Mikrovezérlők Alkalmazástechnikája

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Mikrovezérlők Alkalmazástechnikája"

Átírás

1 Gingl Zoltán, 2015, Szeged Mikrovezérlők Alkalmazástechnikája :45 Kommunikációs áramkörök és használatuk 1

2 Processzoroknál tipikusan párhuzamos átvitel adatbusz címbusz vezérlőjelek, szinkronizálás Mikrovezérlőknél soros átvitel Kevés vezeték illetve jel Modulációt igényel az információt alakítsuk egyetlen skalár jellé, bitfolyammá Demoduláció szükséges Hordozó: feszültség, áram, fény, elekromágneses hullám, hang Forma: amplitúdó, frekvencia, fáziskülönbség :45 Kommunikációs áramkörök és használatuk 2

3 :45 Kommunikációs áramkörök és használatuk 3

4 Nem minden C8051Fxxx processzoron van Külső statikus memória elérése (XRAM) movx utasítás xdata int x; Más perifáriák elérésére is jó (ADC, DCA, stb.) Címvonalak (16) Adatvonalak (8) Vezérlő jelek (RD, WR, ALE) :45 Kommunikációs áramkörök és használatuk 4

5 C8051Fxxx A[15..0] A[15..0] SRAM D[7..0] D[7..0] /RD /WR /CE /OE /WR :45 Kommunikációs áramkörök és használatuk 5

6 A[15..8] A[7..0] D[7..0] P1/P5 DPH, EMI0CN, P1/P5 P1/P5 P2/P6 DPL, R0, R1 P2/P6 P3/P7 DATA P3/P7 /WR P0.7/P4.7 P0.7/P4.7 /RD P0.6/P4.6 P0.6/P :45 Kommunikációs áramkörök és használatuk 6

7 A[15..8] A[7..0] D[7..0] P1/P5 DPH, EMI0CN, P1/P5 P1/P5 P2/P6 DPL, R0, R1 P2/P6 P3/P7 DATA P3/P7 /WR P0.7/P4.7 P0.7/P4.7 /RD P0.6/P4.6 P0.6/P :45 Kommunikációs áramkörök és használatuk 7

8 C8051Fxxx A[15..8] A[15..8] SRAM ALE AD[7..0] 74AHC573 C D Q A[7..0] /RD /WR D[7..0] /CE /OE /WR :45 Kommunikációs áramkörök és használatuk 8

9 A[15..8] P1/P5 DPH, EMI0CN, P1/P5 P1/P5 AD[7..0] P2/P6 DPL, R0, R1 DATA P2/P6 ALE P0.5/P4.5 P0.5/P4.5 /WR P0.7/P4.7 P0.7/P4.7 /RD P0.6/P4.6 P0.6/P :45 Kommunikációs áramkörök és használatuk 9

10 A[15..8] P1/P5 DPH, EMI0CN, P1/P5 P1/P5 AD[7..0] P2/P6 DPL, R0, R1 DATA P2/P6 ALE P0.5/P4.5 P0.5/P4.5 /WR P0.7/P4.7 P0.7/P4.7 /RD P0.6/P4.6 P0.6/P :45 Kommunikációs áramkörök és használatuk 10

11 DATA ADDR /WR /RD /CE /OE /CE DATA C8051F ADDRESS DECODER /CE /RD DATA ADC ADDRESS /RD /WR DATA /CE /OE DATA DAC SRAM FIFO RAM :45 Kommunikációs áramkörök és használatuk 11

12 Az írás/olvasás időzítése állítható A perifériák sebességéhez kell igazítani Push-pull kimeneteket célszerű választani Olvasáskor automatikusan bemeneti mód :45 Kommunikációs áramkörök és használatuk 12

13 :45 Kommunikációs áramkörök és használatuk 13

14 Processzorok és eszközök közti kommunikációhoz Egy byte átvitele bitenként Egyetlen kétállapotú jel Nincs szinkronizáló jel Az átvitel bármikor történhet Az átvitel kezdetét detektálni kell a vevőnek A kommunikáló eszközök azonos időalappal küldik és fogadják a biteket (baud rate=bit/s) Gyakran használt Sokféle hardveres megoldás (RS232, RS485, stb.) :45 Kommunikációs áramkörök és használatuk 14

15 t t t t t t t t t t START BIT B0 B1 B2 B3 B4 B5 B6 B7 STOP BIT bit sampling Start bit (logikai 0), átvitel detektálására Stop bit (logikai 1), minimum szünet küldések között Byte átviteli idő: 10 t 9 bites átvitel is választható: az utolsó bit külön programozható (TB8, olvasáskor RB8) paritásbitként, multiprocesszoros adatátvitelhez 11 t byte átviteli idő :45 Kommunikációs áramkörök és használatuk 15

16 FULL DUPLEX SIMPLEX C Device C Device TX TX TX TX RX RX RX RX HALF DUPLEX SIMPLEX C Device C Device TX TX TX TX RX RX RX RX TX KIKAPCSOLHATÓ :45 Kommunikációs áramkörök és használatuk 16

17 Timer túlcsordulások vezérlik, kétféle megoldás: Baud rate = Timer overflow rate / 16 (pl. F120) Baud rate = Timer overflow rate / 2 (pl. F410) Egy (Timer1) vagy több (Timer1-4) timer Néhány processzoron akár más TX és RX ráta Maximális ráta SYSCLK/16 vagy SYSCLK/ :45 Kommunikációs áramkörök és használatuk 17

18 Baud rate = Timer overflow rate / 16 (pl. F120) Timer 1 : TH1=256-SYSCLK/(16*Baud rate) Timer 2-4 : TMRRL=65536-SYSCLK/(16*Baud rate) Baud rate = Timer overflow rate / 2 (pl. F410) Timer 1 : TH1=256-SYSCLK/(2*Baud rate) Érdemes figyelni a kerekítési hibára! A C-ben az egész osztás nem a legközelebbire kerekít! Mindig ellenőrizzük a beállított érték okozta hibát! :45 Kommunikációs áramkörök és használatuk 18

19 Az időalapok különbözők lehetnek Az egységek órajele nem egzakt A beállítás frekvencia egésszel osztásával nem pontosan a kívánt érték A kettő eltérése mennyi lehet? maximum 3%, szigorúbban 2% teljesül? :45 Kommunikációs áramkörök és használatuk 19

20 t START BIT B0 B1 B2 B3 B4 B5 B6 B7 STOP BIT 1,03 t Az adó és vevő hibája együttesen hat hogyan? A detektálás ideálisan a bitek közepén lenne A start bit detektálása sem pontos A megbízhatóság függ a jelváltások időtartamától Függ a 2-szeres vagy 16-szoros leosztási értéktől :45 Kommunikációs áramkörök és használatuk 20

21 t t BIT BIT t/8 0,75 t 0,25 t 0,75 t BIT BIT t/4 0,5 t 0,5 t 0,5 t BIT BIT :45 Kommunikációs áramkörök és használatuk 21

22 Tegyük fel elég rövid jelváltási idők, 3% tolerancia megengedett 9600 bit/s kívánt érték F410 beállítás SYSCLK = Hz 2% Timer1 8-bit auto reload mode: TH1 = 246 Baud rate = Hz 2% /10/2=9570Hz 2% void Timer1_Init() { TMOD = 0x20; // 8-bit auto reload CKCON = 0x08; // timer clock = system clock TH1 = 0xF6; // reload value = 246 TL1 = 0xFF; // one step from overflow TCON = 0x40; // run timer } :45 Kommunikációs áramkörök és használatuk 22

23 Baud rate = Hz/10/2 = 9570Hz 9570Hz 2% Megfelel? % % A másik eszköz hibáját nem vettük figyelembe! :45 Kommunikációs áramkörök és használatuk 23

24 A szinkron módokkal nem tárgyaljuk 8 vagy 9 bites aszinkron mód Az adat fogadása engedélyezhető, tiltható A stop bit detektálása engedélyezhető csak akkor van vett adat, ha a stop bit értéke 1 9-bites módban a 9. bitet vizsgálja! Ez alkalmas címzésre, multiprocesszoros kommunikációra Ha a 9. bit 1, akkor cím érdekezik a vevőkhöz A címzett vevő kikapcsolja a bit monitorozását a vétel idejére :45 Kommunikációs áramkörök és használatuk 24

25 void UART_Init() { SCON0 = 0x10; // 8-bit, variable baud mode TI=1; // assume empty output buffer } unsigned char UARTIn(void) { while (!RI); // wait for a byte RI=0; return SBUF; // return the byte } void UARTOut(char a) { while (!TI); // wait for end of previous transmission TI=0; SBUF=a; // transmit a byte, don t wait for end } :45 Kommunikációs áramkörök és használatuk 25

26 #define BUFFERSIZE 8 // ring buffers volatile unsigned char TxBuffer[BUFFERSIZE]; volatile unsigned char RxBuffer[BUFFERSIZE]; // TX buffer read and RX buffer write pointers // used in the interrupt routine volatile unsigned char TxReadPtr=0, RxWritePtr=0; // TX buffer write and RX buffer read pointers unsigned char TxWritePtr=0, RxReadPtr=0; // Number of data in the buffers volatile unsigned char TxNumberOfData=0; volatile unsigned char RxNumberOfData=0; :45 Kommunikációs áramkörök és használatuk 26

27 void UARTInterrupt(void) interrupt UART_VECTOR { if (RI) { RI=0; if (RxNumberOfData < BUFFERSIZE) { RxBuffer[RxWritePtr]=SBUF; RxWritePtr = (RxWritePtr+1) % BUFFERSIZE; RxNumberOfData++; } } :45 Kommunikációs áramkörök és használatuk 27

28 } if (TI) { TI=0; if (TxNumberOfData) { SBUF=TxBuffer[TxReadPtr]; TxReadPtr = (TxReadPtr+1) % BUFFERSIZE; TxNumberOfData--; } } :45 Kommunikációs áramkörök és használatuk 28

29 unsigned char UARTIn(unsigned char *c) { if (RxNumberOfData) { RxNumberOfData--; *c=rxbuffer[rxreadptr]; RxReadPtr = (RxReadPtr+1) % BUFFERSIZE; return 0; } return 1; } :45 Kommunikációs áramkörök és használatuk 29

30 unsigned char UARTOut(unsigned char c) { if (TxNumberOfData < BUFFERSIZE) { TxNumberOfData++; TxBuffer[TxWritePtr]=c; TxWritePtr = (TxWritePtr+1) % BUFFERSIZE; return 0; } return 1; } :45 Kommunikációs áramkörök és használatuk 30

31 Meghajtó áramkörök nélkül Meghajtóáramkörökkel nagyobb távolságok PLC-k Műszerek oszcilloszkóp DVM Flow controller Speciális eszközök :45 Kommunikációs áramkörök és használatuk 31

32 Vdd VOLTAGE CONVERTER V+ V- TX RX R OUT T IN R IN T OUT RS232 SIGNALS C RS232 TRANSCEIVER MAX202, MAX :45 Kommunikációs áramkörök és használatuk 32

33 :45 Kommunikációs áramkörök és használatuk 33

34 :45 Kommunikációs áramkörök és használatuk 34

35 Vdd DIFFERENTIAL RS422 SIGNALS TX R OUT R IN+ R IN- C RX T IN T OUT+ T OUT- RS422 TRANSCEIVER 2 x MAX :45 Kommunikációs áramkörök és használatuk 35

36 Vdd RTS TX TXEN R OUT D+ D- DIFFERENTIAL RS485 SIGNALS RX T IN C RS485 TRANSCEIVER MAX485, MAX :45 Kommunikációs áramkörök és használatuk 36

37 :45 Kommunikációs áramkörök és használatuk 37

38 :45 Kommunikációs áramkörök és használatuk 38

39 Vdd TX OPTICAL FIBER RX C :45 Kommunikációs áramkörök és használatuk 39

40 USB CONNECTOR USB CONNECTOR LDO REG LDO REG 5V RTS RTS CTS TX CTS TX USB-UART TRANSCEIVER D+ D- RX RX C FT232R GND USB CABLE :45 Kommunikációs áramkörök és használatuk 40

41 :45 Kommunikációs áramkörök és használatuk 41

42 Bluetooth modulok UART interfésszel SPP (Serial Port Profile) standard protokoll pl. BTM :45 Kommunikációs áramkörök és használatuk 42

43 Timer beállítás, engedélyezés A timer másra nem használható Ne keverjük: polling és interrupt mód TX legyen push-pull rövid jelváltási idők Baud rate hibájának figyelembe vétele :45 Kommunikációs áramkörök és használatuk 43

44 :45 Kommunikációs áramkörök és használatuk 44

45 Processzorok, integrált áramkörök között Szinkron soros adatátvitel Órajel váltásaikor érvényes a bit Master és slave eszközök Az órajelet adó a master Az órajel garantálja az azonos időzítést a két oldalon Full duplex kimenet: MOSI (master out/slave in) bemenet: MISO (master in/slave out) órajel: SCK (serial clock) Engedélyező vonal (NSS, negated slave select) :45 Kommunikációs áramkörök és használatuk 45

46 SCK POL=1 POL=0 MOSI MISO B7 B6 B5 B4 B3 B2 B1 B0 B7 B6 B5 B4 B3 B2 B1 B0 PHA=0 MOSI MISO B7 B6 B5 B4 B3 B2 B1 B0 B7 B6 B5 B4 B3 B2 B1 B0 PHA= :45 Kommunikációs áramkörök és használatuk 46

47 Az adó és vevő oldal azonos módban legyen (POL, PHA) Az egyik SCK él a kimenő bitet beállítja, a másik a bejövő bitet olvassa Slave: Mikor kezdődik az adat átvitele? Csak az órajel indulása nem feltétlen elég Kieshet a szinkronból az átvitel Megoldás: Slave select (NSS) jel :45 Kommunikációs áramkörök és használatuk 47

48 SCK POL=1 POL=0 NSS MOSI MISO B7 B6 B5 B4 B3 B2 B1 B0 B7 B6 B5 B4 B3 B2 B1 B0 PHA= :45 Kommunikációs áramkörök és használatuk 48

49 GPIO NSS MISO MISO MISO MISO MOSI MOSI MOSI MOSI SCK SCK SCK SCK NSS GPIO Master Master Master Slave :45 Kommunikációs áramkörök és használatuk 49

50 MISO MOSI SCK NSS GPIO Master MISO MOSI SCK NSS Slave MISO MOSI SCK NSS Slave Több slave Egyszerre egy aktív Slave NSS választ NSS adatkezdet is :45 Kommunikációs áramkörök és használatuk 50

51 void SPIOut(unsigned char c) { SELECT = 0; SPIF = 0; SPI0DAT = c; while (!SPIF); SELECT = 1; } unsigned char SPIIn(void) { SELECT = 0; SPIF = 0; SPI0DAT = 0; // dummy write starts SPI clock while (!SPIF); SELECT = 1; return SPI0DAT; } :45 Kommunikációs áramkörök és használatuk 51

52 :45 Kommunikációs áramkörök és használatuk 52

53 System Management Bus IIC vagy I²C: Inter-Integrated Circuit Áramkörök közötti egyszerű, kétvezetékes busz SCL: Órajel (100kHz vagy 400kHz) SDA: Adat Két irány (half duplex) Master, slave, multimaster Párhuzamosan kapcsolhatók eszközök 7-bites címzés Tipikusan: szenzorok, A/D, RTC, EEPROM, stb :45 Kommunikációs áramkörök és használatuk 53

54 CROSSBAR CLOCK CONTROL FILTER SCL SHIFT REGISTER FILTER SDA SDA CONTROL ACK :45 Kommunikációs áramkörök és használatuk 54

55 R R Vdd=5V Vdd=5V Vdd=3V Vdd=5V Vdd=3V Master 1 Master 2 Slave 1 Slave 2 SCL SDA :45 Kommunikációs áramkörök és használatuk 55

56 START ACK NACK STOP SDA SCL A6 A0 R/W D7 D0 7-bit address and direction bit 8-bit data Bármelyik vezetéket az adó és vevő is 0-ba tudja húzni SCK: csak a masterek húzhatják 0-ba Több byte is küldhető egy tranzakcióban ACK minden byte vételekor szükséges a vevőtől NACK: nem nyugtáz a vevő, vagy utolsó byte (master) STOP: a tranzakció befejezése :45 Kommunikációs áramkörök és használatuk 56

57 MASTER IRQ IRQ IRQ IRQ S ADDR W A DATA A DATA A P S ADDR W A DATA A DATA A P SLAVE IRQ IRQ IRQ :45 Kommunikációs áramkörök és használatuk 57

58 MASTER IRQ IRQ IRQ IRQ S ADDR R A DATA A DATA N P S ADDR R A DATA A DATA N P SLAVE IRQ IRQ IRQ :45 Kommunikációs áramkörök és használatuk 58

59 Master SFR-bitek STA, STO írása a jelek generáláshoz ACK írása és olvasása is SI flag (megszakítás is) 1-re vált, ha egy fázis kész A busz áll, amíg SI=1, folytatódik, ha töröljük Ezért mindig SI=0 előtt kell írni az SFR regisztereket Slave SFR-bitek STA, STO olvasása ACK írása és olvasása is :45 Kommunikációs áramkörök és használatuk 59

60 void SMBusOut(unsigned char address, unsigned char c) { STO = 0; STA = 1; // start transfer SI = 0; // continue while (!SI); // wait for start complete STA = 0; // manually clear STA SMB0DAT = address << 1; // A6..A0 + write SI = 0; // continue while (!SI); // wait for complete if (!ACK) // not acknowledged, stop { STO = 1; // stop condition bit } SI = 0; return; } SMB0DAT = c; SI = 0; while (!SI); STO = 1; SI = 0; // generate stop condition // put data into shift register // continue // wait for complete // stop condition bit // generate stop condition :45 Kommunikációs áramkörök és használatuk 60

61 unsigned char SMBusIn(unsigned char address) { STO = 0; STA = 1; // start transfer while (!SI); // wait for start complete STA = 0; // manually clear STA SMB0DAT = (address << 1) 1; // A6..A0 + read SI = 0; // continue while (!SI); // wait for complete if (!ACK) // not acknowledged, stop { STO = 1; // stop condition bit } SI = 0; return; } ACK = 0; SI = 0; while (!SI); STO = 1; SI = 0; return SMB0DAT; // generate stop condition // NACK, last byte // continue // wait for complete // stop condition bit // generate stop condition :45 Kommunikációs áramkörök és használatuk 61

62 stdio átirányítás? printf? void putchar(char c) { UARTOut(c); // UART, SPI, SMBus, stb. } char getchar(void) { return UARTIn(c); // UART, SPI, SMBus, stb. } printf("x=%d",x); // write :45 Digitális perifériák és használatuk 62

63 :45 Kommunikációs áramkörök és használatuk 63

64 CAN: Controller Area Network LIN: Local Interconnect Network USB: Universal Serial Bus Vezeték nélküli kommunikációs áramkör :45 Kommunikációs áramkörök és használatuk 64

Mikrovezérlők Alkalmazástechnikája

Mikrovezérlők Alkalmazástechnikája Gingl Zoltán, 2017, Szeged Mikrovezérlők Alkalmazástechnikája 18 jan. 1 Processzoroknál tipikusan párhuzamos átvitel adatbusz címbusz vezérlőjelek, szinkronizálás Mikrovezérlőknél soros átvitel Kevés vezeték

Részletesebben

4.1.1. I 2 C, SPI, I 2 S, USB, PWM, UART, IrDA

4.1.1. I 2 C, SPI, I 2 S, USB, PWM, UART, IrDA 4.1.1. I 2 C, SPI, I 2 S, USB, PWM, UART, IrDA A címben található jelölések a mikrovezérlők kimentén megjelenő tipikus perifériák, típus jelzései. Mindegyikkel röviden foglalkozni fogunk a folytatásban.

Részletesebben

I. C8051Fxxx mikrovezérlők hardverfelépítése, működése. II. C8051Fxxx mikrovezérlők programozása. III. Digitális perifériák

I. C8051Fxxx mikrovezérlők hardverfelépítése, működése. II. C8051Fxxx mikrovezérlők programozása. III. Digitális perifériák I. C8051Fxxx mikrovezérlők hardverfelépítése, működése 1. Adja meg a belső RAM felépítését! 2. Miben különbözik a belső RAM alsó és felső felének elérhetősége? 3. Hogyan érhetők el az SFR regiszterek?

Részletesebben

Mikrovezérlők Alkalmazástechnikája

Mikrovezérlők Alkalmazástechnikája Gingl Zoltán, 2015, Szeged Mikrovezérlők Alkalmazástechnikája 2015.12.06. 11:51 Analóg perifériák és használatuk 1 Gingl Zoltán, 2012, Szeged Mikrovezérlők Alkalmazástechnikája 2015.12.06. 11:51 Analóg

Részletesebben

Mikrovezérlők Alkalmazástechnikája

Mikrovezérlők Alkalmazástechnikája Gingl Zoltán, 2017, Szeged Mikrovezérlők Alkalmazástechnikája 18 szept. 1 18 szept. 2 Analóg jelekből kétállapotú jel Két bemeneti feszültség, V n,v p Logikai kimenet: 1, ha V p >V n 0, egyébként Hiszterézis

Részletesebben

ARM Cortex magú mikrovezérlők

ARM Cortex magú mikrovezérlők ARM Cortex magú mikrovezérlők 5. Mikrovezérlő alapperifériák Scherer Balázs Budapest University of Technology and Economics Department of Measurement and Information Systems BME-MIT 2017 Tartalom Általános

Részletesebben

The modular mitmót system. 433, 868MHz-es ISM sávú rádiós kártya

The modular mitmót system. 433, 868MHz-es ISM sávú rádiós kártya The modular mitmót system 433, 868MHz-es ISM sávú rádiós kártya Kártyakód: COM-R04-S-01b Felhasználói dokumentáció Dokumentációkód: -D01a Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és

Részletesebben

I 2 C, RS-232 és USB. Informatikai eszközök fizikai alapjai. Oláh Tamás István 2015.04.08

I 2 C, RS-232 és USB. Informatikai eszközök fizikai alapjai. Oláh Tamás István 2015.04.08 I 2 C, RS-232 és USB Informatikai eszközök fizikai alapjai Oláh Tamás István 2015.04.08 Az I 2 C Busz Phillips által kifejlesztett kétvezetékes szinkron adatátviteli eszköz integrált áramkörök összekapcsolására

Részletesebben

loop() Referencia: https://www.arduino.cc/en/reference/homepage

loop() Referencia: https://www.arduino.cc/en/reference/homepage Arduino alapok Sketch ~ Solution Forrás:.ino (1.0 előtt.pde).c,.cpp,.h Külső könyvtárak (legacy / 3rd party) Mintakódok (example) setup() Induláskor fut le, kezdeti értékeket állít be, inicializálja a

Részletesebben

ARM programozás. Iványi László Szabó Béla

ARM programozás. Iványi László Szabó Béla ARM programozás 4. Óra USART periféria és az RS-485 busz elmélete és használata Iványi László ivanyi.laszlo@stud.uni-obuda.hu Szabó Béla szabo.bela@stud.uni-obuda.hu Mi az USART/UART? USART => Universal

Részletesebben

A mikroszámítógép felépítése.

A mikroszámítógép felépítése. 1. Processzoros rendszerek fő elemei mikroszámítógépek alapja a mikroprocesszor. Elemei a mikroprocesszor, memória, és input/output eszközök. komponenseket valamilyen buszrendszer köti össze, amelyen az

Részletesebben

Járműfedélzeti rendszerek I. 4. előadás Dr. Bécsi Tamás

Járműfedélzeti rendszerek I. 4. előadás Dr. Bécsi Tamás Járműfedélzeti rendszerek I. 4. előadás Dr. Bécsi Tamás Rendszer órajel Órajel osztás XTAL Divide Control (XDIV) Register 2 129 oszthat Órajel források CKSEL fuse bit Külső kristály/kerámia rezonátor Külső

Részletesebben

ARM Cortex magú mikrovezérlők

ARM Cortex magú mikrovezérlők ARM Cortex magú mikrovezérlők 5. Mikrovezérlő alapperifériák Scherer Balázs Budapest University of Technology and Economics Department of Measurement and Information Systems BME-MIT 2017 Tartalom Általános

Részletesebben

Programozási segédlet DS89C450 Fejlesztőpanelhez

Programozási segédlet DS89C450 Fejlesztőpanelhez Programozási segédlet DS89C450 Fejlesztőpanelhez Készítette: Fekete Dávid Processzor felépítése 2 Perifériák csatlakozása a processzorhoz A perifériák adatlapjai megtalálhatók a programozasi_segedlet.zip-ben.

Részletesebben

Az interrupt Benesóczky Zoltán 2004

Az interrupt Benesóczky Zoltán 2004 Az interrupt Benesóczky Zoltán 2004 1 Az interrupt (program megszakítás) órajel generátor cím busz környezet RESET áramkör CPU ROM RAM PERIF. adat busz vezérlõ busz A periféria kezelés során információt

Részletesebben

A vezérlő alkalmas 1x16, 2x16, 2x20, 4x20 karakteres kijelzők meghajtására. Az 1. ábrán látható a modul bekötése.

A vezérlő alkalmas 1x16, 2x16, 2x20, 4x20 karakteres kijelzők meghajtására. Az 1. ábrán látható a modul bekötése. Soros LCD vezérlő A vezérlő modul lehetővé teszi, hogy az LCD-t soros vonalon illeszthessük alkalmazásunkhoz. A modul több soros protokollt is támogat, úgy, mint az RS232, I 2 C, SPI. Továbbá az LCD alapfunkcióit

Részletesebben

Dr. Oniga István DIGITÁLIS TECHNIKA 9

Dr. Oniga István DIGITÁLIS TECHNIKA 9 r. Oniga István IGITÁLIS TEHNIKA 9 Regiszterek A regiszterek több bites tárolók hálózata S-R, J-K,, vagy kapuzott tárolókból készülnek Fontosabb alkalmazások: adatok tárolása és adatmozgatás Funkcióik:

Részletesebben

Dr. Oniga István DIGITÁLIS TECHNIKA 9

Dr. Oniga István DIGITÁLIS TECHNIKA 9 r. Oniga István IGITÁLIS TEHNIKA 9 Regiszterek A regiszterek több bites tárolók hálózata S-R, J-K,, vagy kapuzott tárolókból készülnek Fontosabb alkalmazások: adatok tárolása és adatmozgatás Funkcióik:

Részletesebben

The modular mitmót system. 433, 868MHz-es ISM sávú rádiós kártya

The modular mitmót system. 433, 868MHz-es ISM sávú rádiós kártya The modular mitmót system 433, 868MHz-es ISM sávú rádiós kártya Kártyakód: COM-R4-S-b Fejlesztői dokumentáció Dokumentációkód: -Da Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs

Részletesebben

Perifériák hozzáadása a rendszerhez

Perifériák hozzáadása a rendszerhez Perifériák hozzáadása a rendszerhez Intellectual Property (IP) katalógus: Az elérhető IP modulok listája Bal oldalon az IP Catalog fül Ingyenes IP modulok Fizetős IP modulok: korlátozások Időkorlátosan

Részletesebben

XII. PÁRHUZAMOS ÉS A SOROS ADATÁTVITEL

XII. PÁRHUZAMOS ÉS A SOROS ADATÁTVITEL XII. PÁRHUZAMOS ÉS A SOROS ADATÁTVITEL Ma, a sok más felhasználás mellett, rendkívül jelentős az adatok (információk) átvitelével foglakozó ágazat. Az átvitel történhet rövid távon, egy berendezésen belül,

Részletesebben

7.hét: A sorrendi hálózatok elemei II.

7.hét: A sorrendi hálózatok elemei II. 7.hét: A sorrendi hálózatok elemei II. Tárolók Bevezetés Bevezetés Regiszterek Számlálók Memóriák Regiszter DEFINÍCIÓ Tárolóegységek összekapcsolásával, egyszerű bemeneti kombinációs hálózattal kiegészítve

Részletesebben

PMU Kezdı lépések. 6-0 Csatlakozás LG GLOFA-GM és SAMSUNG PLC-hez. 6-1 Kommunikáció LG PMU és LG GLOFA-GM7 / GM6 / GM4 között

PMU Kezdı lépések. 6-0 Csatlakozás LG GLOFA-GM és SAMSUNG PLC-hez. 6-1 Kommunikáció LG PMU és LG GLOFA-GM7 / GM6 / GM4 között -0 Csatlakozás LG GLOFA-GM és SAMSUNG PLC-hez -1 Kommunikáció LG PMU és LG GLOFA-GM / GM között -1-1 PLC programozó csatlakozója ( CPU loader port ) -1- PLC beépített C-NET csatlakozója (CPU C-net) -1-

Részletesebben

Serial 2: 1200/2400 bps sebességû rádiós modem vagy

Serial 2: 1200/2400 bps sebességû rádiós modem vagy - ATMEL ATmega Processzor - kb Flash memória a program részére - kb belsõ és Kb külsõ EEPROM - kb belsõ és kb külsõ RAM - db többfunkciós soros interfész (kiépitéstõl függõen) Serial : RS- vagy RS-5 (fél-

Részletesebben

Az I2C egy soros, 8 bit-es, kétirányú kommunikációs protokoll, amelynek sebessége normál üzemmódban 100kbit/s, gyors üzemmódban 400kbit/s.

Az I2C egy soros, 8 bit-es, kétirányú kommunikációs protokoll, amelynek sebessége normál üzemmódban 100kbit/s, gyors üzemmódban 400kbit/s. Az I2C busz fizikai kialakítása Az I2C egy soros, 8 bit-es, kétirányú kommunikációs protokoll, amelynek sebessége normál üzemmódban 100kbit/s, gyors üzemmódban 400kbit/s. I2C busz csak két db kétirányú

Részletesebben

Autóipari beágyazott rendszerek CAN hardver

Autóipari beágyazott rendszerek CAN hardver Scherer Balázs, Tóth Csaba: Autóipari beágyazott rendszerek CAN hardver Előadásvázlat Kézirat Csak belső használatra! 2012.02.19. SchB, TCs BME MIT 2012. Csak belső használatra! Autóipari beágyazott rendszerek

Részletesebben

LIN, BSS, PCM Protokollok (COM Interfész) Szeptember

LIN, BSS, PCM Protokollok (COM Interfész) Szeptember LIN, BSS, PCM Protokollok (COM Interfész) 2013. Szeptember Témakörök Háromfázisú generátorok Generátor feszülts ltségszabályzók Digitális vezérl rlésű szabályz lyzók Feszülts ltségszabályzó mérések Digitális

Részletesebben

RUBICON Serial IO kártya

RUBICON Serial IO kártya RUBICON Serial IO kártya Műszaki leírás 1.0 Készítette: Forrai Attila Jóváhagyta: Rubin Informatikai Zrt. 1149 Budapest, Egressy út 17-21. telefon: +361 469 4020; fax: +361 469 4029 e-mail: info@rubin.hu;

Részletesebben

Mikrovezérlők Alkalmazástechnikája

Mikrovezérlők Alkalmazástechnikája Gingl Zoltán, 2013, Szeged Mikrovezérlők Alkalmazástechnikája 2015.06.28. 22:20 Működést támogató perifériák és használatuk 1 A processzornak ütemjel (órajel) szükséges Számos periféria órajelét is adja

Részletesebben

Mechatronika és mikroszámítógépek. 2018/2019 I. félév. Külső megszakítások

Mechatronika és mikroszámítógépek. 2018/2019 I. félév. Külső megszakítások Mechatronika és mikroszámítógépek 2018/2019 I. félév Külső megszakítások Megszakítás, Interrupt A megszakítás egy olyan esemény, vagy feltétel teljesülése, amely felfüggeszti a program futását, a vezérlést

Részletesebben

Silabs STK3700, Simplicity Studio laborgyakorlat

Silabs STK3700, Simplicity Studio laborgyakorlat Silabs STK3700, Simplicity Studio laborgyakorlat Scherer Balázs Budapest University of Technology and Economics Department of Measurement and Information Systems BME-MIT 2016 Saját Firmware library Saját

Részletesebben

Digitális technika VIMIAA01

Digitális technika VIMIAA01 BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA01 Fehér Béla BME MIT A kommunikációs technológiák

Részletesebben

Digitális technika VIMIAA01

Digitális technika VIMIAA01 BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA01 Fehér Béla BME MIT A kommunikációs technológiák

Részletesebben

Mintavételezés tanulmányozása. AD - konverzió. Soros kommunikáció

Mintavételezés tanulmányozása. AD - konverzió. Soros kommunikáció Mintavételezés tanulmányozása. AD - konverzió. Soros kommunikáció A gyakorlat célja A gyakorlat során a dspic30f6010 digitális jelprocesszor Analóg Digital konverterét tanulmányozzuk. A mintavételezett

Részletesebben

Füvesi Viktor. Elektrotechnikai és Elektronikai Tanszék. 2008. május. 8

Füvesi Viktor. Elektrotechnikai és Elektronikai Tanszék. 2008. május. 8 Füvesi Viktor Elektrotechnikai és Elektronikai Tanszék 2008. május. 8 Alapkapcsolások Kommunikáció uc k közti Programozási példák, egyszerű progik Tápegység Nyomógomb Billentyűzet LED meghajtás Potencióméter

Részletesebben

SR mini PLC Modbus illesztő modul. Modul beállítása Bemeneti pontok kiosztása főmodul esetén Bemeneti pontok címkiosztása kiegészítő modul esetében

SR mini PLC Modbus illesztő modul. Modul beállítása Bemeneti pontok kiosztása főmodul esetén Bemeneti pontok címkiosztása kiegészítő modul esetében SR mini PLC Modbus illesztő modul Modul beállítása Bemeneti pontok kiosztása főmodul esetén Bemeneti pontok címkiosztása kiegészítő modul esetében Kimeneti pontok címkiosztása főmodul esetében, olvasásra

Részletesebben

Digitális rendszerek. Digitális logika szintje

Digitális rendszerek. Digitális logika szintje Digitális rendszerek Digitális logika szintje CPU lapkák Mai modern CPU-k egy lapkán helyezkednek el Kapcsolat a külvilággal: kivezetéseken (lábak) keresztül Cím, adat és vezérlőjelek, ill. sínek (buszok)

Részletesebben

1. Bevezetés. 2. A mikroszámítógépek felépítése

1. Bevezetés. 2. A mikroszámítógépek felépítése 1. Bevezetés A mikroelektronika és a számítástechnika története rövid. A 19. században terveztek számítógépeket, amelyek utasításkészlettel rendelkeztek (Charles Babbage). E gépeket mechanikus szerkezetként

Részletesebben

Mikrorendszerek tervezése

Mikrorendszerek tervezése BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Mikrorendszerek tervezése Megszakítás- és kivételkezelés Fehér Béla Raikovich

Részletesebben

Mikrovezérlők Alkalmazástechnikája

Mikrovezérlők Alkalmazástechnikája Gingl Zoltán, 2013, Szeged Mikrovezérlők Alkalmazástechnikája 1 2 Tulajdonságok Írási lehetőség Olvasás (konstansok) Scratchpad memory, flash program memory Endurance hányszor írható ( 10k-100k) Data retention

Részletesebben

Mikrovezérlők Alkalmazástechnikája

Mikrovezérlők Alkalmazástechnikája Gingl Zoltán, 2015, Szeged Mikrovezérlők Alkalmazástechnikája 1 A processzornak ütemjel (órajel) szükséges Számos periféria órajelét is adja Rendkívül sokféle opció DC-100MHz, pl. 32768Hz (órakvarc) Fogyasztás/sebesség

Részletesebben

Modbus kommunikáció légkondícionálókhoz

Modbus kommunikáció légkondícionálókhoz Modbus kommunikáció légkondícionálókhoz FJ-RC-MBS-1 Mobus szervezet: -> http://www.modbus.org (néha Modbus-IDA) -> Modbus eszköz kereső motor http://www.modbus.org/devices.php Modbus (RTU) - soros kommunikációs

Részletesebben

Mikrorendszerek tervezése

Mikrorendszerek tervezése BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Mikrorendszerek tervezése Saját IP készítése, periféria illesztés Fehér

Részletesebben

A LOGSYS GUI. Fehér Béla Raikovich Tamás, Laczkó Péter BME MIT FPGA laboratórium

A LOGSYS GUI. Fehér Béla Raikovich Tamás, Laczkó Péter BME MIT FPGA laboratórium BUDAPESTI MŐSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK A LOGSYS GUI Fehér Béla Raikovich Tamás, Laczkó Péter BME MIT atórium

Részletesebben

Architektúra, megszakítási rendszerek

Architektúra, megszakítási rendszerek Architektúra, megszakítási ek Mirıl lesz szó? Megszakítás fogalma Megszakítás folyamata Többszintű megszakítási ek Koschek Vilmos Példa: Intel Pentium vkoschek@vonalkodhu Koschek Vilmos Fogalom A számítógép

Részletesebben

LOGSYS LOGSYS LCD KIJELZŐ MODUL FELHASZNÁLÓI ÚTMUTATÓ. 2010. november 8. Verzió 1.0. http://logsys.mit.bme.hu

LOGSYS LOGSYS LCD KIJELZŐ MODUL FELHASZNÁLÓI ÚTMUTATÓ. 2010. november 8. Verzió 1.0. http://logsys.mit.bme.hu LOGSYS LCD KIJELZŐ MODUL FELHASZNÁLÓI ÚTMUTATÓ 2010. november 8. Verzió 1.0 http://logsys.mit.bme.hu Tartalomjegyzék 1 Bevezetés... 1 2 Kommunikációs interfész... 2 3 Memóriák az LCD vezérlőben... 3 3.1

Részletesebben

A/D és D/A konverterek vezérlése számítógéppel

A/D és D/A konverterek vezérlése számítógéppel 11. Laboratóriumi gyakorlat A/D és D/A konverterek vezérlése számítógéppel 1. A gyakorlat célja: Az ADC0804 és a DAC08 konverterek ismertetése, bekötése, néhány felhasználási lehetőség tanulmányozása,

Részletesebben

Yottacontrol I/O modulok beállítási segédlet

Yottacontrol I/O modulok beállítási segédlet Yottacontrol I/O modulok beállítási segédlet : +36 1 236 0427 +36 1 236 0428 Fax: +36 1 236 0430 www.dialcomp.hu dial@dialcomp.hu 1131 Budapest, Kámfor u.31. 1558 Budapest, Pf. 7 Tartalomjegyzék Bevezető...

Részletesebben

Nagy Gergely április 4.

Nagy Gergely április 4. Mikrovezérlők Nagy Gergely BME EET 2012. április 4. ebook ready 1 Bevezetés Áttekintés Az elektronikai tervezés eszközei Mikroprocesszorok 2 A mikrovezérlők 3 Főbb gyártók Áttekintés A mikrovezérlők az

Részletesebben

ATMEL ATMEGA MIKROVEZÉRLŐ-CSALÁD

ATMEL ATMEGA MIKROVEZÉRLŐ-CSALÁD Misák Sándor ATMEL ATMEGA MIKROVEZÉRLŐ-CSALÁD Nanoelektronikai és Nanotechnológiai Részleg DE TTK v.0.1 (2007.02.13.) 1. előadás 1. Általános ismeretek. 2. Sajátos tulajdonságok. 3. A processzor jellemzői.

Részletesebben

8051-es mikrovezérlő. mikrovezérlő 1980-ból napjainkban

8051-es mikrovezérlő. mikrovezérlő 1980-ból napjainkban 8051-es mikrovezérlő mikrovezérlő 1980-ból napjainkban Mikrovezérlők A mikrokontroller egy mikroprocesszor és további periféria-áramkörök egyetlen közös egységbe integrálva. Első mikrovezérlő a Texas Instruments

Részletesebben

Mechatronika és mikroszámítógépek. 2016/2017 I. félév. Analóg-digitális átalakítás ADC, DAC

Mechatronika és mikroszámítógépek. 2016/2017 I. félév. Analóg-digitális átalakítás ADC, DAC Mechatronika és mikroszámítógépek 2016/2017 I. félév Analóg-digitális átalakítás ADC, DAC AD átalakítás Cél: Analóg (időben és értékben folytonos) elektromos mennyiség kifejezése digitális (értékében nagyságában

Részletesebben

Mikrokontroller labor, 1. mérés ellenőrző kérdések

Mikrokontroller labor, 1. mérés ellenőrző kérdések Mikrokontroller labor, 1. mérés ellenőrző kérdések 1. Milyen típusú objektumokat tartalmazhat egy integrált alkatrészkönyvtár az Altium Designer programban? Kapcsolási rajz ábra, NYÁK rajzolat (footprint),

Részletesebben

Jelfeldolgozás a közlekedésben. 2017/2018 II. félév. Analóg-digitális átalakítás ADC, DAC

Jelfeldolgozás a közlekedésben. 2017/2018 II. félév. Analóg-digitális átalakítás ADC, DAC Jelfeldolgozás a közlekedésben 2017/2018 II. félév Analóg-digitális átalakítás ADC, DAC AD átalakítás Cél: Analóg (időben és értékben folytonos) elektromos mennyiség kifejezése digitális (értékében nagyságában

Részletesebben

Mikrovezérlők Alkalmazástechnikája

Mikrovezérlők Alkalmazástechnikája Gingl Zoltán, 2018, Szeged Mikrovezérlők Alkalmazástechnikája 18 szept. 1 18 szept. 2 A processzornak ütemjel (órajel) szükséges Számos periféria órajelét is adja Rendkívül sokféle opció DC-100MHz, pl.

Részletesebben

Mechatronika és mikroszámítógépek

Mechatronika és mikroszámítógépek Mechatronika és mikroszámítógépek 2018/2019 I. félév Órajelek, időzítők, megszakítások (4. lab) Órajel Internal Oscillator Control Register (OSCICN 0xB2) Bit Symbol Leírás 7 MSCLKE Missing Clock enable

Részletesebben

Az MSP430 mikrovezérlők digitális I/O programozása

Az MSP430 mikrovezérlők digitális I/O programozása 10.2.1. Az MSP430 mikrovezérlők digitális I/O programozása Az MSP430 mikrovezérlők esetében minden kimeneti / bemeneti (I/O) vonal önállóan konfigurálható, az P1. és P2. csoportnak van megszakítás létrehozó

Részletesebben

A Memory Interface Generator (MIG) beállítása a Logsys Kintex-7 FPGA kártyához

A Memory Interface Generator (MIG) beállítása a Logsys Kintex-7 FPGA kártyához A Memory Interface Generator (MIG) beállítása a Logsys Kintex-7 FPGA kártyához Ellenőrizzük a projektből importált adatokat. Ha rendben vannak, akkor kattintsunk a Next gombra. Válasszuk a Create Design

Részletesebben

A Számítógépek felépítése, mőködési módjai

A Számítógépek felépítése, mőködési módjai Mechatronika, Optika és Gépészeti Informatika Tanszék Kovács Endre tud. Mts. A Számítógépek felépítése, mőködési módjai Mikroprocesszoros Rendszerek Felépítése Buszrendszer CPU OPERATÍV TÁR µ processzor

Részletesebben

Villamos jelek mintavételezése, feldolgozása. Mérésadatgyűjtés, jelfeldolgozás 9. előadás

Villamos jelek mintavételezése, feldolgozása. Mérésadatgyűjtés, jelfeldolgozás 9. előadás Villamos jelek mintavételezése, feldolgozása (ellenállás mérés LabVIEW támogatással) Számítógépes mérőrendszerek Mérésadatgyűjtés, jelfeldolgozás 9. előadás Dr. Iványi Miklósné, egyetemi tanár Schiffer

Részletesebben

Laboratóriumi műszerek megvalósítása ARM alapú mikrovezérlővel és Linux-szal

Laboratóriumi műszerek megvalósítása ARM alapú mikrovezérlővel és Linux-szal Laboratóriumi műszerek megvalósítása ARM alapú mikrovezérlővel és Linux-szal Fuszenecker Róbert Budapesti Műszaki Főiskola Kandó Kálmán Műszaki Főiskolai Kar 2007. október 17. Laboratóriumi berendezések

Részletesebben

Mérő- és vezérlőberendezés megvalósítása ARM alapú mikrovezérlővel és Linux-szal

Mérő- és vezérlőberendezés megvalósítása ARM alapú mikrovezérlővel és Linux-szal Mérő- és vezérlőberendezés megvalósítása ARM alapú mikrovezérlővel és Linux-szal Fuszenecker Róbert Budapesti Műszaki Főiskola Kandó Kálmán Műszaki Főiskolai Kar 2007. július 18. A mérőberendezés felhasználási

Részletesebben

T Bird 2. AVR fejlesztőpanel. Használati utasítás. Gyártja: BioDigit Kft. Forgalmazza: HEStore.hu webáruház. BioDigit Kft, 2012. Minden jog fenntartva

T Bird 2. AVR fejlesztőpanel. Használati utasítás. Gyártja: BioDigit Kft. Forgalmazza: HEStore.hu webáruház. BioDigit Kft, 2012. Minden jog fenntartva T Bird 2 AVR fejlesztőpanel Használati utasítás Gyártja: BioDigit Kft Forgalmazza: HEStore.hu webáruház BioDigit Kft, 2012 Minden jog fenntartva Főbb tulajdonságok ATMEL AVR Atmega128 típusú mikrovezérlő

Részletesebben

Digitális technika VIMIAA hét

Digitális technika VIMIAA hét BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA02 11. hét Fehér Béla BME MIT MiniRISC mintarendszer

Részletesebben

Digitális technika (VIMIAA01) Laboratórium 9

Digitális technika (VIMIAA01) Laboratórium 9 BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika (VIMIAA01) Laboratórium 9 Fehér Béla Raikovich Tamás,

Részletesebben

Dr. Oniga István. DIGITÁLIS TECHNIKA 10 Memóriák

Dr. Oniga István. DIGITÁLIS TECHNIKA 10 Memóriák Dr. Oniga István DIGITÁLIS TECHNIKA 10 Memóriák Memóriák Programot, és adatokat tárolnak D flip-flop egyetlen bit, a regiszter egy bináris szám tárolására alkalmasak Memóriák több számok tárolására alkalmasak

Részletesebben

Digitális technika (VIMIAA01) Laboratórium 9

Digitális technika (VIMIAA01) Laboratórium 9 BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika (VIMIAA01) Laboratórium 9 Fehér Béla Raikovich Tamás,

Részletesebben

Eötvös Loránd Tudományegyetem - Informatikai Igazgatóság. MEMS érzékelők, szenzorok, méréstechnika. Horváth Gábor. ELTE / Informatikai Igazgatóság

Eötvös Loránd Tudományegyetem - Informatikai Igazgatóság. MEMS érzékelők, szenzorok, méréstechnika. Horváth Gábor. ELTE / Informatikai Igazgatóság Horváth Gábor ELTE / Informatikai Igazgatóság 1 Mérni a legegyszerűbb, a rendszerhez kapcsolunk egy szenzort: Mennyi? Számítógép Szenzor 30 -Mi 30? -Mennyire pontosan 30? Minden döntés, beavatkozás annyira

Részletesebben

Nyíregyházi Egyetem Matematika és Informatika Intézete. Input/Output

Nyíregyházi Egyetem Matematika és Informatika Intézete. Input/Output 1 Input/Output 1. I/O műveletek hardveres háttere 2. I/O műveletek szoftveres háttere 3. Diszkek (lemezek) ------------------------------------------------ 4. Órák, Szöveges terminálok 5. GUI - Graphical

Részletesebben

WDS 4510 adatátviteli adó-vevő

WDS 4510 adatátviteli adó-vevő WDS 4510 adatátviteli adó-vevő A WDS-4510 készülék pont-pont és pont-több pont adatátviteli alkalmazásokra kifejlesztett digitális rádió adó-vevő. DSP technológiai bázison kifejlesztett, igen gyors adás-vétel

Részletesebben

Procontrol RSC-24B. Kezelői, telepítői kézikönyv. RS232 / RS485 adatkonverter. Verzió: 1.4 2007.04.12

Procontrol RSC-24B. Kezelői, telepítői kézikönyv. RS232 / RS485 adatkonverter. Verzió: 1.4 2007.04.12 Procontrol RSC-24B RS232 / RS485 adatkonverter Kezelői, telepítői kézikönyv Verzió: 1.4 2007.04.12 2007 Procontrol Electronics Ltd. Minden jog fenntartva. A Worktime, a Workstar, a WtKomm a Procontrol

Részletesebben

MSP430 programozás Energia környezetben. Hétszegmenses LED kijelzok

MSP430 programozás Energia környezetben. Hétszegmenses LED kijelzok MSP430 programozás Energia környezetben Hétszegmenses LED kijelzok 1 A hétszegmenses kijelző A hétszegmenses kijelzők 7 db LED-et vagy LED csoportot tartalmaznak, olyan elrendezésben, hogy a 0 9 arab számjegyeket

Részletesebben

CAN BUSZ ÁLTALÁNOS ISMERTETŐ

CAN BUSZ ÁLTALÁNOS ISMERTETŐ CAN BUSZ ÁLTALÁNOS ISMERTETŐ 1. KIADÁS 2009 Szerző: Somlyai László Kandó Kálmán Villamosmérnöki Kar, IV. évfolyam oldal 1 Tartalomjegyzék 1. Bevezetés... 3 2. CAN busz... 4 2.1. Kialakulása... 4 2.2. Fizikai

Részletesebben

Dr. Oniga István. DIGITÁLIS TECHNIKA 10 Memóriák

Dr. Oniga István. DIGITÁLIS TECHNIKA 10 Memóriák Dr. Oniga István DIGITÁLIS TECHNIKA 10 Memóriák Memóriák Programot, és adatokat tárolnak D flip-flop egyetlen bit, a regiszter egy bináris szám tárolására alkalmasak Memóriák több számok tárolására alkalmasak

Részletesebben

Digitális technika (VIMIAA02) Laboratórium 12

Digitális technika (VIMIAA02) Laboratórium 12 BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika (VIMIAA02) Laboratórium 12 Fehér Béla Raikovich Tamás,

Részletesebben

Digitális technika (VIMIAA02) Laboratórium 12

Digitális technika (VIMIAA02) Laboratórium 12 BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika (VIMIAA02) Laboratórium 12 Fehér Béla Raikovich Tamás,

Részletesebben

Mintavételes szabályozás mikrovezérlő segítségével

Mintavételes szabályozás mikrovezérlő segítségével Automatizálási Tanszék Mintavételes szabályozás mikrovezérlő segítségével Budai Tamás budai.tamas@sze.hu http://maxwell.sze.hu/~budait Tartalom Mikrovezérlőkről röviden Programozási alapismeretek ismétlés

Részletesebben

MODULÁRIS FELÉPÍTÉSŰ VILÁGÍTÓRENDSZER TERVEZÉSE

MODULÁRIS FELÉPÍTÉSŰ VILÁGÍTÓRENDSZER TERVEZÉSE Budapesti Műszaki és Gazdaságtudományi Egyetem Villamosmérnöki és Informatikai Kar Elektronikai Technológia tanszék Szokol Attila MODULÁRIS FELÉPÍTÉSŰ VILÁGÍTÓRENDSZER TERVEZÉSE KONZULENS Dr. Berényi Richárd

Részletesebben

Interrupt. ile ile 1 / 81

Interrupt. ile ile 1 / 81 Interrupt ile ile 1 / 81 ile ile 2 / 81 ile ile 3 / 81 ile ile 4 / 81 ile ile 5 / 81 ile ile 6 / 81 ile ile 7 / 81 ile ile 8 / 81 ile ile 9 / 81 Diszk ile ile 10 / 81 ile ile 11 / 81 ile ile 12 / 81 ile

Részletesebben

SZORGALMI FELADAT. 17. Oktober

SZORGALMI FELADAT. 17. Oktober SZORGALMI FELADAT F2. Tervezzen egy statikus aszinkron SRAM memóriainterfész áramkört a kártyán található 128Ki*8 bites memóriához! Az áramkör legyen képes az írási és olvasási műveletek végrehajtására

Részletesebben

DIGITÁLIS TECHNIKA 7. Előadó: Dr. Oniga István

DIGITÁLIS TECHNIKA 7. Előadó: Dr. Oniga István IGITÁLIS TECHNIKA 7 Előadó: r. Oniga István Szekvenciális (sorrendi) hálózatok Szekvenciális hálózatok fogalma Tárolók S tárolók JK tárolók T és típusú tárolók Számlálók Szinkron számlálók Aszinkron számlálók

Részletesebben

Vegyes témakörök. 1. Soros vezérlésű LCD számkijelző. Hobbielektronika csoport 2018/2019. Debreceni Megtestesülés Plébánia

Vegyes témakörök. 1. Soros vezérlésű LCD számkijelző. Hobbielektronika csoport 2018/2019. Debreceni Megtestesülés Plébánia Vegyes témakörök 1. Soros vezérlésű LCD számkijelző 1 Felhasznált anyagok Microchip: AN658 LCD Fundamentals... PHILIPS: Az I2C busz és használata Instructables: Arduino MiniPirate leírás MiniPirate forráskód:

Részletesebben

Mérési jegyzőkönyv. az ötödik méréshez

Mérési jegyzőkönyv. az ötödik méréshez Mérési jegyzőkönyv az ötödik méréshez A mérés időpontja: 2007-10-30 A mérést végezték: Nyíri Gábor kdu012 mérőcsoport A mérést vezető oktató neve: Szántó Péter A jegyzőkönyvet tartalmazó fájl neve: ikdu0125.doc

Részletesebben

Mikrorendszerek tervezése

Mikrorendszerek tervezése BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Mikrorendszerek tervezése MicroBlaze processzor Fehér Béla Raikovich Tamás

Részletesebben

A PIC18 mikrovezérlő család

A PIC18 mikrovezérlő család Elektronikai rendszerek laboratóriumi mérést előkészítő előadás 1 A PIC mikrovezérlők PIC mikrovezérlők 8 bites 16 bites 10Fxxx (6-pin) 12Cxxx, 12Fxxx (8-pin) 16C5x (baseline) 16Cxxx, 16Fxxx (mid-range)

Részletesebben

INVERSE E1 MULTIPLEXER LAN BRIDGE

INVERSE E1 MULTIPLEXER LAN BRIDGE INVERSE E1 MULTIPLEXER LAN BRIDGE SP 7403 és SP 7405 INVERSE E1 MULTIPLEXER LAN BRIDGE 1/11 Tartalomjegyzék Általános ismertetés...3 Funkció...3 WAN interfész...3 LAN interfész...3 Felügyelet...3 Tápfeszültség...3

Részletesebben

LOGSYS LOGSYS HŐMÉRŐ ÉS EEPROM MODUL FELHASZNÁLÓI ÚTMUTATÓ szeptember 16. Verzió 1.0.

LOGSYS LOGSYS HŐMÉRŐ ÉS EEPROM MODUL FELHASZNÁLÓI ÚTMUTATÓ szeptember 16. Verzió 1.0. LOGSYS HŐMÉRŐ ÉS EEPROM MODUL FELHASZNÁLÓI ÚTMUTATÓ 2012. szeptember 16. Verzió 1.0 http://logsys.mit.bme.hu Tartalomjegyzék 1 Bevezetés... 1 2 Az I 2 C busz általános ismertetése... 2 3 Az SPI busz általános

Részletesebben

Járműfedélzeti rendszerek I. 5. előadás Dr. Bécsi Tamás

Járműfedélzeti rendszerek I. 5. előadás Dr. Bécsi Tamás Járműfedélzeti rendszerek I. 5. előadás Dr. Bécsi Tamás Megszakítások (Interrupts: IT) Megszakítás fogalma Egy aszinkron jelzés (pl. gomblenyomás) a processzor felé (Interrupt Request: IRQ), hogy valamely

Részletesebben

Számítógép Architektúrák

Számítógép Architektúrák Számítógép Architektúrák Perifériakezelés a PCI-ban és a PCI Express-ben 2015. március 9. Budapest Horváth Gábor docens BME Hálózati Rendszerek és Szolgáltatások Tanszék ghorvath@hit.bme.hu Tartalom A

Részletesebben

Számítógép Architektúrák

Számítógép Architektúrák Perifériakezelés a PCI-ban és a PCI Express-ben Horváth Gábor 2017. február 14. Budapest docens BME Hálózati Rendszerek és Szolgáltatások Tanszék ghorvath@hit.bme.hu A PCI PCI = Peripheral Component Interfész,

Részletesebben

M-Bus Master MultiPort 250D/L

M-Bus Master MultiPort 250D/L MultiPort 250D/L Távoli kiolvasás M-Bus rendszerrel Akár 250 mérő csatlakoztatható egy hez, de a kaszkádosítással 1250 mérőből álló hálózat építhető ki Támogatja az elsődleges/másodlagos/kiterjesztett

Részletesebben

Dr. Oniga István DIGITÁLIS TECHNIKA 8

Dr. Oniga István DIGITÁLIS TECHNIKA 8 Dr. Oniga István DIGITÁLIS TECHNIA 8 Szekvenciális (sorrendi) hálózatok Szekvenciális hálózatok fogalma Tárolók RS tárolók tárolók T és D típusú tárolók Számlálók Szinkron számlálók Aszinkron számlálók

Részletesebben

Mikrovezérlők programozása

Mikrovezérlők programozása Analóg és digitális rsz-ek megvalósítása prog. mikroák-kel BMEVIEEM371 Budapesti Műszaki és Gazdaságtudományi Egyetem Mikrovezérlők programozása Nagy Gergely Elektronikus Eszközök Tanszéke (BME) 2013.

Részletesebben

Labor gyakorlat Mikrovezérlők

Labor gyakorlat Mikrovezérlők Labor gyakorlat Mikrovezérlők ATMEL AVR ARDUINO 1. ELŐADÁS BUDAI TAMÁS Tartalom Labor 2 mikrovezérlők modul 2 alkalom 1 mikrovezérlők felépítése, elmélet 2 programozás, mintaprogramok Értékelés: a 2. alkalom

Részletesebben

Billentyűzet. Csatlakozók: A billentyűzetet kétféle csatlakozóval szerelhetik. 5 pólusú DIN (AT vagy XT billentyűzet csatlakozó),

Billentyűzet. Csatlakozók: A billentyűzetet kétféle csatlakozóval szerelhetik. 5 pólusú DIN (AT vagy XT billentyűzet csatlakozó), Billentyűzet Általános billentyűzet Csatlakozók: A billentyűzetet kétféle csatlakozóval szerelhetik. 5 pólusú DIN (AT vagy XT billentyűzet csatlakozó), 6 pólusú mini-din (PS/2 billentyűzet csatlakozó).

Részletesebben

Labor gyakorlat Mikrovezérlők

Labor gyakorlat Mikrovezérlők Labor gyakorlat Mikrovezérlők ATMEL AVR ARDUINO 1. ELŐADÁS BUDAI TAMÁS 2015. 09. 06. Tartalom Labor 2 mikrovezérlők modul 2 alkalom 1 mikrovezérlők felépítése, elmélet 2 programozás, mintaprogramok Értékelés:

Részletesebben

Miskolci Egyetem. Gépészmérnöki és Informatikai Kar. Elektrotechnikai-Elektronikai Intézeti Tanszék. Villamosmérnöki szak

Miskolci Egyetem. Gépészmérnöki és Informatikai Kar. Elektrotechnikai-Elektronikai Intézeti Tanszék. Villamosmérnöki szak Miskolci Egyetem Gépészmérnöki és Informatikai Kar Elektrotechnikai-Elektronikai Intézeti Tanszék Villamosmérnöki szak Elektronikai tervezés és gyártás szakirány Szakdolgozat Varga Richárd IATFT8 2015

Részletesebben

Mikrovezérlők Alkalmazástechnikája

Mikrovezérlők Alkalmazástechnikája Gingl Zoltán, 2017, Szeged Mikrovezérlők Alkalmazástechnikája 17 dec. 1 http://www.inf.uszeged.hu/~gingl/hallgatoknak/mikrovezerlok Itt találhatók a legfrissebb részletes információk, letölthető anyagok

Részletesebben

Programozott soros szinkron adatátvitel

Programozott soros szinkron adatátvitel Programozott soros szinkron adatátvitel 1. Feladat Név:... Irjon programot, mely a P1.0 kimenet egy lefutó élének időpontjában a P1.1 kimeneten egy adatbitet ad ki. A bájt legalacsonyabb helyiértéke 1.

Részletesebben

A MiniRISC processzor

A MiniRISC processzor BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK A MiniRISC processzor Fehér Béla, Raikovich Tamás, Fejér Attila BME MIT

Részletesebben