Környezeti monitorozás

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Környezeti monitorozás"

Átírás

1 Környezeti monitorozás Mérésleírás 1 a Nukleáris környezetvédelem és klónjai (pl. Környezeti sugárvédelem) laborgyakorlatához Osváth Szabolcs, BME NTI, A radioaktív bomlás alapegyenletei Az izotópok stabilak vagy radioaktívak lehetnek. A radioaktív izotópok instabilak, vagyis bizonyos idı múlva valamilyen sugárzás kibocsátásával elbomlanak. Az adott idıtartam alatt elbomlott atomok száma egyenesen arányos az idıtartam hosszával (dt) és a bomlásra képes atomok számával (N), ezért a bomlásra képes atomok számának megváltozása (dn): dn = λ * N * dt [1] Az arányossági tényezı (λ) az ún. bomlási állandó, melynek értéke minden izotóp esetében más és más. A bomlási állandó dimenziója 1/idı, mértékegysége lehet 1/s, 1/h, 1/év, stb. Az [1] differenciálegyenlet megoldása, ha a kezdeti t=0 idıpontban N 0 atomunk volt: λt N( t) = N 0 *exp( λ * t) = N 0 * e [2] A radioaktív izotópok mennyiségét az aktivitással jellemezzük. Aktivitásnak az idıegység alatt elbomlott atommagok számát nevezzük, azaz felírható, hogy: dn A = = λ * N [3] dt Az aktivitás mértékegysége a Becquerel, melynek jele: Bq. 1 Becquerel aktivitás 1 bomlást jelent másodpercenként, azaz: 1 Bq = 1 s -1. A gyakorlatban elıforduló aktivitások megadásakor gyakran használjuk az SI elıtagokat: k [kilo] = 10 3, M [mega] = 10 6, G [giga] = 10 9, T [tera] = A [2] és [3] egyenlet összevonásával kapjuk az aktivitás idıbeli változását leíró exponenciális bomlástörvényt: A( t) = A0 *exp( λ t), [4] ahol A 0 jelöli az aktivitást egy kezdeti idıpontban, A(t) pedig az aktivitást az elızıhöz képest t idı múlva. Mivel a λ bomlási állandó értéke minden izotóp esetében más és más, a bomlástörvényt minden izotópra külön-külön kell alkalmazni. A gyakorlatban kényelmesebb és szemléletesebb a felezési idı (t 1/2 ) használata. Felezési idınek azt az idıtartamot nevezzük, amely alatt az adott radioizotóp aktivitása a felére csökken. A0 / 2 = A( t1/ 2 ) = A0 *exp( λ t1/ 2 ) [5] Az [5] egyenletet t 1/2 -re megoldva: ln(2) t 1 / 2 = [6] λ Ezt visszahelyettesítve a bomlástörvénybe azt kapjuk, hogy 1/ 2 t ( ) t1 / 2 ln(2) t A( t) = A0 exp( ) = A0 2 [7] t 1 Korábbi, többnyire Zagyvai Péter nevéhez főzıdı mérésleírások jelentıs mértékben átszerkesztett változata. 1/12

2 Ha helyes eredményt akarunk kapni, akkor fontos, hogy az egyenletbe t-t és t 1/2 -et ugyanabban a mértékegységben helyettesítsük be; ekkor A(t)-t ugyanabban a mértékegységben kapjuk, mint amelyikben A 0 -t behelyettesítettük. 2. A radioaktív sugárzások, detektálásuk és az alapvetı dózisfogalmak Környezetünkben számos radionuklid (radioaktív izotóp) fordul elı. Ezek egy része természetes, más része mesterséges eredető. A radioaktív izotópok bomlásukkor 3-féle sugárzást bocsáthatnak ki: α-sugárzás: kétszeres pozitív töltéssel rendelkezı He ionok (He atommagok). Bár kinetikus energiájuk viszonylag nagy, (3-8 MeV), hatótávolságuk nagy tömegük és töltésük miatt kicsi, akár egy papírlap, vagy néhány cm vastag levegıréteg is elnyeli ıket; β-sugárzás: elektronok vagy pozitronok, melyek szintén az atommag átalakulása során keletkeznek. Hatótávolságuk nagyobb, pl. levegıben energiájuktól függıen 1-2 m-t is elérhet, szilárd vagy folyékony közegben azonban nem több mint 1-2 cm; γ-sugárzás: nagy energiájú elektromágneses sugárzás (fotonok), melyek megjelenése az elızı két bomlási mód valamelyikét kísérheti. Áthatolóképessége még szilárd közegben is nagy (több méter), intenzitásának gyengítésére nagy rendszámú és sőrőségő anyagokat (Pb, beton) használnak. A radioaktív sugárzások detektálása az emittált sugárzás és az anyag (detektor) közötti kölcsönhatáson alapszik. A kölcsönhatás formája a sugárzás fajtájától, energiájától ill. az anyag tulajdonságaitól (rendszám, sőrőség) függ. A detektorok nagy része az ionizációt és gerjesztést hasznosítja és elektromos impulzusokat szolgáltat (elektromos detektorok). Az anyagban elnyelt ionizáló sugárzási energia fizikai, az élı anyagban, az emberi test szöveteiben emellett kémiai, biokémiai és biológiai hatást fejt ki. A hatás mértékeként a tömegegységben elnyelt és jelentıs részben ionizációra fordított összes sugárzási energiát, a dózist választották. A három legfontosabb dózisfogalom az elnyelt dózis, az egyenérték dózis és az effektív dózis. Az elnyelt dózis pusztán a sugárzás fizikai hatására vonatkozik: de E J D =, Gray, Gy dm m [8] kg A sugárzás biológiai kártétele, pontosabban annak általános, küszöbdózishoz nem kötött, tehát bármilyen kis dózisnál is lehetséges, véletlenszerő (sztochasztikus) biológiai hatása az egyenérték dózissal lesz arányos: H = D wr [ Sievert, Sv] [9] w R a sugárzás károsító képességére jellemzı relatív szám, a sugárzási tényezı (R = radiation = sugárzás). w R értéke α-sugárzásra 20, β-, γ- és Röntgen-sugárzásra 1, neutronsugárzásra pedig a neutronok igen különbözı, erısen neutronenergia-függı kölcsönhatásainak megfelelıen változó (a nemzetközi ajánlásokban a legutóbbi évek kutatásai alapján 2,5 és 20 közötti értékek, a hatályos magyar jogszabályban még 5 és 20 közöttiek szerepelnek). Az egyes emberi szövetek nem egyformán érzékenyek az ionizáló sugárzás sztochasztikus hatására, azaz a sugárzás dózisa által okozott génmutációk nyomán a rosszindulatú daganatok kialakulására. A gyors életciklusú, relatíve nagy sejtmagot tartalmazó sejtekbıl felépülı szövetek esetében a legnagyobb a kockázat. A szövetek relatív érzékenysége szerint súlyozni kell a szerveket érı, adott esetben (pl. belsı sugárterhelés, azaz a sugárforrások inkorporációja esetén) különbözı egyenérték dózisokat, ez az effektív dózis. H H w [ Sv] [10] E = T T T 2/12

3 T w = 1 [11] T w T a szövetek érzékenységét jellemzı relatív szám, a szöveti tényezı (T = tissue = szövet). A jelenleg alkalmazott w T értékek: 0,2: nemi szervek; 0,12: vörös csontvelı, tüdı, gyomor, bélrendszer; 0,05: hólyag, emlı, máj, nyelıcsı, pajzsmirigy; 0,01: bır, csontfelszín; a további maradék összesen 0,05. A jelenleg hivatalosan még nem alkalmazott, de a nemzetközi sugárvédelmi ajánlásokban már közzétett új w T értékek: 0,08: nemi szervek; 0,12: vörös csontvelı, tüdı, emlı, gyomor, bélrendszer; 0,04: hólyag, máj, nyelıcsı, pajzsmirigy; 0,01: bır, csontfelszín, agykörnyéki szövetek, nyálmirigyek; a további maradék összesen 0,12. Az említett dózisfogalmaknak értelmezhetı a teljesítményük (idı szerinti deriváltjuk) is. Az egyes dózisteljesítmények mértékegysége Gy/h illetve Sv/h. 3. A környezet ellenırzése A természetes sugárterhelés dózisa Magyarországon évente átlagosan 2,4 msv effektív dózis. Ennek mintegy 70%-át belsı sugárterhelés okozza (ezen belül nagyobb részt képvisel a levegıben lévı aeroszol-részecskékhez kötött radioaktivitás, a radon-leányelemek hatása, kisebbet az emberi szervezetben természetes okokból megtalálható 40 K radioizotóp dózisa. A légköri atombomba-robbantási kísérletek és a nukleáris létesítmények balesetei (elsısorban Csernobil) óta csekély mennyiségben megtalálható még a természetben számos mesterséges eredető radionuklid is. Fontos kérdés, hogy van-e jelen a környezetben még más, mesterséges eredető radioaktív anyag, amely adott esetben a szervezetünkbe juthat. A BME NTI (mint atomenergiát alkalmazó kiemelt létesítmény) a 15/2001. (VI. 6.) KöM rendelet elıírásai szerint környezet-ellenırzı méréseket végez. Érdekességképpen a mérésleírás végén megtalálható a rendelet 5. melléklete, melynek alapján az NTI Környezet-ellenırzési Szabályzata is készült. Az Oktatóreaktor épülete mellett elhelyezett detektor folyamatosan méri a külsı gamma-dózisteljesítményt, az aktuális érték a reaktorportán elhelyezett képernyırıl bármikor leolvasható. Mivel a BME tagja (és Ágazati Információs Központja) a (korábban Oktatási, illetve Oktatási és Kulturális, jelenleg Nemzeti Erıforrás) Minisztérium Országos Sugárfigyelı Jelzı és Ellenırzı Rendszerének (OMOSJER), az archivált adatok (a hálózat többi tagjának archivált adataival együtt) megtekinthetıek a honlapon. A levegı radionuklid-tartalmának vizsgálata érdekében a levegı aeroszoltartalmából (csapadéktól védett mintavevıben elhelyezett) aeroszolszőrı és légszivattyú segítségével folyamatosan mintát veszünk. A szőrıt hetente 3 alkalommal cseréljük, és néhány napos pihentetés után alacsonyhátterő összbéta-számlálóval elemezzük. A levegıbıl kihulló anyagokat (fall-out: száraz kihullás, ülepedı aeroszolok, washout: nedves kihullás, csapadékvíz) egy nagy felülető tálcában folyamatosan győjtjük. Gondoskodni kell arról, hogy a tálcában mindig legyen folyadék (tiszta illetve etilén-glikolos víz, gy. k. fagyálló), melyet havonta egyszer leeresztünk és bepárlunk. A bepárlási maradékot elhamvasztjuk, majd alacsonyhátterő összbéta-számlálóval elemezzük. A Duna vizébıl kéthetente veszünk egy mintát, melynek 500 ml-es részletét bepároljuk és alacsonyhátterő összbéta-számlálóval elemezzük. A reaktor környéki talajból és főbıl félévente veszünk egy-egy mintát, melyet megszárítunk, elhamvasztunk, majd alacsonyhátterő összbéta-számlálóval elemzünk. Folyóvízi üledék, talajvíz, takarmány, indikátornövény mintázását, illetve elemzését nem végezzük. 3/12

4 A környezet ellenırzésekor mindig figyelemmel kell lenni a természetes eredető radioaktív izotópokra és azok sugárzására. Ha például a levegı radioaktív szennyezettségét vizsgáljuk (ahogyan azt ezen a laborgyakorlaton tesszük), a levegıben lévı radioaktivitás (normál esetben) döntı részét kitevı, rövid felezési idejő radon bomlástermékek hozzájárulását egy erre alkalmas eljárással le kell vonnunk az eredménybıl. 4. A radon A földkérgi eredető természetes radioaktivitás jelentıs részét képezı 238 U és 232 Th bomlási sorának egyik tagja radon nemesgáz, a 222 Rn ( radon radon ) illetve a 220 Rn ( toron ). Mivel az elıbbi felezési ideje 3,8 nap, az utóbbié pedig csak 54 s, a talajból és a talaj alatti kızetbıl, valamint épületek esetében az építıanyagokból a 222 Rn jelentısen nagyobb mennyiségben kerülhet ki a légtérbe. A sugárzás Felezési idı Bomlási állandó Izotóp Sugárzás energiája [MeV] [perc] [1/perc] [1/s] 222 Rn Alfa 5, ,26e-4 2,1e Po Αlfa 6,00 3,05 0,2272 3,78e Pb Βéta 1,02 26,8 0, ,31e-4 Gamma 0, Bi Béta 3,27 19,7 0, ,86e-4 Gamma 0, Po Alfa 7,69 2,73e-6 2,54e táblázat A 222 Rn ( radon ) és rövid felezési idejő bomlástermékeinek jellemzı adatai A sugárzás Felezési idı Bomlási állandó Izotóp Sugárzás energiája [MeV] [perc] [1/perc] [1/s] 220 Rn Alfa 6,30 0,93 0,748 0, Po Alfa 6,78 0, , Pb Béta 0, , ,81e-5 Gamma 212 Bi Béta 64% Alfa 36% Gamma 0,239 2,25 6,07 0, ,0114 1,91e Po Alfa 8,78 5,0e-9 1,39e8 2,31e6 208 Tl Béta Gamma 2,38 0,583; 2,614 3,05 0,227 3,78e-3 2. táblázat A 220 Rn ( toron ) és rövid felezési idejő bomlástermékeinek jellemzı adatai A radon bomlása során keletkezı leányelemek adszorbeálódnak a levegıben lévı aeroszolrészecskék (por, füst) felszínén, és belélegzésüket követıen lerakódnak az emberi légutakban (torok, légcsı, hörgık, tüdı). Rövid felezési idejük miatt hamarább elbomlanak, mintsem a szervezet tisztító mechanizmusa eltávolítaná ıket. Dozimetriai szempontból különösen veszélyes az alfasugárzásuk, amelynek sugárzási tényezıje w α = 20, azaz az 4/12

5 abszorbeálódott alfa-energia ugyanakkora béta- vagy gamma-energiához képest húszszoros sejtkárosodást okoz. A levegıbe jutott mesterséges eredető radionuklidok is túlnyomó részben az aeroszolrészecskék felszínén kötıdnek meg, így azok a radon-leányelemekkel együtt juthatnak a légutakba. 5. Az egyensúlyi egyenérték-koncentráció (EEC) Ideális esetben a bomlási sor egyetlen radionuklidjának (pl. a 222 Rn-nak) az aktivitáskoncentrációjából (a radioaktív bomlás törvényeinek és a radionuklidok bomlási állandóinak ismeretében) a többi radionuklid aktivitáskoncentrációja is számolható. A valóságban az adszorpciós, deszorpciós, ülepedési, stb. folyamatok miatt nem áll fenn a bomlási egyensúly a radon és leányelemei között, tehát a radon aktivitáskoncentrációjából általában nem lehet kiszámolni a radon-leányelemek aktivitáskoncentrációit. Ugyanakkor általában nem is vagyunk kíváncsiak az egyes radionuklidok aktivitáskoncentrációira, csupán az általuk együttesen okozott légúti dózisra. Ezért gyakran nem a vizsgált levegıminta radon- illetve radonleányelemaktivitáskoncentrációit adjuk meg, hanem annak a fiktív, a bomlási egyensúly szempontjából ideális gázminta radon-aktivitáskoncentrációját, amely ugyanakkora légúti dózist lenne képes okozni, mint a vizsgált levegıminta. Ezt hívjuk radon-eec-nek, amely a vizsgált levegımintában lévı radon-leányelemek aktivitáskoncentrációinak súlyozott átlagaként számolható a következıképpen: 222 Rn-EEC = 0,105 * c( 218 Po) + 0,516 * c( 214 Pb) + 0,379 * c( 214 Bi) [12] A 220 Rn (toron) egyensúlyi egyenérték koncentrációjára hasonló összefüggés adható meg, a megfelelı radionuklid-aktivitáskoncentrációk, alfaenergiák és bomlási állandók segítségével. 6. A használt berendezés Az AMS-02 (aerosol monitoring system) berendezés (NTI-ben rendelkezésre álló) kézi vezérléső változata légszivattyúból, aeroszolszőrıbıl, nukleáris detektorokból, és számítógépbıl áll. A (lehetıleg nagy térfogatáramot biztosító) légszivattyú a környezetbıl vett levegımintát átszívja az aeroszolszőrın. Az aeroszolszőrı felületén győlik össze a radioaktivitást is tartalmazó aeroszol, a szőrési hatásfok majdnem 100%. Az aeroszolszőrı mellett elhelyezkedı nukleáris detektorok közül a PIPS (ez egy Si alapú félvezetı-detektor) az aeroszolminta alfa- és béta-spektrumát, a NaI(Tl) (ez egy ún. szcintillációs detektor) pedig a gamma-spektrumát veszi fel. [Az AMS-02 kereskedelmi változataiban (melyek drágábbak, mint az NTI leltárjában szereplı darab) jódszőrı, szervesjód-szőrı, és ezeket mérı NaI(Tl)- detektorok, illetve a szcintillációsnál sokkal jobb felbontóképességő Ge-detektorok is vannak.] A detektorok jeleit a számítógép fogadja, az azon futó vezérlı, adatgyőjtı, kiértékelı és archiváló program pedig felismeri a mintában esetleg jelenlévı, hosszú felezési idejő mesterséges eredető radionuklidok (például 137 Cs, 60 Co) jelenlétét, és egyidejőleg adatokat szolgáltat a radon-leányelemek aktivitáskoncentrációiról, a Rn-EEC-értékekrıl is. Az AMS- 02 használatával a mintavételt és a mérést egyidejőleg vagy egymást követıen is megvalósíthatjuk. 5/12

6 7. A természetes és mesterséges eredető radioaktivitás megkülönböztetése A levegıvel inkorporálható radioaktivitás döntı részben aeroszol-részecskékhez kötött állapotban található. Az alfa-, béta- és gammasugárzó radioaktív izotópok mérésével vizsgálható a levegı radioaktív szennyezettsége. A mesterséges eredető szennyezések meghatározásánál azonban a minden esetben jelenlévı, de folyamatosan változó koncentrációjú 222 Rn és 220 Rn leányelemeinek részesedését le kell vonnunk. (Ettıl függetlenül a környezeti monitorozó berendezések mőködıképességének és pontosságának igazolásaképpen célszerő, hogy mérjék és jelezzék ki a mindenkori radon- és toronaktivitáskoncentrációt, azaz az EEC-ket.) Eljárhatunk úgy, hogy a mintavételezés (az aeroszolok kiszőrése a levegıbıl) és a szőrı nukleáris mérése között várunk néhány napot. Így természetesen késıbb kapjuk meg az eredményt, de az már csak a mesterséges eredető radionuklidokra lesz jellemzı, hiszen az eltelt idı alatt a természetes eredető radionuklidok már lebomlottak (ui. a leghosszabb rövid élettartamú radon-leányelem felezési ideje 638 perc). Gyakran (pl. a laborgyakorlaton) elıfordul, hogy nincs idı több napot várni, mert gyorsan szükség van az eredményre. Az aeroszolhoz kötött természetes és mesterséges radioaktivitás komponensei közül csak a gamma-sugárzó nuklidok különböztethetık meg egyszerően, energiaszelektív gamma-detektorral és az elnyelt energiával arányos amplitúdójú válaszjelek számlálására szolgáló gamma-spektrométerrel végzett méréssel. A mérést az aeroszol-mintavétellel egyidıben vagy a mintavételt követıen végezhetjük. Az alfa-sugárzó izotópok csúcsai csak korlátozottan, a folytonos spektrummal rendelkezı béta-sugárzók sehogyan sem különböztethetık meg egymástól tisztán mőszeres eszközök alkalmazásával, tehát valamilyen kémiai vagy számolási eljárást kell segítségül hívnunk. A rövid felezési idejő 222 Rn-leányelemek mennyisége arányos a 222 Rn koncentrációjával a levegıben. Az aeroszolszőrın a bomlás mellett a leányelemek nuklidjainak száma a mintavétel illetve a mérés során növekszik is, a közvetlen anyaelem bomlása következtében, így az aktivitások idıfüggése egy differenciálegyenlet-rendszerrel írható le. Ha a 222 Rn-aktivitáskoncentráció a mintázott levegıben állandónak tekinthetı, egy idı után az aeroszol-mintavétel során az aktivitás növekedése (új nuklidok megkötése a szőrın) és a bomlás miatti csökkenés egy idı után kiegyenlítıdik, tehát a szőrın lévı természetes eredető aktivitás telítésbe megy. Mivel a mesterséges eredető radionuklidok forrása feltehetıen a környezeti mintavételi helytıl távol van, a szőrıt elérı mesterséges eredető radionuklidok a radonleányelemeknél feltehetıen jóval nagyobb felezési idıvel bírnak, így ezek aktivitása a jellemzıen legfeljebb egy-két napos mintavételi idı alatt nem telítıdik, hanem állandó jelenlét esetén a szőrın folyamatosan növekszik. Béta-sugárzás mérése esetén csak a telítıdés vagy növekedés trendje adhat alapot a mesterséges és természetes radioaktivitás megkülönböztetésére, míg alfa- és gamma-sugárzó izotópok esetében az energiaspektrum segítségével azonosíthatóak is a források. Spektrum alatt a detektált részecskék energia szerinti eloszlását értjük. Az energiaszelektív sugárzásdetektor a benne elnyelt energiával arányos nagyságú feszültségimpulzusokat generál. A spektrum grafikonjának vízszintes tengelyén a detektor feszültségimpulzusainak amplitúdójával arányos digitális szám szerepel. (Az amplitúdókat egy analóg-digitál átalakító - ADC - méri meg és alakítja digitális számokká.) Ezeket a digitális egységeket csatornák -nak nevezzük. Mivel a feszültségimpulzusok amplitúdója arányos a detektorban leadott energiával, így - energiakalibráció után - a csatornaszámból a detektorban leadott energiára is lehet következtetni. A csatornaszám- energia összefüggés gyakorlatilag lineárisnak tekinthetı. A függıleges tengely lineáris vagy logaritmikus skáláján ábrázoljuk, hogy az adott energiájú részecskébıl hány darabot detektáltunk a mérés ideje 6/12

7 alatt. A mesterséges radioaktivitás jelenlétének felismerése a detektorok energiaszelektivitásán alapul. Az alfa/béta, illetve a gamma spektrumban is jól meghatározható, hogy hol jelentkeznek a radon-leányelemekhez rendelhetı csúcsok. Az ezektıl eltérı spektrális területeken is tapasztalhatók beütések a radon- és (bizonyos mintavételi idı eltelte után) a toron-leányelemektıl. Ezek nagysága (idıfüggı módon) arányos a radon- és toron csúcsok területével, ennélfogva ezek az arányok (áthatás, cross-talk) kalibrációs méréssorozattal meghatározhatók. Az áthatási tényezık ismeretében vonható le a mesterséges radioaktivitás kimutatásához szükséges, az idıben természetesen változó értékő alapvonal (baseline). 8. A mérési feladat Kapcsoljuk be az AMS-02-t és a hozzá kapcsolt számítógépet, ez utóbbin indítsuk el az AMS-02 programjait! Helyezzünk egy szőrıt az AMS-02-be és indítsuk el a mérést! Az AMS-02 5 percen át méri a hátteret, majd elindítja a pumpát. Kb. 30 percen át vegyük a mintát! Ez alatt a berendezés folyamatosan méri a szőrıt, 1 percenként frissíti a spektrumokat, melyeket 5 percenként archivál és a képernyırıl töröl. A mért spektrumokat a program eltárolja, azokat hozzáértı személy visszahívhatja és áttekintheti. A program a spektrumok kiértékelését is elvégzi (az eredményeket le kell írni). 9. A detektálási határ A PIPS-detektorral felvett spektrum kisenergiás végén (gy. k. a spektrum bal oldalán) található a béta-tartomány, a közepes energiáknál a mesterséges alfa-sugárzók, a nagy energiáknál pedig a természetes alfa-sugárzók jelei. Kedvezı véletlen, hogy az esetleges szennyezésként megjelenı mesterséges alfa-sugárzó radionuklidok energiája szinte minden esetben kisebb, mint 6,0 MeV (a legkisebb alfa-energiájú radon-leányelem alfa-energiája), ezért a mesterséges alfa tartomány (ROI: region of interest) jól elkülönül a spektrum többi részétıl. Az AMS-02 szokásos beállítása esetén a PIPS-detektorral felvett spektrumban a bétasugárzáshoz rendelhetı energiatartományt a csatornák képezik, a mesterséges alfasugárzók tartománya a csatornák által bezárt ROI. A radon-leányelemek csúcsai átnyúlnak a mesterséges alfa-sugárzók ROI-jába, 0-nál nagyobb alapszintet okozva ott. Normális környezeti sugárzási helyzetben az AMS-02 kiértékelı programja nem jelez mesterséges alfa -aktivitást. A kiértékelés során meghatározzuk azt a minimális többlet-beütésszámot, amit a kiértékelı program már észlelne, és emiatt figyelmeztetı üzenetet generálna. Ezt a mennyiséget detektálási határnak (Limit of detection, L D ) nevezzük. Ehhez a mesterséges alfa-sugárzók tartományába esı beütések számából (jelölje ezt B!) kell kiindulni. Mivel mesterséges alfa-sugárzóra nem bukkantunk, a spektrum háttérspektrumnak, B pedig alapvonal-értéknek számít egy mesterséges alfa-sugárzóval szennyezett levegıminta spektrumához képest. Képzeljünk most el egy olyan alfa-spektrumot, melyet ismeretlen levegımintából kiszőrt aeroszolról vettünk fel! Jelölje S ebben a spektrumában a mesterséges alfa-sugárzók ROI-jába (idıarányosan) érkezett beütések számát! Akkor mondhatjuk ki, hogy az ismeretlen mintában mesterséges alfa-sugárzót mutattunk ki, ha az S-B különbség lényegesen nagyobb, mint 0. Mit tekintsünk lényegesen nagyobbnak? S-nek és B-nek a radioaktív bomlások statisztikus jellegébıl fakadóan van valamekkora bizonytalansága, amit a szórásukkal (σ S, σ B ) jellemzünk. Valószínőségszámítási ismereteink szerint az S-B különbség szórására felírható, hogy: 7/12

8 2 2 2 σ = σ + σ B + σ B [13] 0 S B B 2 Akkor mutattunk ki a mintában mesterséges alfa-sugárzót, ha S-B nagyobb ennél a szórásnál? Nem! A valószínőségszámítás szerint ez az esetek kb. 32%-ában véletlenül is megtörténhet, annak ellenére, hogy a mintában nincsen jelen mesterséges alfa-sugárzó. (Ez a jelenség ahhoz hasonló, hogy egy normális eloszlást mutató fizikai mennyiséget sokszor megmérve a mérési pontok kb. 32%-a kívül esik a szóráson.) Ha tehát csak a szórásnál nagyobb értéket követelünk meg, akkor 32%-os valószínőséggel tévedünk (ún. elsıfajú hibát vétünk), és akkor is mesterséges izotópok jelenlétére következtetünk, amikor csak a statisztikus ingadozás miatt mértünk nagyobb értéket. Ezért használják a k α szignifikanciatényezıt. Ennek bevezetésével akkor mondhatjuk ki, hogy az ismeretlen mintában mesterséges alfa-sugárzót mutattunk ki, ha S-B > L C, ahol: L C = k α * σ = = k σ [14] µ 0 α* 0 k α értéke attól függ, hogy mennyire akarunk biztosra menni. Minél biztosabb, szignifikánsabb eredményt akarunk, annál nagyobb k α értéket kell választanunk. A valószínőségszámítás szerint 95%-os bizonyossághoz (szignifikancia-szinthez) k α = 1,645 tartozik. Megvizsgáltuk, mi kell ahhoz, hogy csak kis (5%-os) valószínőséggel kövessünk el elsıfajú hibát (azt a hibát, hogy mesterséges radioaktivitás jelenlétére következtetünk, pedig a valóságban csak a háttér statisztikus ingadozása okozza a megnövekedett beütésszámot). Elkövethetünk másféle (ún. másodfajú) hibát is: azt, hogy a ténylegesen jelenlévı mesterséges radioaktivitást nem detektáljuk, mivel az általa okozott beütésszám-növekedés a szóráson belülre esik. Legalább mekkora legyen az alapvonal (háttér) felett a mesterséges alfa-sugárzóktól származó (nettó) L D beütésszám, hogy csak 5% valószínőséggel ne vegyük észre? Ezt az L D beütésszámot elızetes detektálási határnak nevezzük, és a következıképpen számítható: 2 LD = 2LC + kα [15] Ha a ROI nettó területe (S-B) nagyobb, mint L C (az utólagos kiértékelési határ), a keresett izotópot azonosítottnak tekintjük, és az S-B különbséget használjuk a mennyiségi kiértékeléshez. Ha ez a feltétel nem teljesül, akkor a mennyiségi kiértékelésben a keresett izotópra csak egy felsı korlátot adhatunk, amit L D -bıl számítunk. A PIPS detektorral felvett utolsó spektrumból határozzuk meg B-t! Ezt megtehetjük úgy is, hogy összeadjuk a 36.-tól a 120. csatornáig az egyes csatornákba érkezett beütéseket; de ezt az összegzést elvégzi a program is: a cursor-ral keressük meg a ROI egyik végét, üssünk le egy <Shift>-et, majd a cursor-ral álljunk a ROI másik végére a tartomány határai és a tartományba esett összes beütés száma a képernyı jobb felsı sarkában olvashatóak. B ismeretében a [13]-[14]-[15] egyenletek segítségével számítsuk ki L D -t! 10. A detektálási hatásfok A detektorok általában nem mindegyiket érzékelik a mintát elhagyó radioaktív részecskék közül, csak egy bizonyos hányadukat. Ennek több oka van. Egyrészt a sugárforrásból kilépı részecskék a bomlás természeténél fogva izotróp eloszlásúak, vagyis nemcsak a detektor felé, hanem bármely irányba elhagyhatják a mintát. Másrészt a detektor érzékeny térfogatába bejutó részecskék sem feltétlenül lépnek kölcsönhatásba a detektorral, azaz eredményeznek jelet a detektor kimenetén. A detektálási hatásfok (η) azt adja meg, hogy a sugárforrásból kilépı, adott energiájú részecskék mekkora hányada nyelıdik el a detektor érzékeny térfogatában úgy, hogy számunkra hasznos jelet eredményez a detektor kimenetén. Vagyis 8/12

9 N reg ( E) η ( E) =, [16] N ( E) forr ahol az E energiájú részecskébıl N forr darab hagyta el a sugárforrást és ezek közül N reg -et regisztrált a mérıberendezés. 11. A minimális kimutatható aktivitás és aktivitás-koncentráció A beütésszámban meghatározott L D tovább alakítandó a gyakorlat szempontjából fontos mennyiségekké. A környezeti monitorozás egyik fontos eredménye a minimális kimutatható aktivitás (MDA, minimum detectable activity), amely a következıképpen számolható ki: LD MDA = [17] tm η Az egyenletben t m a kiértékeléshez használt spektrum mérési ideje, η a detektálási hatásfok, melynek értéke az AMS-02 esetében mesterséges alfa-sugárzókra η α = 0,263; bétasugárzókra η β = 0,345. Az MDA-értékbıl úgy kapjuk meg a minimális kimutatható aktivitás-koncentrációt (c MDA ), hogy azt leosztjuk a mintavétel ideje alatt a szőrın átszívott levegı térfogatával. (Az átszívott levegı térfogatát (V, [m 3 ]) az AMS-02 meghatározza és kijelzi, de csak addig, amíg a pumpa mőködik.) MDA c MDA = z [18] V A [18] egyenletben szereplı z korrekciós tényezı (1 z 2) azt veszi figyelembe, hogy a mérés a mintavétellel egy idıben zajlott, és emiatt a mérés alatt nem V-nyi, hanem csak kisebb térfogatú levegıbıl kiszőrt radionuklidok vannak a szőrın. z képletének levezetését mellızzük, a gyakorlaton alkalmazott 30 perces mintavételi és 5 perces mérési idı esetében z = 12/11 = 1,091. Számoljuk ki a mesterséges alfa-sugárzók minimális kimutatható aktivitását és aktivitás-koncentrációját, majd ez utóbbit vessük össze az AMS-02 programja által (a fentinél összetettebb, pontosabb algoritmussal) számított értékkel! 12. A levegı belélegzésébıl származó dózis becslése Sugárvédelmi vizsgálatokban az aktivitás-koncentrációból már egyszerően megbecsülhetı az az inkorporációs effektív dózis is, amelyet a feltételezett szennyezettségő levegı belélegzésével kapna egy fiktív személy: H E = cmda F t P DCFi [18] A [18] egyenletben F jelöli a szennyezett levegıt belélegzı személy légzési sebességét (ennek szokásos értéke alvásnál 0,8; normális napi tevékenységnél 1,0; nehéz fizikai munkánál 1.2 m 3 /h), t P a személy tartózkodási idejét a szennyezett légtérben, DCF pedig az egységnyi radioaktivitás belégzésére számított, nemzetközi kompilációkban idırıl idıre közzétett dóziskonverziós tényezıt [Sv/Bq]. Az i index egy kiválasztott radioizotópot jelöl. Alfasugárzó mesterséges eredető szennyezésnél i szokásos választása a 239 Pu, a legnagyobb DCF-ő, azaz potenciálisan legveszélyesebb radionuklid. A DCF értékeket nemzetközi tudományos kompilációkból, például a Nemzetközi Atomenergia Ügynökség által kiadott Safety Series #115 (1996) kiadványból vehetjük. Ebben pl. a 239 Pu oldhatatlan oxidjaira 17 évesnél idısebb személyek esetében 1,6x10-5 Sv/Bq szerepel. Végezzük el a feltételezett szennyezettségő levegı belélegzésétıl származó 9/12

10 inkorporációs effektív dózis becslését! Az eredményt vessük össze a természetes sugárterhelés dózisával, valamint a lakossági dóziskorláttal, melynek értéke 1 msv/év! 13. Elvárások a jegyzıkönyvvel kapcsolatosan Mivel tudományos cikkekben is csak utalni, hivatkozni szoktak másutt már közzétett eljárásokra, és nem szokás teljes részletességgel megismételni azokat, továbbá mivel minden egyetemi hallgatóról feltételezhetı, hogy ismeri a <Ctrl>-<c> és <Ctrl>-<v> billentyőkombinációkat, a jegyzıkönyvbe nem kell átmásolni az elméleti bevezetıt. Ugyanakkor a kapott, mért és számolt adatoknak jól el kell különülniük egymástól, szerepelniük kell a felhasznált képleteknek, továbbá minden fizikai mennyiség mellett szerepelnie kell a mértékegységnek. A jegyzıkönyvben nagyon tömören és lényegre törıen szerepeljenek: - a mérés címe, idıpontja, helyszíne, - a mérést végzı hallgatók és oktató(k) nevei, - a mérés célja, elve, - a használt berendezés ismertetése, - a számítógép képernyıjérıl leolvasott adatok (a radon-eec-k és a mesterséges eredető radionuklidok kimutatási határai), - a mérésleírásban kért összes számolás (B-tıl H E -ig) és diszkusszió, - minden egyéb, amit a mérésvezetı kért. A jegyzıkönyv ideális terjedelme egy A4-es oldal. A jegyzıkönyvvel kapcsolatban a gyakorlatvezetı természetesen a fentiektıl eltérı igényeket is megfogalmazhat. 14. Ellenırzı kérdések Értelmezze az aktivitást, a bomlási állandót és a felezési idıt, továbbá adja meg SIalapegységüket! Írja fel az exponenciális bomlástörvényt! Adja meg a képletben szereplı betők jelentését és SI-alapegységét! Ismertesse a fizikai és biológiai dózisfogalmakat, továbbá a közöttük fennálló összefüggéseket! Állítsa sorba az alfa- béta- és gamma-sugárzást veszélyesség szempontjából (a) testen kívüli, és (b) testen belüli (inkorporált) radioaktív szennyezés esetén! Átlagosan mekkora a természetes sugárzásból származó dózisterhelés Magyarországon, és mely hatásokból tevıdik ez össze? Milyen mérésekkel ellenırzik az NTI-nél a környezet állapotát? Magyarázza meg a Rn-EEC fogalmát! Ismertesse az AMS-02 felépítését és az egységek fı jellemzıit! Milyen detektorokat használ az AMS-02, és ezek milyen típusú sugárzást mérnek? Milyen módszerekkel lehet megkülönböztetni a természetes és mesterséges eredető radioaktivitást? Mit nevezünk spektrumnak? Mely mennyiségek vannak egy alfa- vagy gamma-spektrum grafikonjának tengelyein? Magyarázza meg a különbséget az L C és az L D értékek között! Mikor állíthatjuk, hogy egy mintában kimutattunk egy adott radionuklidot? Magyarázza meg, mi a detektálási hatásfok! Hogyan becsülhetı a radioaktív izotópokkal szennyezett levegı belélegezésébıl 10/12

11 származó dózis? A felkészülés ellenırzésekor a gyakorlatvezetı természetesen más kérdéseket is feltehet. 15. Melléklet: 5. számú melléklet a 15/2001. (VI. 6.) KöM rendelethez Az üzemeltetés környezet-ellenırzési követelményei 1. A kiemelt létesítmények környezeti sugárvédelmi ellenırzésének célja: a) a létesítmények környezetében végzett mérésekkel kiegészíteni a radioaktív kibocsátás ellenırzését, b) a lakosság, a hatóságok és a szakterület iránt érdeklıdık tájékoztatása környezeti mérési adatok alapján. 2. A cél megvalósítását szolgálja a Környezet Ellenırzési Szabályzat, amely tartalmazza a környezeti sugárvédelmi ellenırzés rendjét, módszereit és eszközeit, azok teljesítıképességének és hatékonyságának jellemzıit. 3. Az aktivitás-koncentrációk, aktivitások meghatározására általában nuklidspecifikus mérési módszereket kell alkalmazni. Az összes-béta mérési eredmények csak a változások kimutatására szolgáló elıszőrı vizsgálatok indikátor mennyiségeként fogadhatók el, amelyeket szükség esetén mindenképpen ki kell egészíteni a megfelelı nuklidspecifikus elemzésekkel. 4. A mérési eljárások kimutatási határai feleljenek meg a nemzetközi és hazai méréstechnikai színvonalnak, pl. gamma-spektrometriai méréseknél legalább 1 Bq kg -1, alfa-spektrometriai méréseknél 0,01 Bq kg -1, trícium (HTO) meghatározásánál 1 Bq kg -1, egyéb béta-méréseknél 0,1 Bq kg -1 legyen. 5. Létesítményfüggı szempontok 5.1. Atomerımő, atomfőtımő és kiégett főtıelem átmeneti tároló esetén: folyamatos ellenırzés szükséges a létesítmény körül több irányban a külsı gamma-dózisteljesítmény, a levegı radionuklid koncentráció, valamint a légköri radionuklid kihullás mérésével; szakaszos ellenırzés, mintavételezés és laboratóriumi mérés szükséges több mintavételi pontban, félévi, esetenként negyedévi gyakorisággal a folyóvíz, folyóvízi üledék és talajvíz, továbbá a talaj, fő, takarmány és indikátornövény esetén Kutató- és oktató reaktor, radioaktív hulladéktároló és uránbánya esetén (beleértve a helyreállított területeket is) az pontban szereplı folyamatos ellenırzést legalább egy talajfelszíni ponton kell végezni, továbbá a környezeti mintavételezések és mérések száma is kisebb lehet Az 5.1. és 5.2. pontokban nem szereplı kiemelt létesítmény esetén - a kibocsátásra kerülı radionuklidoktól és kibocsátási módoktól függıen - a talaj, talajvíz, folyóvíz és üledéke, valamint a levegı, fő, indikátornövény radionuklid koncentrációjának mérése évi 2-4 alkalommal; a külsı gamma-dózisteljesítmény meghatározása ennél gyakrabban történik Az 5.1. pontban megjelölt méréseken kívül az atomerımő engedélyese: folyamatosan méri a kibocsátási pontokra jellemzı helyen és magasságban a légköri terjedést meghatározó meteorológiai jellemzıket (szélirányt, szélsebességeket stb.); évente meghatározza az éves vízhozamot. 6. Az engedélyes az ellenırzés eredményérıl évenként jelentésben számol be. 7. A jelentés tartalmazza: 7.1. a létesítmény rövid jellemzését a radioaktív kibocsátás szempontjából és az ellenırzés célját; 11/12

12 7.2. az alkalmazott ellenırzési eljárások rövid leírását, az újonnan bevezettek részletes ismertetését; 7.3. a mintavételi és mérési pontok megjelölését, az ellenırzés gyakoriságát, eredményeit és ezek összevetését a korábbi eredményekkel; 7.4. az ellenırzés hatékonyságának javítására vonatkozó javaslatokat. 12/12

Radonmérés és környezeti monitorozás

Radonmérés és környezeti monitorozás Bevezetés Radonmérés és környezeti monitorozás A radioaktív bomlás és a radioaktív sugárzások Az izotópok stabilak vagy radioaktívak lehetnek. A radioaktív izotópok instabilak, vagyis bizonyos idő múlva

Részletesebben

EGÉSZTESTSZÁMLÁLÁS. Mérésleírás Nukleáris környezetvédelem gyakorlat környezetmérnök hallgatók számára

EGÉSZTESTSZÁMLÁLÁS. Mérésleírás Nukleáris környezetvédelem gyakorlat környezetmérnök hallgatók számára EGÉSZTESTSZÁMLÁLÁS Mérésleírás Nukleáris környezetvédelem gyakorlat környezetmérnök hallgatók számára Zagyvai Péter - Osváth Szabolcs Bódizs Dénes BME NTI, 2008 1. Bevezetés Az izotópok stabilak vagy radioaktívak

Részletesebben

Radon-koncentráció relatív meghatározása Készítette: Papp Ildikó

Radon-koncentráció relatív meghatározása Készítette: Papp Ildikó Radon-koncentráció relatív meghatározása Készítette: Papp Ildikó Elméleti bevezetés PANNONPALATINUS regisztrációs code PR/B10PI0221T0010NF101 A radon a 238 U bomlási sorának tagja, a periódusos rendszer

Részletesebben

Sugárvédelmi Ellenőrző és Jelző Rendszerének vizsgálata

Sugárvédelmi Ellenőrző és Jelző Rendszerének vizsgálata Sugárvédelmi Ellenőrző és Jelző Rendszerének vizsgálata Zagyvai Péter Osváth Szabolcs Huszka Ádám BME NTI, 2014. 1/5 1. Bevezetés Minden nukleáris létesítmény bizonyos mértékű veszélyforrást jelent az

Részletesebben

RADIOAKTIVITÁS A LEVEGİBEN

RADIOAKTIVITÁS A LEVEGİBEN RADIOAKTIVITÁS A LEVEGİBEN Mérésleírás Zagyvai Péter - Osváth Szabolcs Kiss Attila BME NTI, 009 1. Bevezetés A mérési gyakorlatok során több módszerrel is meghatározzuk a levegıben jelenlévı radon ( Rn

Részletesebben

Sugárvédelmi mérések és berendezések

Sugárvédelmi mérések és berendezések Sugárvédelmi mérések és berendezések Zagyvai Péter Osváth Szabolcs Huszka Ádám BME NTI, 2014. 1/6 1. Bevezetés Minden nukleáris létesítmény bizonyos mértékű veszélyforrást jelent az ember és környezete

Részletesebben

Radon a környezetünkben. Somlai János Pannon Egyetem Radiokémiai és Radioökológiai Intézet H-8201 Veszprém, Pf. 158.

Radon a környezetünkben. Somlai János Pannon Egyetem Radiokémiai és Radioökológiai Intézet H-8201 Veszprém, Pf. 158. Radon a környezetünkben Somlai János Pannon Egyetem Radiokémiai és Radioökológiai Intézet H-8201 Veszprém, Pf. 158. Természetes eredetőnek, a természetben eredetileg elıforduló formában lévı sugárzástól

Részletesebben

Magspektroszkópiai gyakorlatok

Magspektroszkópiai gyakorlatok Magspektroszkópiai gyakorlatok jegyzıkönyv Zsigmond Anna Fizika BSc III. Mérés vezetıje: Deák Ferenc Mérés dátuma: 010. április 8. Leadás dátuma: 010. április 13. I. γ-spekroszkópiai mérések A γ-spekroszkópiai

Részletesebben

Az atommag összetétele, radioaktivitás

Az atommag összetétele, radioaktivitás Az atommag összetétele, radioaktivitás Az atommag alkotórészei proton: pozitív töltésű részecske, töltése egyenlő az elektron töltésével, csak nem negatív, hanem pozitív: 1,6 10-19 C tömege az elektron

Részletesebben

Radioaktív bomlási sor szimulációja

Radioaktív bomlási sor szimulációja Radioaktív bomlási sor szimulációja A radioaktív bomlásra képes atomok nem öregszenek, azaz nem lehet sem azt megmondani, hogy egy kiszemelt atom mennyi idıs (azaz mikor keletkezett), sem azt, hogy pontosan

Részletesebben

Radioaktív elemek környezetünkben: természetes és mesterséges háttérsugárzás. Kovács Krisztina, Alkímia ma

Radioaktív elemek környezetünkben: természetes és mesterséges háttérsugárzás. Kovács Krisztina, Alkímia ma Radioaktív elemek környezetünkben: természetes és mesterséges háttérsugárzás Tartalom bevezetés, alapfogalmak természetes háttérsugárzás mesterséges háttérsugárzás összefoglalás OSJER Bevezetés - a radiokémiai

Részletesebben

Kibocsátás- és környezetellenırzés a Paksi Atomerımőben. Dr. Bujtás Tibor Debrecen, 2009. Szeptember 04.

Kibocsátás- és környezetellenırzés a Paksi Atomerımőben. Dr. Bujtás Tibor Debrecen, 2009. Szeptember 04. Kibocsátás- és környezetellenırzés a Paksi Atomerımőben Dr. Bujtás Tibor Debrecen, 2009. Szeptember 04. Elıadás fı témái Hatósági szabályozások Kibocsátás ellenırzés és rendszerei Környezetellenırzés és

Részletesebben

IVÓVIZEK RADIOANALITIKAI VIZSGÁLATA

IVÓVIZEK RADIOANALITIKAI VIZSGÁLATA IVÓVIZEK RADIOANALITIKAI VIZSGÁLATA Ádámné Sió Tünde, Kassai Zoltán ÉTbI Radioanalitikai Referencia Laboratórium 2015.04.23 Jogszabályi háttér Alapelv: a lakosság az ivóvizek fogyasztása során nem kaphat

Részletesebben

Az ionizáló sugárzások előállítása és alkalmazása

Az ionizáló sugárzások előállítása és alkalmazása Az ionizáló sugárzások előállítása és alkalmazása Dr. Voszka István Semmelweis Egyetem Biofizikai és Sugárbiológiai Intézet Wilhelm Conrad Röntgen 1845-1923 Antoine Henri Becquerel 1852-1908 Ionizáló sugárzások

Részletesebben

ÉRTELMEZŐ INFORMÁCIÓK ÉS MEGHATÁROZÁSOK A SUGÁRVÉDELEMBEN

ÉRTELMEZŐ INFORMÁCIÓK ÉS MEGHATÁROZÁSOK A SUGÁRVÉDELEMBEN ÉRTELMEZŐ INFORMÁCIÓK ÉS MEGHATÁROZÁSOK A SUGÁRVÉDELEMBEN ALARA-elv A sugárveszélyes munkahelyen foglalkoztatott személyek sugárterhelését az ésszerűen elérhető legalacsonyabb szinten kell tartani a gazdasági

Részletesebben

FIZIKA. Radioaktív sugárzás

FIZIKA. Radioaktív sugárzás Radioaktív sugárzás Atommag összetétele: Hélium atommag : 2 proton + 2 neutron 4 He 2 A He Z 4 2 A- tömegszám proton neutron együttesszáma Z- rendszám protonok száma 2 Atommag összetétele: Izotópok: azonos

Részletesebben

Neutron- és gamma-dózisteljesítmény mérése az Oktatóreaktor 4. vízszintes csatornájánál

Neutron- és gamma-dózisteljesítmény mérése az Oktatóreaktor 4. vízszintes csatornájánál Neutron- és gamma-dózisteljesítmény mérése az Oktatóreaktor 4. szintes csatornájánál Osváth Szabolcs, BME NI, 2012 Bevezetés Az oktatóreaktor 4. szintes csatornájának körkeresztmetszetű nyílásából közelítőleg

Részletesebben

A levegő radonkoncentrációjának meghatározása

A levegő radonkoncentrációjának meghatározása 1. Bevezetés A levegő radonkoncentrációjának meghatározása A mérési gyakorlatok során több módszerrel is meghatározzuk a levegőben jelenlévő radon ( Rn és 0 Rn) aktivitás-koncentrációját. Egyes méréseket

Részletesebben

Jakab Dorottya, Endrődi Gáborné, Pázmándi Tamás, Zagyvai Péter Magyar Tudományos Akadémia Energiatudományi Kutatóközpont

Jakab Dorottya, Endrődi Gáborné, Pázmándi Tamás, Zagyvai Péter Magyar Tudományos Akadémia Energiatudományi Kutatóközpont Jakab Dorottya, Endrődi Gáborné, Pázmándi Tamás, Zagyvai Péter Magyar Tudományos Akadémia Energiatudományi Kutatóközpont Bevezetés Kutatási háttér: a KFKI telephelyen végzett sugárvédelmi környezetellenőrző

Részletesebben

Folyadékszcintillációs spektroszkópia jegyz könyv

Folyadékszcintillációs spektroszkópia jegyz könyv Folyadékszcintillációs spektroszkópia jegyz könyv Zsigmond Anna Julia Fizika MSc I. Mérés vezet je: Horváth Ákos Mérés dátuma: 2010. október 21. Leadás dátuma: 2010. november 8. 1 1. Bevezetés A mérés

Részletesebben

Ionizáló sugárzások dozimetriája

Ionizáló sugárzások dozimetriája Ionizáló sugárzások dozimetriája A becsült átlagos évi dózis természetes és mesterséges forrásokból 3.6 msv. környezeti foglalkozási katonai nukleáris ipari orvosi A terhelés megoszlása a források között

Részletesebben

Sugárvédelem nukleáris létesítményekben. Átfogó [fenntartó] SVK Osváth Szabolcs (OKK-OSSKI-LKSO)

Sugárvédelem nukleáris létesítményekben. Átfogó [fenntartó] SVK Osváth Szabolcs (OKK-OSSKI-LKSO) Sugárvédelem nukleáris létesítményekben Átfogó [fenntartó] SVK Osváth Szabolcs (OKK-OSSKI-LKSO) Tartalom Ki mit nevez nukleárisnak? Hasadóanyagok Neutronos láncreakció, neutronsugárzás Felaktiválódás,

Részletesebben

-A radioaktivitás a nem stabil (úgynevezett radioaktív) atommagok bomlásának folyamata. -Nagyenergiájú ionizáló sugárzást kelt Az elnevezés: - radio

-A radioaktivitás a nem stabil (úgynevezett radioaktív) atommagok bomlásának folyamata. -Nagyenergiájú ionizáló sugárzást kelt Az elnevezés: - radio -A radioaktivitás a nem stabil (úgynevezett radioaktív) atommagok bomlásának folyamata. -Nagyenergiájú ionizáló sugárzást kelt Az elnevezés: - radio (sugároz) - activus (cselekvő) Különféle foszforeszkáló

Részletesebben

A sugárvédelem alapjai

A sugárvédelem alapjai A sugárvédelem alapjai 1. Dózisfogalmak 2. Az ionizáló sugárzások egészséget károsító hatásai 3. Sugárvédelmi szabályozás - korlátok 4. A dózismérés sajátosságai 5. Természetes radioaktivitás 6. Radioaktív

Részletesebben

Compton-effektus. Zsigmond Anna. jegyzıkönyv. Fizika BSc III.

Compton-effektus. Zsigmond Anna. jegyzıkönyv. Fizika BSc III. Compton-effektus jegyzıkönyv Zsigmond Anna Fizika BSc III. Mérés vezetıje: Csanád Máté Mérés dátuma: 010. április. Leadás dátuma: 010. május 5. Mérés célja A kvantumelmélet egyik bizonyítékának a Compton-effektusnak

Részletesebben

Sugárzások kölcsönhatása az anyaggal

Sugárzások kölcsönhatása az anyaggal Radioaktivitás Biofizika előadások 2013 december Sugárzások kölcsönhatása az anyaggal PTE ÁOK Biofizikai Intézet, Orbán József Összefoglaló radioaktivitás alapok Nukleononkénti kötési energia (MeV) Egy

Részletesebben

Az ionizáló sugárzások fajtái, forrásai

Az ionizáló sugárzások fajtái, forrásai Az ionizáló sugárzások fajtái, forrásai magsugárzás Magsugárzások Röntgensugárzás Függelék. Intenzitás 2. Spektrum 3. Atom Repetitio est mater studiorum. Röntgen Ionizációnak nevezzük azt a folyamatot,

Részletesebben

Nukleáris környezetvédelem Környezeti sugárvédelem

Nukleáris környezetvédelem Környezeti sugárvédelem Nukleáris környezetvédelem Környezeti sugárvédelem 1. Dózisfogalmak 2. Az ionizáló sugárzások egészségkárosító hatásai 3. A dózis meghatározásának mérési és számítási módszerei 4. A sugárvédelmi szabályzás

Részletesebben

Sugárvédelem kurzus fogorvostanhallgatók számra. Töltött részecskék elnyelődése. Sugárzások és anyag kölcsönhatása. A sugárzások elnyelődése

Sugárvédelem kurzus fogorvostanhallgatók számra. Töltött részecskék elnyelődése. Sugárzások és anyag kölcsönhatása. A sugárzások elnyelődése Sugárvédelem kurzus fogorvostanhallgatók számra 2. Az ionizáló sugárzás és az anyag kölcsönhatása. Fizikai dózisfogalmak és az ionizáló sugárzás mérése Sugárzások és anyag kölcsönhatása. A sugárzások elnyelődése

Részletesebben

50 év a sugárvédelem szolgálatában

50 év a sugárvédelem szolgálatában Magyar Tudományos Akadémia KFKI Atomenergia Kutatóintézet Fehér István, Andrási Andor, Deme Sándor 50 év a sugárvédelem szolgálatában XXXV. Sugárvédelmi Továbbképző Tanfolyam Hajdúszoboszló, 2010. április

Részletesebben

Radon és leányelemeihez kapcsolódó dóziskonverziós tényezők számítása komplex numerikus modellek és saját fejlesztésű szoftver segítségével

Radon és leányelemeihez kapcsolódó dóziskonverziós tényezők számítása komplex numerikus modellek és saját fejlesztésű szoftver segítségével Radon és leányelemeihez kapcsolódó dóziskonverziós tényezők számítása komplex numerikus modellek és saját fejlesztésű szoftver segítségével Farkas Árpád és Balásházy Imre MTA Energiatudományi Kutatóközpont

Részletesebben

LAKOSSÁGI SUGÁRTERHELÉS 2010. október 6 (szerda), 15:40-16:50, Árkövy terem

LAKOSSÁGI SUGÁRTERHELÉS 2010. október 6 (szerda), 15:40-16:50, Árkövy terem SE FOK Sugárvédelem, 2010/2011 LAKOSSÁGI SUGÁRTERHELÉS 2010. október 6 (szerda), 15:40-16:50, Árkövy terem Dr. Kanyár Béla, SE Sugárvédelmi Szolgálat 1 Sugárterhelések osztályozásának szempontjai - Sugárforrás

Részletesebben

Az ionizáló sugárzások előállítása és alkalmazása

Az ionizáló sugárzások előállítása és alkalmazása Az ionizáló sugárzások előállítása és alkalmazása Dr. Voszka István Semmelweis Egyetem Biofizikai és Sugárbiológiai Intézet Wilhelm Conrad Röntgen 1845-1923 Antoine Henri Becquerel 1852-1908 Ionizáló sugárzások

Részletesebben

Sugárvédelem alapjai. Nukleáris alapok. Papp Ildikó

Sugárvédelem alapjai. Nukleáris alapok. Papp Ildikó Sugárvédelem alapjai Nukleáris alapok Papp Ildikó 2 Emlékeztető A sugárzások és az anyagi közeg kölcsönhatása Dózisfogalmak 3 Pici történelem 1896: Henri Becquerel uránsók Azt találta, hogy sugárzás intenzitása

Részletesebben

Dozimetriai alapfogalmak. Az ionizáló sugárzás mérése

Dozimetriai alapfogalmak. Az ionizáló sugárzás mérése Dozimetriai alapfogalmak. Az ionizáló sugárzás mérése A DÓZISFOGALOM FEJLŐDÉSE A sugárzás mértékét számszerűen jellemző mennyiségek ERYTHEMA DÓZIS: meghatározott sugárminőséggel (180 kv, 1 mm Al szűrés),

Részletesebben

Az atommag összetétele, radioaktivitás

Az atommag összetétele, radioaktivitás Az atommag összetétele, radioaktivitás Az atommag alkotórészei proton: pozitív töltésű részecske, töltése egyenlő az elektron töltésével, csak nem negatív, hanem pozitív: 1,6 10-19 C tömege az elektron

Részletesebben

Radioaktív lakótársunk, a radon. Horváth Ákos ELTE Atomfizikai Tanszék december 6.

Radioaktív lakótársunk, a radon. Horváth Ákos ELTE Atomfizikai Tanszék december 6. Radioaktív lakótársunk, a radon Horváth Ákos ELTE Atomfizikai Tanszék 2012. december 6. Radioaktív lakótársunk, a radon 2 A radon fontossága Természetes és mesterséges ionizáló sugárzások éves dózisa átlagosan

Részletesebben

A levegõ radonkoncentrációjának meghatározása

A levegõ radonkoncentrációjának meghatározása A leegõ radonkoncentrációjának meghatározása 1. Beezetés A mérési gyakorlat során a leegõ aeroszol részeihez kötõdött röid felezési idejû radon bomlástermékek alfasugárzásának mérése alapján a leányelemek

Részletesebben

Atomfizika. Radioaktív sugárzások kölcsönhatásai. 2010. 10. 18. Biofizika, Nyitrai Miklós

Atomfizika. Radioaktív sugárzások kölcsönhatásai. 2010. 10. 18. Biofizika, Nyitrai Miklós Atomfizika. Radioaktív sugárzások kölcsönhatásai. 2010. 10. 18. Biofizika, Nyitrai Miklós Emlékeztető Radioaktív sugárzások keletkezése, típusai A Z A Z α-bomlás» α-sugárzás A Z 4 X X + 2 X A Z 4 2 X 4

Részletesebben

FIZIKA. Atommag fizika

FIZIKA. Atommag fizika Atommag összetétele Fajlagos kötési energia Fúzió, bomlás, hasadás Atomerőmű működése Radioaktív bomlástörvény Dozimetria 2 Atommag összetétele: Hélium atommag : 2 proton + 2 neutron 4 He 2 He Z A 4 2

Részletesebben

Gamma-röntgen spektrométer és eljárás kifejlesztése anyagok elemi összetétele és izotópszelektív radioaktivitása egyidejű elemzésére

Gamma-röntgen spektrométer és eljárás kifejlesztése anyagok elemi összetétele és izotópszelektív radioaktivitása egyidejű elemzésére Gamma-röntgen spektrométer és eljárás kifejlesztése anyagok elemi összetétele és izotópszelektív radioaktivitása egyidejű elemzésére OAH-ABA-16/14-M Dr. Szalóki Imre, egyetemi docens Radócz Gábor, PhD

Részletesebben

Izotóp geológia: Elemek izotópjainak használata geológiai folyamatok értelmezéséhez.

Izotóp geológia: Elemek izotópjainak használata geológiai folyamatok értelmezéséhez. Radioaktív izotópok Izotópok Egy elem különböző tömegű (tömegszámú - A) formái; Egy elem izotópjainak a magjai azonos számú protont (rendszám - Z) és különböző számú neutront (N) tartalmaznak; Egy elem

Részletesebben

Az ionizáló sugárzások el állítása és alkalmazása

Az ionizáló sugárzások el állítása és alkalmazása Az ionizáló sugárzások elállítása és alkalmazása Dr. Voszka István Semmelweis Egyetem Biofizikai és Sugárbiológiai Intézet Wilhelm Conrad Röntgen 1845-1923 Antoine Henri Becquerel 1852-1908 Ionizáló sugárzások

Részletesebben

Radioaktivitás biológiai hatása

Radioaktivitás biológiai hatása Radioaktivitás biológiai hatása Dózis definíciók Hatások Biofizika előadások 2013 december Orbán József PTE ÁOK Biofizikai Intézet A radioaktív sugárzás elleni védekezés 3 pontja Minimalizált kitettségi

Részletesebben

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei GazdálkodásimodulGazdaságtudományismeretekI.Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSIMÉRNÖKIMScTERMÉSZETVÉDELMIMÉRNÖKIMSc Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Adatgyőjtés, mérési

Részletesebben

I. DOZIMETRIAI MENNYISÉGEK ÉS MÉRTÉKEGYSÉGEK

I. DOZIMETRIAI MENNYISÉGEK ÉS MÉRTÉKEGYSÉGEK 1 I. DOZIMETRIAI MENNYISÉGEK ÉS MÉRTÉKEGYSÉGEK 1) Iondózis/Besugárzási dózis (ro: Doza de ioni): A leveg egy adott V térfogatában létrejött ionok Q össztöltésének és az adott térfogatban található anyag

Részletesebben

TESTLab KALIBRÁLÓ ÉS VIZSGÁLÓ LABORATÓRIUM AKKREDITÁLÁS

TESTLab KALIBRÁLÓ ÉS VIZSGÁLÓ LABORATÓRIUM AKKREDITÁLÁS TESTLab KALIBRÁLÓ ÉS VIZSGÁLÓ LABORATÓRIUM AKKREDITÁLÁS ACCREDITATION OF TESTLab CALIBRATION AND EXAMINATION LABORATORY XXXVIII. Sugárvédelmi Továbbképző Tanfolyam - 2013 - Hajdúszoboszló Eredet Laboratóriumi

Részletesebben

Bővített fokozatú SUGÁRVÉDELMI TANFOLYAM

Bővített fokozatú SUGÁRVÉDELMI TANFOLYAM Bővített fokozatú SUGÁRVÉDELMI TANFOLYAM Sugárfizikai alapismeretek. A röntgen sugárzás keletkezése és tulajdonságai. Salik Ádám, sugárvédelmi szakértő salik.adam@osski.hu, 30-349-9300 ORSZÁGOS SUGÁRBIOLÓGIAI

Részletesebben

SUGÁRVÉDELMI EREDMÉNYEK 2014-BEN

SUGÁRVÉDELMI EREDMÉNYEK 2014-BEN SUGÁRVÉDELMI EREDMÉNYEK 2014-BEN 1. BEVEZETÉS Az atomerőműben folyó sugárvédelemi tevékenység fő területei 2014-ben is a munkahelyi sugárvédelem és a nukleáris környezetvédelem voltak. A sugárvédelemmel

Részletesebben

Sugárvédelmi és dozimetriai gyakorlatok. Rakyta Péter. Bornemisza Györgyné. leadás időpontja: május 9.

Sugárvédelmi és dozimetriai gyakorlatok. Rakyta Péter. Bornemisza Györgyné. leadás időpontja: május 9. Mérési jegyzőkönyv: Sugárvédelmi és dozimetriai gyakorlatok Rakyta Péter mérőtársak: Mezei Márk és Pósfai Márton mérés időpontja: 27. április 26. leadás időpontja: 27. május 9. Mérésvezető: Bornemisza

Részletesebben

Az atom szerkezete. Az eltérülés ritka de nagymértékű. Thomson puding atom-modellje nem lehet helyes.

Az atom szerkezete. Az eltérülés ritka de nagymértékű. Thomson puding atom-modellje nem lehet helyes. Az atom szerkezete Rutherford kísérlet (1911): Az atom pozitív töltése és a tömeg nagy része egy nagyon kis helyre összpontosul. Ezt nevezte el atommagnak. Az eltérülés ritka de nagymértékű. Thomson puding

Részletesebben

Radon, mint nyomjelzı elem a környezetfizikában

Radon, mint nyomjelzı elem a környezetfizikában Radon, mint nyomjelzı elem a környezetfizikában Horváth Ákos ELTE Atomfizikai Tanszék XV. Magfizikus Találkozó Jávorkút, 2012. szeptember 4. Radon környezetfizikai folyamatokban 1 Mi ebben a magfizika?

Részletesebben

LABORATÓRIUMI GYAKORLAT. Alfa-, béta-, gamma-sugárzások mérése

LABORATÓRIUMI GYAKORLAT. Alfa-, béta-, gamma-sugárzások mérése LABORATÓRIUMI GYAKORLAT Alfa-, béta-, gamma-sugárzások mérése (Bódizs Dénes BME Nukleáris Technikai Intézet 2006) 1. BEVEZETÉS Környezetünkben számos radioaktív izotóp fordul elő. Ezek egy része természetes,

Részletesebben

ÉRTELMEZŐ INFORMÁCIÓK MEGHATÁROZÁSOK

ÉRTELMEZŐ INFORMÁCIÓK MEGHATÁROZÁSOK MSSZ_V15.1_M2 ÉRTELMEZŐ INFORMÁCIÓK MEGHATÁROZÁSOK ALARA-elv A sugárveszélyes munkahelyen foglalkoztatott személyek sugárterhelését az ésszerűen elérhető legalacsonyabb szinten kell tartani a gazdasági

Részletesebben

GÁZIONIZÁCIÓS DETEKTOROK VIZSGÁLATA. Mérési útmutató. Gyurkócza Csaba

GÁZIONIZÁCIÓS DETEKTOROK VIZSGÁLATA. Mérési útmutató. Gyurkócza Csaba GÁZIONIZÁCIÓS DETEKTOROK VIZSGÁLATA Mérési útmutató Gyurkócza Csaba BME NTI 1997 2 Tartalom 1. BEVEZETÉS... 3 2. ELMÉLETI ÖSSZEFOGLALÁS... 3 2.1. Töltéshordozók keletkezése (ionizáció) töltött részecskéknél...

Részletesebben

Modern Fizika Labor Fizika BSC

Modern Fizika Labor Fizika BSC Modern Fizika Labor Fizika BSC A mérés dátuma: 2009. május 4. A mérés száma és címe: 9. Röntgen-fluoreszencia analízis Értékelés: A beadás dátuma: 2009. május 13. A mérést végezte: Márton Krisztina Zsigmond

Részletesebben

Hallgatói gyakorlat mérési útmutatója

Hallgatói gyakorlat mérési útmutatója BUDAPESTI M Ő SZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM Nukleáris Technikai Intézet BME-NTI-LAB00 /2007 ALFA-SPEKTROSZKÓPIA FÉLVEZET (Si) DETEKTORRAL Hallgatói gyakorlat mérési útmutatója Budapest, 2007. január

Részletesebben

Sugárvédelmi feladatok az egészségügyben. Speciális munkakörökben dolgozók munkavégzésére vonatkozó általános és különös szabályok.

Sugárvédelmi feladatok az egészségügyben. Speciális munkakörökben dolgozók munkavégzésére vonatkozó általános és különös szabályok. Sugárvédelmi feladatok az egészségügyben. Speciális munkakörökben dolgozók munkavégzésére vonatkozó általános és különös szabályok. Dr. Kóbor József,biofizikus, klinikai fizikus, PTE Sugárvédelmi Szolgálat

Részletesebben

A természetes és mesterséges sugárterhelés forrásai, szintjei. Salik Ádám

A természetes és mesterséges sugárterhelés forrásai, szintjei. Salik Ádám A természetes és mesterséges sugárterhelés forrásai, szintjei. Salik Ádám A természetes és mesterséges sugárterhelés forrásai Természetes eredetű Kozmikus sugárzás (szoláris, galaktikus) Kozmogén radioaktív

Részletesebben

A felületi radioaktívszennyezettség-mérők mérési bizonytalansága

A felületi radioaktívszennyezettség-mérők mérési bizonytalansága Szűcs László Magyar Kereskedelmi Engedélyezési Hivatal A felületi radioaktívszennyezettség-mérők mérési bizonytalansága Mire alkalmas egy radioaktívszennyezettség-mérő? A radioaktívszennyezettség-mérők

Részletesebben

Nemzeti Népegészségügyi Központ Sugárbiológiai és Sugáregészségügyi Főosztály

Nemzeti Népegészségügyi Központ Sugárbiológiai és Sugáregészségügyi Főosztály Nemzeti Népegészségügyi Központ Sugárbiológiai és Sugáregészségügyi Főosztály Bővített fokozatú sugárvédelmi tanfolyam 2019. március 18-21. Szóbeli és írásbeli vizsga napja: 2019. március 21. Képzési idő:

Részletesebben

VÍZMINTA RADIOAKTIVITÁSÁNAK MEGHATÁROZÁSA. Mérésleírás Környezetmérnököknek

VÍZMINTA RADIOAKTIVITÁSÁNAK MEGHATÁROZÁSA. Mérésleírás Környezetmérnököknek 1 VÍZMINTA RADIOAKTIVITÁSÁNAK MEGHATÁROZÁSA Mérésleírás Környezetmérnököknek Zagyvai Péter Osváth Szabolcs Bódizs Dénes BME NTI, 2008 1. Bevezetés Kérjük, hogy amennyiben szükséges a radioaktivitás és

Részletesebben

Radioaktív sugárzások abszorpciója

Radioaktív sugárzások abszorpciója Radioaktív sugárzások abszorpciója Bevezetés A gyakorlat során különböző sugárforrásokat két β-sugárzót ( 204 Tl és 90 Sr), egy tiszta γ-forrást ( 60 Co) és egy β- és γ-sugárzást is kibocsátó preparátumot

Részletesebben

Izotóp geológia: Elemek izotópjainak használata geológiai folyamatok értelmezéséhez.

Izotóp geológia: Elemek izotópjainak használata geológiai folyamatok értelmezéséhez. Radioaktív izotópok Izotópok Egy elem különböző tömegű (tömegszámú - A) formái; Egy elem izotópjainak a magjai azonos számú protont (rendszám - Z) és különböző számú neutront (N) tartalmaznak; Egy elem

Részletesebben

CSERNOBIL 20/30 ÉVE A PAKSI ATOMERŐMŰ KÖRNYEZETELLENŐRZÉSÉBEN. Germán Endre PA Zrt. Sugárvédelmi Osztály

CSERNOBIL 20/30 ÉVE A PAKSI ATOMERŐMŰ KÖRNYEZETELLENŐRZÉSÉBEN. Germán Endre PA Zrt. Sugárvédelmi Osztály CSERNOBIL 20/30 ÉVE A PAKSI ATOMERŐMŰ KÖRNYEZETELLENŐRZÉSÉBEN Germán Endre PA Zrt. Sugárvédelmi Osztály XXXI. Sugárvédelmi Továbbképző Tanfolyam Keszthely, 2006. május 9 11. Környezeti ártalmak és a légzőrendszer

Részletesebben

SUGÁRVÉDELMI EREDMÉNYEK 2016-BAN. Dr. Bujtás Tibor

SUGÁRVÉDELMI EREDMÉNYEK 2016-BAN. Dr. Bujtás Tibor SUGÁRVÉDELMI EREDMÉNYEK 2016-BAN Dr. Bujtás Tibor 1. BEVEZETÉS Az atomerőműben folyó sugárvédelemi tevékenység fő területei 2016-ban is a munkahelyi sugárvédelem és a nukleáris környezetvédelem voltak.

Részletesebben

A PAKSI ATOMERŐMŰ NEM SUGÁR- VESZÉLYES MUNKAKÖRBEN FOGLALKOZTATOTT DOLGOZÓI ÉS LÁTOGATÓI SUGÁRTERHELÉSE

A PAKSI ATOMERŐMŰ NEM SUGÁR- VESZÉLYES MUNKAKÖRBEN FOGLALKOZTATOTT DOLGOZÓI ÉS LÁTOGATÓI SUGÁRTERHELÉSE A PAKSI ATOMERŐMŰ NEM SUGÁR- VESZÉLYES MUNKAKÖRBEN FOGLALKOZTATOTT DOLGOZÓI ÉS LÁTOGATÓI SUGÁRTERHELÉSE Kerekes Andor, Ozorai János, Ördögh Miklós, + Szabó Péter SOM System Kft., + PA Zrt. Bevezetés, előzmények

Részletesebben

Gamma-röntgen spektrométer és eljárás kifejlesztése anyagok elemi összetétele és izotópszelektív radioaktivitása egyidejű elemzésére

Gamma-röntgen spektrométer és eljárás kifejlesztése anyagok elemi összetétele és izotópszelektív radioaktivitása egyidejű elemzésére Gamma-röntgen spektrométer és eljárás kifejlesztése anyagok elemi összetétele és izotópszelektív radioaktivitása egyidejű elemzésére OAH-ABA-23/16-M Dr. Szalóki Imre, fizikus, egyetemi docens Radócz Gábor,

Részletesebben

Radon leányelemek depozíciója és tisztulása a légzőrendszerből

Radon leányelemek depozíciója és tisztulása a légzőrendszerből Radon leányelemek depozíciója és tisztulása a légzőrendszerből Füri Péter, Balásházy Imre, Kudela Gábor, Madas Balázs Gergely, Farkas Árpád, Jókay Ágnes, Czitrovszky Blanka Sugárvédelmi Továbbképző Tanfolyam

Részletesebben

A sugárzás biológiai hatásai

A sugárzás biológiai hatásai A sugárzás biológiai hatásai Dózisegységek Besugárzó dózis - C/kg Elnyelt dózis - J/kg=gray (Gy) 1 Gy=100 rad Levegőben átlagos ionizációs energiája 53,9*10-19 J. Az elektron töltése 1,6*10-19 C, tehát

Részletesebben

Vízminta radioaktivitásának meghatározása.

Vízminta radioaktivitásának meghatározása. 1 Vízminta radioaktivitásának meghatározása. 1. Bevezetés A természetes vizekben, így a Dunában is jelenlévő radioaktivitás oka a vízzel érintkező anyagokból kioldott természetes eredetű radioaktív izotópok

Részletesebben

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei GazdálkodásimodulGazdaságtudományismeretekI.Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSIMÉRNÖKIMScTERMÉSZETVÉDELMIMÉRNÖKIMSc Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Adatgyőjtés, mérési

Részletesebben

Az Országos Képzési Jegyzékről és az Országos Képzési Jegyzék módosításának eljárásrendjéről szóló 133/2010. (IV. 22.) Korm.

Az Országos Képzési Jegyzékről és az Országos Képzési Jegyzék módosításának eljárásrendjéről szóló 133/2010. (IV. 22.) Korm. Az Országos Képzési Jegyzékről és az Országos Képzési Jegyzék módosításának eljárásrendjéről szóló 133/2010. (IV. 22.) Korm. rendelet alapján: Szakképesítés, szakképesítés-elágazás, rész-szakképesítés,

Részletesebben

Abszolút és relatív aktivitás mérése

Abszolút és relatív aktivitás mérése Korszerű vizsgálati módszerek labor 8. mérés Abszolút és relatív aktivitás mérése Mérést végezte: Ugi Dávid B4VBAA Szak: Fizika Mérésvezető: Lökös Sándor Mérőtársak: Musza Alexandra Török Mátyás Mérés

Részletesebben

A sugárzások a rajz síkjára merőleges mágneses téren haladnak át γ α

A sugárzások a rajz síkjára merőleges mágneses téren haladnak át γ α Radioaktivitás, α-, β- és γ-bomlás, radioaktív bomlástörvény, bomlási sorok. röntgen sugárzás (fékezési és karakterisztikus), a Moseley-törvény, az uger folyamat Radioaktivitás: 1896 Becquerel uránérc

Részletesebben

Az atommagtól a konnektorig

Az atommagtól a konnektorig Az atommagtól a konnektorig (Az atomenergetika alapjai) Dr. Aszódi Attila, Boros Ildikó BME Nukleáris Technikai Intézet Pázmándi Tamás KFKI Atomenergia Kutatóintézet Szervező: 1 Az atom felépítése kb.

Részletesebben

Atomfizikai összefoglaló: radioaktív bomlás. Varga József. Debreceni Egyetem OEC Nukleáris Medicina Intézet 2010. 2. Kötési energia (MeV) Tömegszám

Atomfizikai összefoglaló: radioaktív bomlás. Varga József. Debreceni Egyetem OEC Nukleáris Medicina Intézet 2010. 2. Kötési energia (MeV) Tömegszám Egy nukleonra jutó kötési energia Atomfizikai összefoglaló: radioaktív bomlás Varga József Debreceni Egyetem OEC Nukleáris Medicina Intézet Kötési energia (MeV) Tömegszám 1. 1. Áttekintés: atomfizika Varga

Részletesebben

Radioaktív sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktív sugárzások detektálása.

Radioaktív sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktív sugárzások detektálása. Különböző sugárzások tulajdonságai Típus töltés Energia hordozó E spektrum Radioaktí sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktí sugárzások detektálása. α-sugárzás pozití

Részletesebben

SUGÁRVÉDELMI HELYZET 2003-BAN

SUGÁRVÉDELMI HELYZET 2003-BAN 1 SUGÁRVÉDELMI HELYZET 2003-BAN 1. BEVEZETÉS Az atomerőműben folyó sugárvédelemi tevékenység fő területei 2003-ban is a munkahelyi sugárvédelem és a nukleáris környezetvédelem voltak. A sugárvédelemmel

Részletesebben

Beltéri radon mérés, egy esettanulmány alapján

Beltéri radon mérés, egy esettanulmány alapján Beltéri radon mérés, egy esettanulmány alapján Készítette: BARICZA ÁGNES ELTE TTK, KÖRNYEZETTAN BSC. SZAK Témavezető: SZABÓ CSABA, Ph.D. Előadás vázlata 1. Bevezetés 2. A radon főbb tulajdonságai 3. A

Részletesebben

9. Radioaktív sugárzás mérése Geiger-Müller-csővel. Preparátum helyének meghatározása. Aktivitás mérés.

9. Radioaktív sugárzás mérése Geiger-Müller-csővel. Preparátum helyének meghatározása. Aktivitás mérés. 9. Radioaktív sugárzás mérése Geiger-Müller-csővel. Preparátum helyének meghatározása. ktivitás mérés. MÉRÉS CÉLJ: Megismerkedni a radioaktív sugárzás jellemzésére szolgáló mértékegységekkel, és a sugárzás

Részletesebben

Környezetgazdálkodás. 1868-ban gépészmérnöki diplomát szerzett. 2016.04.11. Dr. Horváth Márk. 1901-ben ő lett az első Fizikai Nobel-díj tulajdonosa.

Környezetgazdálkodás. 1868-ban gépészmérnöki diplomát szerzett. 2016.04.11. Dr. Horváth Márk. 1901-ben ő lett az első Fizikai Nobel-díj tulajdonosa. 2016.04.11. Környezetgazdálkodás Dr. Horváth Márk https://nuclearfree.files.wordpress.com/2011/10/radiation-worker_no-background.jpg 1868-ban gépészmérnöki diplomát szerzett. 1901-ben ő lett az első Fizikai

Részletesebben

Sugárzások és anyag kölcsönhatása

Sugárzások és anyag kölcsönhatása Sugárzások és anyag kölcsönhatása Az anyaggal kölcsönhatásba lépő részecskék Töltött részecskék Semleges részecskék Nehéz Könnyű Nehéz Könnyű T D p - + n Radioaktív sugárzás + anyag energia- szóródás abszorpció

Részletesebben

Magsugárzások, Radioaktív izotópok. Az atom alkotórészei. Az atom felépítése. A radioaktivitás : energia kibocsátása

Magsugárzások, Radioaktív izotópok. Az atom alkotórészei. Az atom felépítése. A radioaktivitás : energia kibocsátása Magsugárzások, Radioaktív izotópok radioaktivitás : energia kibocsátása az atommagból részecskék vagy elektromágneses sugárzás formájában z atom felépítése z atom alkotórészei protonok neutronok nukleonok

Részletesebben

Vízóra minıségellenırzés H4

Vízóra minıségellenırzés H4 Vízóra minıségellenırzés H4 1. A vízórák A háztartási vízfogyasztásmérık tulajdonképpen kis turbinák: a mérın átáramló víz egy lapátozással ellátott kereket forgat meg. A kerék által megtett fordulatok

Részletesebben

Atomfizika. Az atommag szerkezete. Radioaktivitás Biofizika, Nyitrai Miklós

Atomfizika. Az atommag szerkezete. Radioaktivitás Biofizika, Nyitrai Miklós Atomfizika. Az atommag szerkezete. Radioaktivitás. 2010. 10. 13. Biofizika, Nyitrai Miklós Összefoglalás Atommag alkotói, szerkezete; Erős vagy magkölcsönhatás; Tömegdefektus. A kölcsönhatások világképe

Részletesebben

RADIOKÉMIAI MÉRÉS Laboratóriumi neutronforrásban aktivált-anyagok felezési idejének mérése

RADIOKÉMIAI MÉRÉS Laboratóriumi neutronforrásban aktivált-anyagok felezési idejének mérése RADIOKÉMIAI MÉRÉS Laboratóriumi neutronforrásban aktivált-anyagok felezési idejének mérése A radioaktív bomlás valószínűségét kifejező bomlási állandó (λ) helyett gyakran a felezési időt alkalmazzuk (t1/2).

Részletesebben

A BELSŐ SUGÁRTERHELÉS ELLENŐRZÉSE. Útmutató az ÁNTSZ Sugáregészségügyi Decentrumok részére. 2. változat OKK-OSSKI

A BELSŐ SUGÁRTERHELÉS ELLENŐRZÉSE. Útmutató az ÁNTSZ Sugáregészségügyi Decentrumok részére. 2. változat OKK-OSSKI A BELSŐ SUGÁRTERHELÉS ELLENŐRZÉSE Útmutató az ÁNTSZ Sugáregészségügyi Decentrumok részére 2. változat OKK-OSSKI Sugáregészségügyi Főosztály I. Ionizáló Sugárzások Főosztálya Budapest, 2002. december 1.

Részletesebben

5. Laboratóriumi gyakorlat

5. Laboratóriumi gyakorlat 5. Laboratóriumi gyakorlat HETEROGÉN KÉMIAI REAKCIÓ SEBESSÉGÉNEK VIZSGÁLATA A CO 2 -nak vízben történő oldódása és az azt követő egyensúlyra vezető kémiai reakció az alábbi reakcióegyenlettel írható le:

Részletesebben

Radon a felszín alatti vizekben

Radon a felszín alatti vizekben Radon a felszín alatti vizekben A bátaapáti kutatás adatai alapján Horváth I., Tóth Gy. (MÁFI) Horváth Á. (ELTE TTK Atomfizikai T.) 2006 Előhang: nem foglalkozunk a radon egészségügyi hatásával; nem foglalkozunk

Részletesebben

8. AZ ATOMMAG FIZIKÁJA

8. AZ ATOMMAG FIZIKÁJA 8. AZ ATOMMAG FIZIKÁJA Az atommag szerkezete (40-44 oldal) A tömegspektrométer elve Az atommag komponensei Izotópok Tömeghiány, kötési energia, stabilitás Magerők Magmodellek Az atommag stabilitásának

Részletesebben

Nukleáris környezetvédelem Környezeti sugárvédelem

Nukleáris környezetvédelem Környezeti sugárvédelem Nukleáris környezetvédelem Környezeti sugárvédelem Előadások: 2018. IX. 3. XII. 3. Félévközi dolgozatok: 2018. X. 15., XII. 3. Laborgyakorlatok: péntekenként, egyéni beosztás szerint, csoportokban vezető:

Részletesebben

SE Bővített fokozatú sugárvédelmi tanfolyam, 2005 márc. 21-24 IONIZÁLÓ SUGÁRZÁSOK DOZIMETRIÁJA. (Dr. Kanyár Béla, SE Sugárvédelmi Szolgálat)

SE Bővített fokozatú sugárvédelmi tanfolyam, 2005 márc. 21-24 IONIZÁLÓ SUGÁRZÁSOK DOZIMETRIÁJA. (Dr. Kanyár Béla, SE Sugárvédelmi Szolgálat) SE Bővített fokozatú sugárvédelmi tanfolyam, 2005 márc. 21-24 IONIZÁLÓ SUGÁRZÁSOK DOZIMETRIÁJA (Dr. Kanyár Béla, SE Sugárvédelmi Szolgálat) A sugárzások a károsító hatásuk mértékének megítélése szempontjából

Részletesebben

SUGÁRVÉDELMI ÉRTÉKELÉS 2012. ÉVRE

SUGÁRVÉDELMI ÉRTÉKELÉS 2012. ÉVRE SUGÁRVÉDELMI ÉRTÉKELÉS 2012. ÉVRE 1. BEVEZETÉS Az atomerőműben folyó sugárvédelemi tevékenység fő területei 2012-ben is a munkahelyi sugárvédelem és a nukleáris környezetvédelem voltak. A sugárvédelemmel

Részletesebben

Modern fizika vegyes tesztek

Modern fizika vegyes tesztek Modern fizika vegyes tesztek 1. Egy fotonnak és egy elektronnak ugyanakkora a hullámhossza. Melyik a helyes állítás? a) A foton lendülete (impulzusa) kisebb, mint az elektroné. b) A fotonnak és az elektronnak

Részletesebben

Modern fizika laboratórium

Modern fizika laboratórium Modern fizika laboratórium Röntgen-fluoreszcencia analízis Készítette: Básti József és Hagymási Imre 1. Bevezetés A röntgen-fluoreszcencia analízis (RFA) egy roncsolásmentes anyagvizsgálati módszer. Rövid

Részletesebben

V átlag = (V 1 + V 2 +V 3 )/3. A szórás V = ((V átlag -V 1 ) 2 + ((V átlag -V 2 ) 2 ((V átlag -V 3 ) 2 ) 0,5 / 3

V átlag = (V 1 + V 2 +V 3 )/3. A szórás V = ((V átlag -V 1 ) 2 + ((V átlag -V 2 ) 2 ((V átlag -V 3 ) 2 ) 0,5 / 3 5. gyakorlat. Tömegmérés, térfogatmérés, pipettázás gyakorlása tömegméréssel kombinálva. A mérési eredmények megadása. Sóoldat sőrőségének meghatározása, koncentrációjának megadása a mért sőrőség alapján.

Részletesebben

1. mérési gyakorlat: Radioaktív izotópok sugárzásának vizsgálata

1. mérési gyakorlat: Radioaktív izotópok sugárzásának vizsgálata 1. mérési gyakorlat: Radioaktív izotópok sugárzásának vizsgálata A méréseknél β-szcintillációs detektorokat alkalmazunk. A β-szcintillációs detektorok alapvetően két fő részre oszthatók, a sugárzás hatására

Részletesebben

Izotópos méréstechnika, alkalmazási lehetőségek

Izotópos méréstechnika, alkalmazási lehetőségek Radioizotópok orvosi, gyógyszerészi alkalmazása Izotópos méréstechnika, alkalmazási lehetőségek Dr. Voszka István Az alkalmazás alapja:- A radioaktív izotóp ugyanúgy viselkedik a szervezetben, mint stabil

Részletesebben

NUKLEÁRIS LÉTESÍTMÉNYEK LÉGNEMŰ 14C KIBOCSÁTÁSÁNAK MÉRÉSE EGYSZERŰSÍTETT LSC MÓDSZERREL

NUKLEÁRIS LÉTESÍTMÉNYEK LÉGNEMŰ 14C KIBOCSÁTÁSÁNAK MÉRÉSE EGYSZERŰSÍTETT LSC MÓDSZERREL NUKLEÁRIS LÉTESÍTMÉNYEK LÉGNEMŰ 14 C KIBOCSÁTÁSÁNAK MÉRÉSE EGYSZERŰSÍTETT LSC MÓDSZERREL Bihari Árpád Molnár Mihály Janovics Róbert Mogyorósi Magdolna 14 C képződése és jelentősége Neutron indukált magreakció

Részletesebben