapjai 1. Dózisfogalmak 2. Az ionizáló sugárzások egészséget károsító hatásai 3. Sugárvédelmi szabályozás - korlátok 4. A dózismérés sajátosságai 5. Természetes radioaktivitás 6. Radioaktív

Részletesebben

A sugárvédelem alapelvei. dr Osváth Szabolcs Fülöp Nándor OKK OSSKI

A sugárvédelem alapelvei. dr Osváth Szabolcs Fülöp Nándor OKK OSSKI A sugárvédelem alapelvei dr Osváth Szabolcs Fülöp Nándor OKK OSSKI A sugárvédelem célja A sugárvédelem célkitűzései: biztosítani hogy determinisztikus hatások ne léphessenek fel, és hogy a sztochasztikus

Részletesebben

Háttérsugárzás. A sugáregészségtan célkitűzése. A sugárvédelem alapelvei, dóziskorlátok. Sugáregészségtan és fogorvoslás

Háttérsugárzás. A sugáregészségtan célkitűzése. A sugárvédelem alapelvei, dóziskorlátok. Sugáregészségtan és fogorvoslás A sugáregészségtan célkitűzése A sugárvédelem alapelvei, dóziskorlátok A sugáregészségtan célja az ionizáló és nemionizáló sugárzások hatásának megismerése az emberi szervezetben - annak érdekében, hogy

Részletesebben

Sugárvédelmi feladatok az egészségügyben. Speciális munkakörökben dolgozók munkavégzésére vonatkozó általános és különös szabályok.

Sugárvédelmi feladatok az egészségügyben. Speciális munkakörökben dolgozók munkavégzésére vonatkozó általános és különös szabályok. Sugárvédelmi feladatok az egészségügyben. Speciális munkakörökben dolgozók munkavégzésére vonatkozó általános és különös szabályok. Dr. Kóbor József,biofizikus, klinikai fizikus, PTE Sugárvédelmi Szolgálat

Részletesebben

Sugárterápia. Ionizáló sugárzások elnyelődésének következményei. Konzultáció: minden hétfőn 15 órakor. 1. Fizikai történések

Sugárterápia. Ionizáló sugárzások elnyelődésének következményei. Konzultáció: minden hétfőn 15 órakor. 1. Fizikai történések Sugárterápia 40% 35% 30% 25% 20% 15% % 5% 0% 2014/2015. tanév FOK biofizika kollokvium jegyspektruma 5 4,5 4 3,5 3 2,5 2 1,5 1 Konzultáció: minden hétfőn 15 órakor Ionizáló sugárzások elnyelődésének következményei

Részletesebben

Az ionizáló sugárzások előállítása és alkalmazása

Az ionizáló sugárzások előállítása és alkalmazása Az ionizáló sugárzások előállítása és alkalmazása Dr. Voszka István Semmelweis Egyetem Biofizikai és Sugárbiológiai Intézet Wilhelm Conrad Röntgen 1845-1923 Antoine Henri Becquerel 1852-1908 Ionizáló sugárzások

Részletesebben

Országos Onkológiai Intézet, Sugárterápiás Centrum 2. Országos Onkológiai Intézet, Nukleáris Medicina Osztály 4

Országos Onkológiai Intézet, Sugárterápiás Centrum 2. Országos Onkológiai Intézet, Nukleáris Medicina Osztály 4 99m Tc-MDP hatására kialakuló dózistér mérése csontszcintigráfia esetén a beteg közvetlen közelében Király R. 1, Pesznyák Cs. 1,2,Sinkovics I. 3, Kanyár B. 4 1 Országos Onkológiai Intézet, Sugárterápiás

Részletesebben

Radioaktív elemek környezetünkben: természetes és mesterséges háttérsugárzás. Kovács Krisztina, Alkímia ma

Radioaktív elemek környezetünkben: természetes és mesterséges háttérsugárzás. Kovács Krisztina, Alkímia ma Radioaktív elemek környezetünkben: természetes és mesterséges háttérsugárzás Tartalom bevezetés, alapfogalmak természetes háttérsugárzás mesterséges háttérsugárzás összefoglalás OSJER Bevezetés - a radiokémiai

Részletesebben

SE Bővített fokozatú sugárvédelmi tanfolyam, 2005 márc. 21-24 IONIZÁLÓ SUGÁRZÁSOK DOZIMETRIÁJA. (Dr. Kanyár Béla, SE Sugárvédelmi Szolgálat)

SE Bővített fokozatú sugárvédelmi tanfolyam, 2005 márc. 21-24 IONIZÁLÓ SUGÁRZÁSOK DOZIMETRIÁJA. (Dr. Kanyár Béla, SE Sugárvédelmi Szolgálat) SE Bővített fokozatú sugárvédelmi tanfolyam, 2005 márc. 21-24 IONIZÁLÓ SUGÁRZÁSOK DOZIMETRIÁJA (Dr. Kanyár Béla, SE Sugárvédelmi Szolgálat) A sugárzások a károsító hatásuk mértékének megítélése szempontjából

Részletesebben

Sugárvédelmi feladatok az egészségügybe. Speciális munkakörökben dolgozók munkavégzésre vonatkozó általános és különös szabályok.

Sugárvédelmi feladatok az egészségügybe. Speciális munkakörökben dolgozók munkavégzésre vonatkozó általános és különös szabályok. Sugárvédelmi feladatok az egészségügybe. Speciális munkakörökben dolgozók munkavégzésre vonatkozó általános és különös szabályok. Dr. Csepura György PhD Hajdú-Bihar Megyei Kormányhivatal Népegészségügyi

Részletesebben

Sugárvédelem alapjai. Nukleáris alapok. Papp Ildikó

Sugárvédelem alapjai. Nukleáris alapok. Papp Ildikó Sugárvédelem alapjai Nukleáris alapok Papp Ildikó 2 Emlékeztető A sugárzások és az anyagi közeg kölcsönhatása Dózisfogalmak 3 Pici történelem 1896: Henri Becquerel uránsók Azt találta, hogy sugárzás intenzitása

Részletesebben

1. A radioaktív sugárzás hatásai az emberi szervezetre

1. A radioaktív sugárzás hatásai az emberi szervezetre 1. A radioaktív sugárzás hatásai az emberi szervezetre Az ember állandóan ki van téve a különböző természetes, vagy mesterséges eredetű ionizáló sugárzások hatásának. Ez a szervezetet érő sugárterhelés

Részletesebben

Dozimetria és sugárvédelem

Dozimetria és sugárvédelem PR/B10ZP0318N0019FD003 Dozimetria és sugárvédelem Dr. Zagyvai Péter egyetemi docens Atomenergetikai Tanszék Nukleáris Technikai Intézet Természettudományi Kar Budapesti Műszaki és Gazdaságtudományi Egyetem

Részletesebben

A terhelés megoszlása a források között. A becsült átlagos évi dózis természetes és mesterséges forrásokból 3.6 msv.

A terhelés megoszlása a források között. A becsült átlagos évi dózis természetes és mesterséges forrásokból 3.6 msv. A becsült átlagos évi dózis természetes és mesterséges forrásokból 3.6 msv. A terhelés megoszlása a források között környezeti 238 U Radon Kb. 54% ipari termékek 3% egyéb 1% nukleáris medicina 4% orvosi

Részletesebben

1. mérési gyakorlat: Radioaktív izotópok sugárzásának vizsgálata

1. mérési gyakorlat: Radioaktív izotópok sugárzásának vizsgálata 1. mérési gyakorlat: Radioaktív izotópok sugárzásának vizsgálata A méréseknél β-szcintillációs detektorokat alkalmazunk. A β-szcintillációs detektorok alapvetően két fő részre oszthatók, a sugárzás hatására

Részletesebben

Radioaktív sugárzások az orvosi gyakorlatban. Az ionizáló sugárzások biológiai hatása. A sugárhatás osztályozása. A sugárhatás osztályozása

Radioaktív sugárzások az orvosi gyakorlatban. Az ionizáló sugárzások biológiai hatása. A sugárhatás osztályozása. A sugárhatás osztályozása Radioaktív sugárzások az orvosi gyakorlatban Az ionizáló sugárzások biológiai hatása Dr Smeller László Biofizikai és Sugárbiológiai Intézet A sugárhatás osztályozása A sugárhatás osztályozása A károsodás

Részletesebben

ÉRTELMEZŐ INFORMÁCIÓK ÉS MEGHATÁROZÁSOK A SUGÁRVÉDELEMBEN

ÉRTELMEZŐ INFORMÁCIÓK ÉS MEGHATÁROZÁSOK A SUGÁRVÉDELEMBEN ÉRTELMEZŐ INFORMÁCIÓK ÉS MEGHATÁROZÁSOK A SUGÁRVÉDELEMBEN ALARA-elv A sugárveszélyes munkahelyen foglalkoztatott személyek sugárterhelését az ésszerűen elérhető legalacsonyabb szinten kell tartani a gazdasági

Részletesebben

Radioaktív hulladékok osztályozása (javaslat a szabályozás fejlesztésére)

Radioaktív hulladékok osztályozása (javaslat a szabályozás fejlesztésére) Radioaktív hulladékok osztályozása (javaslat a szabályozás fejlesztésére) Sebestyén Zsolt Nukleáris biztonsági felügyelő 1 Tartalom 1. Feladat forrása 2. VLLW kategória indokoltsága 3. Az osztályozás hazai

Részletesebben

A sugárzás biológiai hatásai

A sugárzás biológiai hatásai A sugárzás biológiai hatásai Dózisegységek Besugárzó dózis - C/kg Elnyelt dózis - J/kg=gray (Gy) 1 Gy=100 rad Levegőben átlagos ionizációs energiája 53,9*10-19 J. Az elektron töltése 1,6*10-19 C, tehát

Részletesebben

FIZIKA. Radioaktív sugárzás

FIZIKA. Radioaktív sugárzás Radioaktív sugárzás Atommag összetétele: Hélium atommag : 2 proton + 2 neutron 4 He 2 A He Z 4 2 A- tömegszám proton neutron együttesszáma Z- rendszám protonok száma 2 Atommag összetétele: Izotópok: azonos

Részletesebben

Izotópos méréstechnika, alkalmazási lehetőségek

Izotópos méréstechnika, alkalmazási lehetőségek Radioizotópok orvosi, gyógyszerészi alkalmazása Izotópos méréstechnika, alkalmazási lehetőségek Dr. Voszka István Az alkalmazás alapja:- A radioaktív izotóp ugyanúgy viselkedik a szervezetben, mint stabil

Részletesebben

Deme Sándor MTA EK. 40. Sugárvédelmi Továbbképző Tanfolyam Hajdúszoboszló, 2015. április 21-23.

Deme Sándor MTA EK. 40. Sugárvédelmi Továbbképző Tanfolyam Hajdúszoboszló, 2015. április 21-23. A neutronok személyi dozimetriája Deme Sándor MTA EK 40. Sugárvédelmi Továbbképző Tanfolyam Hajdúszoboszló, 2015. április 21-23. Előzmény, 2011 Jogszabályi háttér A személyi dozimetria jogszabálya (16/2000

Részletesebben

DÓZISTELJESÍTMÉNY DILEMMA SUGÁRTERÁPIÁS BUNKEREK KÖRNYEZETÉBEN

DÓZISTELJESÍTMÉNY DILEMMA SUGÁRTERÁPIÁS BUNKEREK KÖRNYEZETÉBEN DÓZISTELJESÍTMÉNY DILEMMA SUGÁRTERÁPIÁS BUNKEREK KÖRNYEZETÉBEN dr. Ballay László OSSKI-AMOSSO A DÓZISTELJESÍTMÉNY DILEMMA FELVETÉSE SUGÁRVÉDELMI MÉRÉSEK: DÓZISTELJESÍTMÉNY MÉRÉSEK A helyszínen csak a dózisteljesítmény

Részletesebben

SUGÁRVÉDELMI HELYZET 2003-BAN

SUGÁRVÉDELMI HELYZET 2003-BAN 1 SUGÁRVÉDELMI HELYZET 2003-BAN 1. BEVEZETÉS Az atomerőműben folyó sugárvédelemi tevékenység fő területei 2003-ban is a munkahelyi sugárvédelem és a nukleáris környezetvédelem voltak. A sugárvédelemmel

Részletesebben

Az atommag összetétele, radioaktivitás

Az atommag összetétele, radioaktivitás Az atommag összetétele, radioaktivitás Az atommag alkotórészei proton: pozitív töltésű részecske, töltése egyenlő az elektron töltésével, csak nem negatív, hanem pozitív: 1,6 10-19 C tömege az elektron

Részletesebben

A dozimetria célja, feladata. Milyen hatásokat kell jellemezni? Miért kellenek dozimetriai fogalmak? Milyen mennyiséggel jellemezzük a káros hatást?

A dozimetria célja, feladata. Milyen hatásokat kell jellemezni? Miért kellenek dozimetriai fogalmak? Milyen mennyiséggel jellemezzük a káros hatást? Bővített fokozatú sugárvédelmi tanfolyam Semmelweis Egyetem DOZIMETRIA: dózisfogalmak, dózisszámítások Taba Gabriella,SE Sugárvédelmi Szolgálat 2016.03.21. EOK Hevesy György előadóterem (Tűzoltó u. 37-47.)

Részletesebben

SUGÁRVÉDELMI ÉRTÉKELÉS 2012. ÉVRE

SUGÁRVÉDELMI ÉRTÉKELÉS 2012. ÉVRE SUGÁRVÉDELMI ÉRTÉKELÉS 2012. ÉVRE 1. BEVEZETÉS Az atomerőműben folyó sugárvédelemi tevékenység fő területei 2012-ben is a munkahelyi sugárvédelem és a nukleáris környezetvédelem voltak. A sugárvédelemmel

Részletesebben

Atomfizika. Radioaktív sugárzások kölcsönhatásai. 2010. 10. 18. Biofizika, Nyitrai Miklós

Atomfizika. Radioaktív sugárzások kölcsönhatásai. 2010. 10. 18. Biofizika, Nyitrai Miklós Atomfizika. Radioaktív sugárzások kölcsönhatásai. 2010. 10. 18. Biofizika, Nyitrai Miklós Emlékeztető Radioaktív sugárzások keletkezése, típusai A Z A Z α-bomlás» α-sugárzás A Z 4 X X + 2 X A Z 4 2 X 4

Részletesebben

FIZIKA. Atommag fizika

FIZIKA. Atommag fizika Atommag összetétele Fajlagos kötési energia Fúzió, bomlás, hasadás Atomerőmű működése Radioaktív bomlástörvény Dozimetria 2 Atommag összetétele: Hélium atommag : 2 proton + 2 neutron 4 He 2 He Z A 4 2

Részletesebben

ÉRTELMEZŐ INFORMÁCIÓK MEGHATÁROZÁSOK

ÉRTELMEZŐ INFORMÁCIÓK MEGHATÁROZÁSOK MSSZ_V15.1_M2 ÉRTELMEZŐ INFORMÁCIÓK MEGHATÁROZÁSOK ALARA-elv A sugárveszélyes munkahelyen foglalkoztatott személyek sugárterhelését az ésszerűen elérhető legalacsonyabb szinten kell tartani a gazdasági

Részletesebben

TESTLab KALIBRÁLÓ ÉS VIZSGÁLÓ LABORATÓRIUM AKKREDITÁLÁS

TESTLab KALIBRÁLÓ ÉS VIZSGÁLÓ LABORATÓRIUM AKKREDITÁLÁS TESTLab KALIBRÁLÓ ÉS VIZSGÁLÓ LABORATÓRIUM AKKREDITÁLÁS ACCREDITATION OF TESTLab CALIBRATION AND EXAMINATION LABORATORY XXXVIII. Sugárvédelmi Továbbképző Tanfolyam - 2013 - Hajdúszoboszló Eredet Laboratóriumi

Részletesebben

IVÓVIZEK RADIOANALITIKAI VIZSGÁLATA

IVÓVIZEK RADIOANALITIKAI VIZSGÁLATA IVÓVIZEK RADIOANALITIKAI VIZSGÁLATA Ádámné Sió Tünde, Kassai Zoltán ÉTbI Radioanalitikai Referencia Laboratórium 2015.04.23 Jogszabályi háttér Alapelv: a lakosság az ivóvizek fogyasztása során nem kaphat

Részletesebben

SUGÁRVÉDELMI EREDMÉNYEK 2007-BEN

SUGÁRVÉDELMI EREDMÉNYEK 2007-BEN SUGÁRVÉDELMI EREDMÉNYEK 2007-BEN 1. BEVEZETÉS Az atomerőműben folyó sugárvédelemi tevékenység fő területei 2007-ben is a munkahelyi sugárvédelem és a nukleáris környezetvédelem voltak. A sugárvédelemmel

Részletesebben

Sugárvédelem az orvosi képalkotásban

Sugárvédelem az orvosi képalkotásban Sugárvédelem az orvosi képalkotásban Elek Richárd +36-1 482-2000/191 elek.richard@osski.hu Ionizáló sugárzások Sugárzás: Elektromágneses ~: energiaáramlás Részecskesugárzás: energia- és tömegáramlás Sugárzás

Részletesebben

Salik Ádám Országos Közegészségügyi Központ Sugárbiológiai és Sugáregészségügyi Kutató Igazgatóság (OSSKI)

Salik Ádám Országos Közegészségügyi Központ Sugárbiológiai és Sugáregészségügyi Kutató Igazgatóság (OSSKI) Hatályos hazai sugárvédelmi vonatkozású jogszabályi rendszer (atomtörvény, rendeletek) Hazai sugárvédelmi hatósági rendszer Salik Ádám Országos Közegészségügyi Központ Sugárbiológiai és Sugáregészségügyi

Részletesebben

Radioaktív sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktív sugárzások detektálása.

Radioaktív sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktív sugárzások detektálása. Radioaktív sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktív sugárzások detektálása. Magsugárzások (α, β, γ) kölcsönhatása atomi rendszerekkel (170-174, 540-545 o.) Direkt és

Részletesebben

50 év a sugárvédelem szolgálatában

50 év a sugárvédelem szolgálatában Magyar Tudományos Akadémia KFKI Atomenergia Kutatóintézet Fehér István, Andrási Andor, Deme Sándor 50 év a sugárvédelem szolgálatában XXXV. Sugárvédelmi Továbbképző Tanfolyam Hajdúszoboszló, 2010. április

Részletesebben

Fichtinger Gyula, Horváth Kristóf

Fichtinger Gyula, Horváth Kristóf A sugárvédelmi hatósági feladatok átvételével kapcsolatos feladatok és kihívások Fichtinger Gyula, Horváth Kristóf Országos Atomenergia Hivatal 2015.04.21. Sugárvédelmi hatósági feladatok átvétele 1 Tartalom

Részletesebben

Sugárvédelem és jogi alapjai

Sugárvédelem és jogi alapjai Sugárvédelem és jogi alapjai Fejezetek: 1. Mag- és sugárfizikai alapok 2. Dózismennyiségek 3. Az ionizáló sugárzás egészségkárosító hatásai, sugárvédelmi szabályzás 4. Sugárzásmérés alapjai 5. Természetes

Részletesebben

Kibocsátás- és környezetellenırzés a Paksi Atomerımőben. Dr. Bujtás Tibor Debrecen, 2009. Szeptember 04.

Kibocsátás- és környezetellenırzés a Paksi Atomerımőben. Dr. Bujtás Tibor Debrecen, 2009. Szeptember 04. Kibocsátás- és környezetellenırzés a Paksi Atomerımőben Dr. Bujtás Tibor Debrecen, 2009. Szeptember 04. Elıadás fı témái Hatósági szabályozások Kibocsátás ellenırzés és rendszerei Környezetellenırzés és

Részletesebben

Az ionizáló sugárzások fajtái, forrásai

Az ionizáló sugárzások fajtái, forrásai Az ionizáló sugárzások fajtái, forrásai magsugárzás Magsugárzások Röntgensugárzás Függelék. Intenzitás 2. Spektrum 3. Atom Repetitio est mater studiorum. Röntgen Ionizációnak nevezzük azt a folyamatot,

Részletesebben

LAKOSSÁGI SUGÁRTERHELÉS 2010. október 6 (szerda), 15:40-16:50, Árkövy terem

LAKOSSÁGI SUGÁRTERHELÉS 2010. október 6 (szerda), 15:40-16:50, Árkövy terem SE FOK Sugárvédelem, 2010/2011 LAKOSSÁGI SUGÁRTERHELÉS 2010. október 6 (szerda), 15:40-16:50, Árkövy terem Dr. Kanyár Béla, SE Sugárvédelmi Szolgálat 1 Sugárterhelések osztályozásának szempontjai - Sugárforrás

Részletesebben

DÓZISMEGSZORÍTÁS ALKALMAZÁSA

DÓZISMEGSZORÍTÁS ALKALMAZÁSA DÓZISMEGSZORÍTÁS ALKALMAZÁSA Juhász László 1, Kerekes Andor 2, Ördögh Miklós 2, Sági László 2, Volent Gábor 3, Pellet Sándor 4 1 Országos Frédéric Joliot-Curie Sugárbiológiai és Sugáregészségügyi Kutató

Részletesebben

Izotóp geológia: Elemek izotópjainak használata geológiai folyamatok értelmezéséhez.

Izotóp geológia: Elemek izotópjainak használata geológiai folyamatok értelmezéséhez. Radioaktív izotópok Izotópok Egy elem különböző tömegű (tömegszámú - A) formái; Egy elem izotópjainak a magjai azonos számú protont (rendszám - Z) és különböző számú neutront (N) tartalmaznak; Egy elem

Részletesebben

Sugárvédelmi Ellenőrző és Jelző Rendszerének vizsgálata

Sugárvédelmi Ellenőrző és Jelző Rendszerének vizsgálata Sugárvédelmi Ellenőrző és Jelző Rendszerének vizsgálata Zagyvai Péter Osváth Szabolcs Huszka Ádám BME NTI, 2014. 1/5 1. Bevezetés Minden nukleáris létesítmény bizonyos mértékű veszélyforrást jelent az

Részletesebben

SUGÁRFORRÁSOK FIZIKAI VÉDELME. 190/2011. (IX.19) Korm. Rendelet. 11/2010. (III. 4.) KHEM rendelet

SUGÁRFORRÁSOK FIZIKAI VÉDELME. 190/2011. (IX.19) Korm. Rendelet. 11/2010. (III. 4.) KHEM rendelet ORVOSI MUNKAHELYEK SUGÁRVÉDELMÉNEK JOGSZABÁLYI HÁTTERE RENDELETEK A sugárvédelem hazai biztonsági alapszabályzata 16/2000. (VI.8.) EüM rendelet A páciensek védelmére vonatkozó előírások 31/2001. (X.3.)

Részletesebben

rvédelem Dr. Fröhlich Georgina Ionizáló sugárzások a gyógyításban ELTE TTK, Budapest Országos Onkológiai Intézet Sugárterápiás Központ Budapest

rvédelem Dr. Fröhlich Georgina Ionizáló sugárzások a gyógyításban ELTE TTK, Budapest Országos Onkológiai Intézet Sugárterápiás Központ Budapest Sugárv rvédelem Dr. Fröhlich Georgina Országos Onkológiai Intézet Sugárterápiás Központ Budapest Ionizáló sugárzások a gyógyításban ELTE TTK, Budapest Bevezetés ionizáló sugárzás kölcsönhatása az anyaggal

Részletesebben

Sugárvédelmi mérések és berendezések

Sugárvédelmi mérések és berendezések Sugárvédelmi mérések és berendezések Zagyvai Péter Osváth Szabolcs Huszka Ádám BME NTI, 2014. 1/6 1. Bevezetés Minden nukleáris létesítmény bizonyos mértékű veszélyforrást jelent az ember és környezete

Részletesebben

Korszerű Nukleáris Elemanalitikai Módszerek és Alkalmazásaik I. félév 7. előadás. Sugárvédelem

Korszerű Nukleáris Elemanalitikai Módszerek és Alkalmazásaik I. félév 7. előadás. Sugárvédelem Korszerű Nukleáris Elemanalitikai Módszerek és Alkalmazásaik I. félév 7. előadás Sugárvédelem Kis Zoltán, Kasztovszky Zsolt kis.zoltan@energia.mta.hu kasztovszky.zsolt@energia.mta.hu MTA Energiatudományi

Részletesebben

Ionizáló sugárzások egészségügyi hatásai. Dr. Vincze Árpád

Ionizáló sugárzások egészségügyi hatásai. Dr. Vincze Árpád Ionizáló sugárzások egészségügyi hatásai Dr. Vincze Árpád A sugárzás és az anyag kölcsönhatásai Fizikai hatások Kémiai hatások Biokémiai hatások Biológiai hatások Kémiai - biokémia hatások 3. Kémiai elváltozás

Részletesebben

Orvosi sugáralkalmazás és a páciensek sugárvédelme. Nemzetközi Sugárvédelmi Alapszabályzat (IBSS)

Orvosi sugáralkalmazás és a páciensek sugárvédelme. Nemzetközi Sugárvédelmi Alapszabályzat (IBSS) Orvosi sugáralkalmazás és a páciensek sugárvédelme Nemzetközi Sugárvédelmi Alapszabályzat (IBSS) FELELŐSSÉGEK GYAKORLÓ ORVOS az orvosi sugárterhelés elrendelése a beteg teljeskörű védelme SZEMÉLYZET szakképzettség

Részletesebben

Radioaktív sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktív sugárzások detektálása.

Radioaktív sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktív sugárzások detektálása. Különböző sugárzások tulajdonságai Típus töltés Energia hordozó E spektrum Radioaktí sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktí sugárzások detektálása. α-sugárzás pozití

Részletesebben

Hatályos hazai sugárvédelmi vonatkozású jogszabályi rendszer

Hatályos hazai sugárvédelmi vonatkozású jogszabályi rendszer Hatályos hazai sugárvédelmi vonatkozású jogszabályi rendszer A sugárvédelem nemzetközi szervezetei Nemzetközi sugárvédelmi ajánlások és szabályozások Motoc Anna Mária, Munkahelyi Sugáregészségügyi Osztály

Részletesebben

Hidrogén: 1 p + + különböző számú neutron

Hidrogén: 1 p + + különböző számú neutron Kémia atomok, molekulák közti kölcsönhatások Kölcsönhatások szubatomi részecskék között atommag proton neutron nukleon A kémiai elemet a protonszám határozza meg. magfizika Összeállnak, nem esnek szét!

Részletesebben

Sugárvédelem dozimetria követelménymodul szóbeli vizsgafeladatai

Sugárvédelem dozimetria követelménymodul szóbeli vizsgafeladatai 1. feladat: Izotóplaboratóriumban vizsgálat előkészítését végzi, fecskendőbe szívja a szükséges radiofarmakont. Az Ön mellé beosztott tanuló érdeklődik, hogy milyen esetekben hogyan védekeznek a sugárzással

Részletesebben

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei GazdálkodásimodulGazdaságtudományismeretekI.Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSIMÉRNÖKIMScTERMÉSZETVÉDELMIMÉRNÖKIMSc Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Adatgyőjtés, mérési

Részletesebben

Sugárvédelem és jogi szabályozása

Sugárvédelem és jogi szabályozása Fejezetek: Sugárvédelem és jogi szabályozása 1. Mag- és sugárfizikai alapok 2. Dózismennyiségek 3. Az ionizáló sugárzás egészségkárosító hatásai, sugárvédelmi szabályzás 4. Sugárzásmérés alapjai 5. Természetes

Részletesebben

H 2 O e aq + H 2 O + Ionizáció (e aq = hidratált elektron) H 2 O H 2 O OH + H Excitácót követő disszociáció

H 2 O e aq + H 2 O + Ionizáció (e aq = hidratált elektron) H 2 O H 2 O OH + H Excitácót követő disszociáció Az ionizáló sugárzás biológiai hatásai Az ionizáló sugárzás biológiai hatásai Dr. Sáfrány Géza OSSKI Determinisztikus hatás Sztochasztikus hatás Az Ionizáló Sugárzás Direkt és Indirekt Hatásai Közvetlen

Részletesebben

Radon-koncentráció relatív meghatározása Készítette: Papp Ildikó

Radon-koncentráció relatív meghatározása Készítette: Papp Ildikó Radon-koncentráció relatív meghatározása Készítette: Papp Ildikó Elméleti bevezetés PANNONPALATINUS regisztrációs code PR/B10PI0221T0010NF101 A radon a 238 U bomlási sorának tagja, a periódusos rendszer

Részletesebben

Izotóp geológia: Elemek izotópjainak használata geológiai folyamatok értelmezéséhez.

Izotóp geológia: Elemek izotópjainak használata geológiai folyamatok értelmezéséhez. Radioaktív izotópok Izotópok Egy elem különböző tömegű (tömegszámú - A) formái; Egy elem izotópjainak a magjai azonos számú protont (rendszám - Z) és különböző számú neutront (N) tartalmaznak; Egy elem

Részletesebben

Általános radiológia - elıadás 1

Általános radiológia - elıadás 1 Sugárvédelem A röntgenvizsgálatok során a módszer biztonságos használata alapvetı fontosságú! A megfelelı berendezésre, vizsgálati technikára, sugárvédelmi eszközökre, sugárterhelés mérésre és a törvényi

Részletesebben

Ionizáló sugárzások. Ionizáló sugárzások. dozimetriája. A dozimetria feladata. Megfelelő mennyiségek megfogalmazása

Ionizáló sugárzások. Ionizáló sugárzások. dozimetriája. A dozimetria feladata. Megfelelő mennyiségek megfogalmazása Ionizáló sugárzások dozimetriája Ionizáló sugárzások Alkalmazások optimalizálása Káros következmények becslése, minimalizálása Ionizáló sugárzások csoportosításuk a kiváltott hatás alapján. Közvetlenül

Részletesebben

DOZIMETRIA GYAKORLATOK

DOZIMETRIA GYAKORLATOK 1. Miért van szükség sugárvédelemre 1? DOZIMETRIA GYAKORLATOK Az a tény, hogy ionizáló sugárzások (röntgensugarak, magsugárzások) biológiai ártalmakat okozhatnak, már nem sokkal 1895-ben történt felfedezésük

Részletesebben

SUGÁRVÉDELEMI ISMERETEK

SUGÁRVÉDELEMI ISMERETEK SUGÁRVÉDELEMI ISMERETEK A sugárvédelemről, tanfolyami célra Sugárbiológiai alapokról, károsodás időléptékei Dozimetria (fogalmak, mennyiségek,egységek) Dózisszámítások ismert radionuklid szennyezettségekből

Részletesebben

Radon. 34 radioaktív izotópja ( Rd) közül: 222. Rn ( 238 U bomlási sorban 226 Ra-ból, alfa, 3.82 nap) 220

Radon. 34 radioaktív izotópja ( Rd) közül: 222. Rn ( 238 U bomlási sorban 226 Ra-ból, alfa, 3.82 nap) 220 Radon Radon ( 86 Rn): standard p-t-n színtelen, szagtalan, természetes, radioaktív nemes gáz; levegőnél nehezebb, inaktív, bár ismert néhány komplex és egy fluorid-vegyület, vízoldékony (+szerves oldószerek!)

Részletesebben

MAGYAR KÖZLÖNY 209. szám

MAGYAR KÖZLÖNY 209. szám MAGYAR KÖZLÖNY 209. szám MAGYARORSZÁG HIVATALOS LAPJA 2015. december 30., szerda Tartalomjegyzék 487/2015. (XII. 30.) Korm. rendelet Az ionizáló sugárzás elleni védelemről és a kapcsolódó engedélyezési,

Részletesebben

1. Környezetvédelmi célú gamma spektrummérések

1. Környezetvédelmi célú gamma spektrummérések 1. Környezetvédelmi célú gamma spektrummérések 1.1. A különböző szférákban előforduló radioaktív izotópok A környezetünkben előforduló radioaktivitás származhat természetes és mesterséges (antropogén)

Részletesebben

AZ OSTEOPOROSIS VIZSGÁLAT SUGÁRTERHELÉSE. Készítette: Illés Zsuzsanna biológia környezettan tanári szak 2007.

AZ OSTEOPOROSIS VIZSGÁLAT SUGÁRTERHELÉSE. Készítette: Illés Zsuzsanna biológia környezettan tanári szak 2007. AZ OSTEOPOROSIS VIZSGÁLAT SUGÁRTERHELÉSE Készítette: Illés Zsuzsanna biológia környezettan tanári szak 2007. Motiváció, kitűzött célok a betegség főként nőket érint szakirodalomi adatok vajon nem becsülik

Részletesebben

Biológiai módszerek alkalmazása környezeti hatások okozta terhelések kimutatására

Biológiai módszerek alkalmazása környezeti hatások okozta terhelések kimutatására Szalma Katalin Biológiai módszerek alkalmazása környezeti hatások okozta terhelések kimutatására Témavezető: Dr. Turai István, OSSKI Budapest, 2010. október 4. Az ionizáló sugárzás sejt kölcsönhatása Antone

Részletesebben

CSERNOBIL 20/30 ÉVE A PAKSI ATOMERŐMŰ KÖRNYEZETELLENŐRZÉSÉBEN. Germán Endre PA Zrt. Sugárvédelmi Osztály

CSERNOBIL 20/30 ÉVE A PAKSI ATOMERŐMŰ KÖRNYEZETELLENŐRZÉSÉBEN. Germán Endre PA Zrt. Sugárvédelmi Osztály CSERNOBIL 20/30 ÉVE A PAKSI ATOMERŐMŰ KÖRNYEZETELLENŐRZÉSÉBEN Germán Endre PA Zrt. Sugárvédelmi Osztály XXXI. Sugárvédelmi Továbbképző Tanfolyam Keszthely, 2006. május 9 11. Környezeti ártalmak és a légzőrendszer

Részletesebben

Az atommagtól a konnektorig

Az atommagtól a konnektorig Az atommagtól a konnektorig (Az atomenergetika alapjai) Dr. Aszódi Attila, Boros Ildikó BME Nukleáris Technikai Intézet Pázmándi Tamás KFKI Atomenergia Kutatóintézet Szervező: 1 Az atom felépítése kb.

Részletesebben

A vérképző rendszerben ionizáló sugárzás által okozott mutációk kialakulásának numerikus modellezése

A vérképző rendszerben ionizáló sugárzás által okozott mutációk kialakulásának numerikus modellezése A vérképző rendszerben ionizáló sugárzás által okozott mutációk kialakulásának numerikus modellezése Madas Balázs Gergely XXXIX. Sugárvédelmi Továbbképző Tanfolyam Hajdúszoboszló, Hunguest Hotel Béke 2014.

Részletesebben

Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei

Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Gazdálkodási modul Gazdaságtudományi ismeretek I. Közgazdasá Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei KÖRNYEZETGAZDÁLKODÁSI

Részletesebben

Környezetgazdálkodás. 1868-ban gépészmérnöki diplomát szerzett. 2016.04.11. Dr. Horváth Márk. 1901-ben ő lett az első Fizikai Nobel-díj tulajdonosa.

Környezetgazdálkodás. 1868-ban gépészmérnöki diplomát szerzett. 2016.04.11. Dr. Horváth Márk. 1901-ben ő lett az első Fizikai Nobel-díj tulajdonosa. 2016.04.11. Környezetgazdálkodás Dr. Horváth Márk https://nuclearfree.files.wordpress.com/2011/10/radiation-worker_no-background.jpg 1868-ban gépészmérnöki diplomát szerzett. 1901-ben ő lett az első Fizikai

Részletesebben

Dóziskorlátozási rendszer

Dóziskorlátozási rendszer Dóziskorlátozási rendszer Dr. Voszka István 4. számú melléklet a 16/2000. (VI. 8.) EüM rendelethez Sugárvédelmi képzés és továbbképzés Az atomenergia alkalmazása körében szervezett munkavégzés, valamint

Részletesebben

Az atom szerkezete. Az eltérülés ritka de nagymértékű. Thomson puding atom-modellje nem lehet helyes.

Az atom szerkezete. Az eltérülés ritka de nagymértékű. Thomson puding atom-modellje nem lehet helyes. Az atom szerkezete Rutherford kísérlet (1911): Az atom pozitív töltése és a tömeg nagy része egy nagyon kis helyre összpontosul. Ezt nevezte el atommagnak. Az eltérülés ritka de nagymértékű. Thomson puding

Részletesebben

kezdeményezi. (2) Ha a minõsített berendezés sugárvédelmi szempontból lényeges tulajdonságát a

kezdeményezi. (2) Ha a minõsített berendezés sugárvédelmi szempontból lényeges tulajdonságát a 16/2000. (VI. 8.) EÜM RENDELET AZ ATOMENERGIÁRÓL SZÓLÓ 1996. ÉVI CXVI. TÖRVÉNY EGYES RENDELKEZÉSEINEK VÉGREHAJTÁSÁRÓL Az atomenergiáról szóló 1996. évi CXVI. törvény (a továbbiakban: At.) 68. -a (2) bekezdésének

Részletesebben

Sugárvédelemhez kapcsolódó jogszabályok Bővített sugárvédelmi tanfolyam október 12.

Sugárvédelemhez kapcsolódó jogszabályok Bővített sugárvédelmi tanfolyam október 12. Sugárvédelemhez kapcsolódó jogszabályok Bővített sugárvédelmi tanfolyam 2016. október 12. Kalászi Pál OSSKI Int. Sug.véd. Szolgálat 06-20-936-4847 Nemzetközi ajánlások Sugárvédelem jogi struktúrája Az

Részletesebben

Sugárvédelem és jogi alapjai

Sugárvédelem és jogi alapjai Sugárvédelem és jogi alapjai Fejezetek: 1. Mag- és sugárfizikai alapok 2. Dózismennyiségek 3. Az ionizáló sugárzás egészségkárosító hatásai, sugárvédelmi szabályzás 4. Sugárzásmérés alapjai 5. Természetes

Részletesebben

Izotópok. diagnosztikai alkalmazásai. Képalkotó eljárásokkal nyerhető információ. Izotópdiagnosztikai eljárás lépései

Izotópok. diagnosztikai alkalmazásai. Képalkotó eljárásokkal nyerhető információ. Izotópdiagnosztikai eljárás lépései Izotópdiagnosztikai eljárás lépései Izotópok Alkalmas, radioaktív molekulák bejuttatása Az aktivitás eloszlásának, változásának követése diagnosztikai alkalmazásai A fiziológiás v. patológiás folyamatok

Részletesebben

Radiojód kibocsátása a KFKI telephelyen

Radiojód kibocsátása a KFKI telephelyen Radiojód kibocsátása a KFKI telephelyen Zagyvai Péter 1, Környei József 2, Kocsonya András 1, Földi Anikó 1, Bodor Károly 1, Zagyvai Márton 1 1 2 Izotóp Intézet Kft. MTA Környezetvédelmi Szolgálat 1 Radiojód

Részletesebben

Magfizika tesztek. 1. Melyik részecske nem tartozik a nukleonok közé? a) elektron b) proton c) neutron d) egyik sem

Magfizika tesztek. 1. Melyik részecske nem tartozik a nukleonok közé? a) elektron b) proton c) neutron d) egyik sem 1. Melyik részecske nem tartozik a nukleonok közé? a) elektron b) proton c) neutron d) egyik sem 2. Mit nevezünk az atom tömegszámának? a) a protonok számát b) a neutronok számát c) a protonok és neutronok

Részletesebben

Sugárvédelmi minősítés

Sugárvédelmi minősítés 16/2000. (VI. 8.) EüM rendelet az atomenergiáról szóló 1996. évi CXVI. törvény egyes rendelkezéseinek végrehajtásáról Az atomenergiáról szóló 1996. évi CXVI. törvény (a továbbiakban: At.) 68. -a (2) bekezdésének

Részletesebben

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei GazdálkodásimodulGazdaságtudományismeretekI.Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSIMÉRNÖKIMScTERMÉSZETVÉDELMIMÉRNÖKIMSc Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Adatgyőjtés, mérési

Részletesebben

Radon leányelemek depozíciója és tisztulása a légzőrendszerből

Radon leányelemek depozíciója és tisztulása a légzőrendszerből Radon leányelemek depozíciója és tisztulása a légzőrendszerből Füri Péter, Balásházy Imre, Kudela Gábor, Madas Balázs Gergely, Farkas Árpád, Jókay Ágnes, Czitrovszky Blanka Sugárvédelmi Továbbképző Tanfolyam

Részletesebben

Radioaktív hulladékok és besorolásuk

Radioaktív hulladékok és besorolásuk Radioaktív hulladékok és besorolásuk Radioaktív hulladéknak azokat a radioaktivitást tartalmazó anyagokat tekintjük, amelyek további felhasználásra már nem alkalmasak, illetve amelyek felhasználójának,

Részletesebben

Radon a környezetünkben. Somlai János Pannon Egyetem Radiokémiai és Radioökológiai Intézet H-8201 Veszprém, Pf. 158.

Radon a környezetünkben. Somlai János Pannon Egyetem Radiokémiai és Radioökológiai Intézet H-8201 Veszprém, Pf. 158. Radon a környezetünkben Somlai János Pannon Egyetem Radiokémiai és Radioökológiai Intézet H-8201 Veszprém, Pf. 158. Természetes eredetőnek, a természetben eredetileg elıforduló formában lévı sugárzástól

Részletesebben

SZEMÉLYI DOZIMETRIA EURÓPÁBAN

SZEMÉLYI DOZIMETRIA EURÓPÁBAN XXXVII. Sugárvédelmi Továbbképző Tanfolyam Hajdúszoboszló, 2012. április 24-26 SZEMÉLYI DOZIMETRIA EURÓPÁBAN Osvay M. 1, Ranogajec-Komor M. 2 1 MTA Energiatudományi Kutatóközpont, Budapest 2 Rudjer Boskovic

Részletesebben

ESEO-TRITEL: az ESEO műhold dózismérője

ESEO-TRITEL: az ESEO műhold dózismérője ESEO-TRITEL: az ESEO műhold dózismérője Hirn Attila MTA EK SVL Űrdozimetriai Kutatócsoport hirn.attila@energia.mta.hu BME, Űrtechnológia előadás, 2015. május 13. Tartalom Bevezetés Alapvető dózisfogalmak

Részletesebben

9. Radioaktív sugárzás mérése Geiger-Müller-csővel. Preparátum helyének meghatározása. Aktivitás mérés.

9. Radioaktív sugárzás mérése Geiger-Müller-csővel. Preparátum helyének meghatározása. Aktivitás mérés. 9. Radioaktív sugárzás mérése Geiger-Müller-csővel. Preparátum helyének meghatározása. ktivitás mérés. MÉRÉS CÉLJ: Megismerkedni a radioaktív sugárzás jellemzésére szolgáló mértékegységekkel, és a sugárzás

Részletesebben

PROMPT- ÉS KÉSŐ-GAMMA NEUTRONAKTIVÁCIÓS ANALÍZIS A GEOKÉMIÁBAN I. rész

PROMPT- ÉS KÉSŐ-GAMMA NEUTRONAKTIVÁCIÓS ANALÍZIS A GEOKÉMIÁBAN I. rész PROMPT- ÉS KÉSŐ-GAMMA NEUTRONAKTIVÁCIÓS ANALÍZIS A GEOKÉMIÁBAN I. rész MTA Izotópkutató Intézet Gméling Katalin, 2009. november 16. gmeling@iki.kfki.hu Isle of Skye, UK 1 MAGSPEKTROSZKÓPIAI MÓDSZEREK Gerjesztés:

Részletesebben

A sugárvédelem legfontosabb személyi és tárgyi feltételei

A sugárvédelem legfontosabb személyi és tárgyi feltételei A sugárvédelem legfontosabb személyi és tárgyi feltételei Bővített sugárvédelmi tanfolyam 2016. október 12. Kalászi Pál OSSKI Int. Sug.véd. Szolgálat 06-20-936-4847 Az ionizáló sugárzás munkahelyi felhasználásának

Részletesebben

A KITERJESZTETT INES SKÁLA RADIOLÓGIAI ESEMÉNYEKRE TÖRTÉNŐ HAZAI ADAPTÁCIÓJA

A KITERJESZTETT INES SKÁLA RADIOLÓGIAI ESEMÉNYEKRE TÖRTÉNŐ HAZAI ADAPTÁCIÓJA A KITERJESZTETT INES SKÁLA RADIOLÓGIAI ESEMÉNYEKRE TÖRTÉNŐ HAZAI ADAPTÁCIÓJA Ballay László, Elek Richárd, Vida László, Turák Olivér OSSKI-MSO XXXVI. Sugárvédelmi Továbbképző Tanfolyam Hajdúszoboszló, 2011

Részletesebben

NUKLEÁRIS LÉTESÍTMÉNYEK LÉGNEMŰ 14C KIBOCSÁTÁSÁNAK MÉRÉSE EGYSZERŰSÍTETT LSC MÓDSZERREL

NUKLEÁRIS LÉTESÍTMÉNYEK LÉGNEMŰ 14C KIBOCSÁTÁSÁNAK MÉRÉSE EGYSZERŰSÍTETT LSC MÓDSZERREL NUKLEÁRIS LÉTESÍTMÉNYEK LÉGNEMŰ 14 C KIBOCSÁTÁSÁNAK MÉRÉSE EGYSZERŰSÍTETT LSC MÓDSZERREL Bihari Árpád Molnár Mihály Janovics Róbert Mogyorósi Magdolna 14 C képződése és jelentősége Neutron indukált magreakció

Részletesebben

A SUGÁRVÉDELEM SZEREPE A BME ORVOSI FIZIKA MSC KÉPZÉSÉBEN

A SUGÁRVÉDELEM SZEREPE A BME ORVOSI FIZIKA MSC KÉPZÉSÉBEN A SUGÁRVÉDELEM SZEREPE A BME ORVOSI FIZIKA MSC KÉPZÉSÉBEN Pesznyák Cs 1,2, Légrády D 1, Osváth Sz 1, Zagyvai P 1,3 1 BME NTI 2 Országos Onkológiai Intézet 3 MTA EK ORVOSFIZIKUS Az orvosfizikus olyan fizikusi

Részletesebben

RADIOAKTIVITÁS, SUGÁRZÁSMÉRÉS

RADIOAKTIVITÁS, SUGÁRZÁSMÉRÉS Az atom felépítése RADIOAKTIVITÁS, SUGÁRZÁSMÉRÉS elektron proton Varga József Debreceni Egyetem Nukleáris Medicina Intézet atommag Atomi részecskék 2 Atomi részecskék mérete Jelmagyarázat: elektron proton

Részletesebben

Energetikai mérnökasszisztens Mérnökasszisztens

Energetikai mérnökasszisztens Mérnökasszisztens A 10/07 (II. 27.) SzMM rendelettel módosított 1/06 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,

Részletesebben

MTA Energiatudományi Kutatóközpont SUGÁRVÉDELEM FUKUSHIMA UTÁN, ÚJABB VÁLTOZÁSOK ELŐTT? Pázmándi Tamás

MTA Energiatudományi Kutatóközpont SUGÁRVÉDELEM FUKUSHIMA UTÁN, ÚJABB VÁLTOZÁSOK ELŐTT? Pázmándi Tamás MTA Energiatudományi Kutatóközpont SUGÁRVÉDELEM FUKUSHIMA UTÁN, ÚJABB VÁLTOZÁSOK ELŐTT? Pázmándi Tamás tudományos főmunkatárs, laboratóriumvezető Sugárvédelmi Laboratórium XXXIX. Sugárvédelmi Továbbképző

Részletesebben

Alapfokú sugárvédelmi ismeretek

Alapfokú sugárvédelmi ismeretek Alapfokú sugárvédelmi ismeretek - 1 - Bevezetés Az ionizáló sugárzás felhasználása a XIX. század végi felfedezése óta egyre nagyobb teret hódít magának az egészségügy, az ipar, a mezőgazdaság, a tudományos

Részletesebben