Sugárvédelem alapjai. Atomenergetikai alapismeretek. Dr. Czifrus Szabolcs BME NTI

Hasonló dokumentumok
Sugárvédelem alapjai. Nukleáris alapok. Papp Ildikó

Sugárvédelem. 2. előadás

Sugárvédelem alapjai

Sugárvédelem alapjai. Atomenergetikai alapismeretek. Dr. Czifrus Szabolcs BME NTI

A sugárvédelem alapjai

Dozimetria és sugárvédelem

Radioaktív elemek környezetünkben: természetes és mesterséges háttérsugárzás. Kovács Krisztina, Alkímia ma

Az ionizáló sugárzások előállítása és alkalmazása

Sugárvédelem kurzus fogorvostanhallgatók számra. Töltött részecskék elnyelődése. Sugárzások és anyag kölcsönhatása. A sugárzások elnyelődése

-A radioaktivitás a nem stabil (úgynevezett radioaktív) atommagok bomlásának folyamata. -Nagyenergiájú ionizáló sugárzást kelt Az elnevezés: - radio

Radioaktivitás biológiai hatása

Az ionizáló sugárzások előállítása és alkalmazása

Dozimetriai alapfogalmak. Az ionizáló sugárzás mérése

Az ionizáló sugárzások fajtái, forrásai

Nukleáris környezetvédelem Környezeti sugárvédelem

Sugárzások és anyag kölcsönhatása

Az atommag összetétele, radioaktivitás

FIZIKA. Radioaktív sugárzás

A sugárvédelem alapelvei. dr Osváth Szabolcs Fülöp Nándor OKK OSSKI

Az atommag összetétele, radioaktivitás

SE Bővített fokozatú sugárvédelmi tanfolyam, 2005 márc IONIZÁLÓ SUGÁRZÁSOK DOZIMETRIÁJA. (Dr. Kanyár Béla, SE Sugárvédelmi Szolgálat)

A természetes és mesterséges sugárterhelés forrásai, szintjei. Salik Ádám

Sugárterápia. Ionizáló sugárzások elnyelődésének következményei

Az ionizáló sugárzások el állítása és alkalmazása

Ionizáló sugárzások dozimetriája

1. A radioaktív sugárzás hatásai az emberi szervezetre

ÉRTELMEZŐ INFORMÁCIÓK ÉS MEGHATÁROZÁSOK A SUGÁRVÉDELEMBEN

Sugárterápia. Ionizáló sugárzások elnyelődésének következményei. Konzultáció: minden hétfőn 15 órakor. 1. Fizikai történések

Sugárzások kölcsönhatása az anyaggal

Sugárvédelem és jogi alapjai

Nemzeti Népegészségügyi Központ Sugárbiológiai és Sugáregészségügyi Főosztály

Országos Onkológiai Intézet, Sugárterápiás Centrum 2. Országos Onkológiai Intézet, Nukleáris Medicina Osztály 4

Radioaktivitás biológiai hatása

Felhasználható szakirodalom

A sugárzás biológiai hatásai

Sugárzás kölcsönhatása az anyaggal 1. Fény kölcsönhatása az anyaggal. 2. Ionizáló sugárzás kölcsönhatása az anyaggal KAD

Sugárvédelem nukleáris létesítményekben. Átfogó [fenntartó] SVK Osváth Szabolcs (OKK-OSSKI-LKSO)

8. AZ ATOMMAG FIZIKÁJA

Környezetgazdálkodás ban gépészmérnöki diplomát szerzett Dr. Horváth Márk ben ő lett az első Fizikai Nobel-díj tulajdonosa.

Háttérsugárzás. A sugáregészségtan célkitűzése. A sugárvédelem alapelvei, dóziskorlátok. Sugáregészségtan és fogorvoslás

SUGÁRVÉDELMI EREDMÉNYEK 2014-BEN

Izotóp geológia: Elemek izotópjainak használata geológiai folyamatok értelmezéséhez.

Sugárvédelem és jogi szabályozása

Magsugárzások, Radioaktív izotópok. Az atom alkotórészei. Az atom felépítése. A radioaktivitás : energia kibocsátása

Radioaktivitás és mikrorészecskék felfedezése

IVÓVIZEK RADIOANALITIKAI VIZSGÁLATA

Radioaktív sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktív sugárzások detektálása.

FIZIKA. Atommag fizika

Sugárfizikai és sugárvédelmi ismeretek. SZTE Nukleáris Medicina Intézet

Sugárvédelmi feladatok az egészségügyben. Speciális munkakörökben dolgozók munkavégzésére vonatkozó általános és különös szabályok.

Radioaktív sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktív sugárzások detektálása.

Atomfizika. Radioaktív sugárzások kölcsönhatásai Biofizika, Nyitrai Miklós

Sugárvédelmi Ellenőrző és Jelző Rendszerének vizsgálata

3. Nukleá ris fizikái álápismeretek

Bővített fokozatú SUGÁRVÉDELMI TANFOLYAM

Nukleáris környezetvédelem Környezeti sugárvédelem

Izotóp geológia: Elemek izotópjainak használata geológiai folyamatok értelmezéséhez.

Az atommagtól a konnektorig

rvédelem Dr. Fröhlich Georgina Ionizáló sugárzások a gyógyításban ELTE TTK, Budapest Országos Onkológiai Intézet Sugárterápiás Központ Budapest

Az atom szerkezete. Az eltérülés ritka de nagymértékű. Thomson puding atom-modellje nem lehet helyes.

Röntgensugárzás az orvostudományban. Röntgen kép és Komputer tomográf (CT)

Sugárvédelmi mérések és berendezések

ÉRTELMEZŐ INFORMÁCIÓK MEGHATÁROZÁSOK

A terhelés megoszlása a források között. A becsült átlagos évi dózis természetes és mesterséges forrásokból 3.6 msv.

Sugárvédelem és jogi szabályozása

Sugárvédelem és jogi szabályozása

Sugárvédelem és jogi szabályozása

A sugárzás és az anyag kölcsönhatása. A béta-sugárzás és anyag kölcsönhatása

A Nukleáris Medicina alapjai

Deme Sándor MTA EK. 40. Sugárvédelmi Továbbképző Tanfolyam Hajdúszoboszló, április

Sugárvédelem és jogi szabályozása

Izotópos méréstechnika, alkalmazási lehetőségek

A dozimetria célja, feladata. Milyen hatásokat kell jellemezni? Miért kellenek dozimetriai fogalmak? Milyen mennyiséggel jellemezzük a káros hatást?

EGÉSZTESTSZÁMLÁLÁS. Mérésleírás Nukleáris környezetvédelem gyakorlat környezetmérnök hallgatók számára

Átfogó fokozatú sugárvédelmi továbbképzés

SUGÁRVÉDELMI EREDMÉNYEK 2016-BAN. Dr. Bujtás Tibor

A sugárzások és az anyag fizikai kölcsönhatásai

Ionizáló sugárzások egészségügyi hatásai. Dr. Vincze Árpád

Alapfogalmak. Magsugárzások. A magsugárzások kölcsönhatása az anyaggal. Töltött részecskék ionizáló hatása. tulajdonságai.

Az Országos Képzési Jegyzékről és az Országos Képzési Jegyzék módosításának eljárásrendjéről szóló 133/2010. (IV. 22.) Korm.

Radioaktív anyagok terjedése a környezetben

Sugárvédelem és jogi alapjai

Atomreaktorok üzemtana. Az üzemelő és leállított reaktor, mint sugárforrás

A gamma-sugárzás kölcsönhatásai

SUGÁRVÉDELMI ÉRTÉKELÉS ÉVRE

MAGYAR KÖZLÖNY 209. szám

Neutron- és gamma-dózisteljesítmény mérése az Oktatóreaktor 4. vízszintes csatornájánál

SUGÁRVÉDELMI HELYZET 2003-BAN

ESEO-TRITEL: az ESEO műhold dózismérője

LAKOSSÁGI SUGÁRTERHELÉS október 6 (szerda), 15:40-16:50, Árkövy terem

Sugárvédelem az orvosi fizikában 2017 ősz

Magfizika tesztek. 1. Melyik részecske nem tartozik a nukleonok közé? a) elektron b) proton c) neutron d) egyik sem

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei

Radioaktív hulladékok osztályozása (javaslat a szabályozás fejlesztésére)

Sugárvédelem az orvosi fizikában 2018/19 őszi félév

RADIOKÉMIA. László Krisztina, F ép. I. lh., I. emelet, 135

Sugárvédelmi feladatok az egészségügybe. Speciális munkakörökben dolgozók munkavégzésre vonatkozó általános és különös szabályok.

Atommag, atommag átalakulások, radioaktivitás

Radioaktív sugárzások az orvosi gyakorlatban. Az ionizáló sugárzások biológiai hatása. A sugárhatás osztályozása. A sugárhatás osztályozása

DOZIMETRIA GYAKORLATOK

Átírás:

Sugárvédelem alapjai Atomenergetikai alapismeretek Dr. Czifrus Szabolcs BME NTI

2 Tartalom Emlékeztető a múlt félévből A sugárzások és az anyagi közeg kölcsönhatása Dózisfogalmak, külső- belső sugárterhelés meghatározása Az ionizáló sugárzások biológiai hatásai Az atomreaktor, mint sugárforrás A sugárvédelmi dóziskorlátok alapelvei, dóziskorlátozási rendszer Dózismérés

3 Történelem 1896: Henri Becquerel uránsók Azt találta, hogy sugárzás intenzitása arányos az urán koncentrációjával, így arra következtetett, hogy ez a sugárzás az uránatom tulajdonsága. Pierre és Marie Curie: tórium, a polónium és a rádium. Curie házaspár & Ernest Rutherford kísérletei a radioaktív sugárzásnak két összetevőjét mutatta ki: a nagyon rövid hatótávolságú alfa-sugárzás, és a béta-sugárzás 1900: Paul Villard - gamma-sugárzás

4 Természetes eredetű radioaktivitás Kozmikus sugárzás (szoláris, galaktikus, befogott részecskék) Kozmogén nuklidok: állandóan keletkeznek a kozmikus sugárzás hatására ( 3 H, 14 C) Ősi nuklidok: Keletkezés a szoláris folyamatokban és az ősrobbanáskor (nagyon hosszú felezési idő) Például: Fontosabb ősi nuklidok: 40 K, 87 Rb, 238 U

5 Mesterséges eredetű radioaktivitás Nukleáris reaktorok hulladékai (hasadási ( 131 I, 137 Cs) aktivációs ( 239 Pu) és korróziós ( 60 Co) termékek) Nukleáris robbantások, fegyverkísérletek hulladékai Ipari sugárforrások Orvosi (diagnosztikai és terápiás) sugárforrások TENORM (Technologically-Enhanced, Naturally- Occurring Radioactive Material): mesterséges okból megnövekedett természetes sugárterhelés (pl. szén-, olaj- és gáztüzelésű erőművek hulladéka (salak, hamu, pernye); nukleáris üzemanyag előállítása során keletkező hulladék)

6 arcápoló krém, púder, szappan, lemosó tej, ajak rúzs, fogkrém

7 Bomlási módok α: A Z X A 4 Z 2 Y + 4 2 He β: β - : elektron és antineutrínó kibocsátása: n p + + e - + ν a : a rendszám eggyel nő β + : pozitron és neutrínó kibocsátása: p + n + e + + ν: a rendszám eggyel csökken Elektronbefogás (EC electron capture) neutrínó kibocsátása: p + + e - n + ν: a rendszám eggyel csökken. γ: a nukleonok átrendeződése nyugalmi tömeggel és töltéssel nem rendelkező foton kibocsátásával jár.

8 A radioaktív bomlás alapegyenletei dn = λndt A= dn dt = λn N = N 0 e λt A = A 0 e λt N: bomlásra képes, azonos fajtájú atommagok száma [darab] λ: bomlási állandó [1/s] t: idő [s] A: aktivitás [1/s ; Bq] T 1/2 : felezési idő [s] λ = ln(2) T 1/2

9 A sugárzások és az anyagi közeg kölcsönhatása A közeg kölcsönhatásra képes alkotórészei: elektronok, az atom elektromágneses erőtere, atommag. A közeg és a sugárzás közötti kölcsönhatás szerint: Közvetlenül ionizáló sugárzások: α, β, γ, röntgen az elektronoknak képesek azok ionizációjához elegendő energiát átadni. Közvetve ionizáló sugárzás: neutron atommagokkal való kölcsönhatás során ionizációra képes részecskék jelennek meg. Az elektronokkal való ütközés nem minden esetben vezet azok ionizációjára. A sugárzás által több lépésben átadott energia egy része (általában 60-70 %-a) nem ionizációt, csak gerjesztést eredményez, azaz összességében a közeg termikus energiáját növeli meg.

10 γ-sugárzás kölcsönhatásai - Fotoeffektus

11 γ-sugárzás kölcsönhatásai Compton szórás

12 γ-sugárzás kölcsönhatásai - Párkeltés

13

14 γ-sugárzás kölcsönhatásai Exponenciális sugárgyengülési törvény di = I(x)σNdx I: részecskeáram σ: hatáskeresztmetszet N: partnerek száma egységnyi úthosszon μ = σn = kölcsönhatási valószínűség [1/m] Feltevés: párhuzamos nyaláb Megoldás: I x = I 0 e μx

15 γ-sugárzás kölcsönhatásai Exponenciális sugárgyengülési törvény μ = de dx E inc. μ/ρ = tömegabszorpciós tényező = tömegegységre jutó hatáskeresztmetszet m 2 /kg σ A = atomi hkrm. σ e = elektronra vonatkozó hkrm. σ A = Z σ e m 2 atom μ = σ A ρ A m 2 ρ A = N A V M m 3 atom mol m 3 mol

16 LET Linear Energy Transfer lineáris energiaátadási tényező LET = de dx α- β- sugárzásra: LET értéke vízben: α-ra: 100 kev/μm β-ra: 5-10 kev/μm

17 Dózismennyiségek, Külső- belső sugárterhelés meghatározása

18 Dózismennyiségek D = de dm ΔE m J, Gray, Gy kg Fizikai dózis: az anyag tömegegységében elnyelt összes sugárzási energia, csak fizikai kölcsönhatásokat foglal magába. Bármelyik ionizáló sugárzásra értelmezhető. Csak ionizáló sugárzásra értelmezett, de nem csak ionizációs energiát jelent. Nem tartalmazza az anyagból kilépett (szórt, szekunder) sugárzási energiát. Egyesíti a különböző forrásokból származó energiabeviteleket.

19 Egyenérték dózis H = D w R Sv, Sievert w R : sugárzási tényező A sejti méretű élő térfogatba bevitt energia (mikrodózis) dönti el az elnyelt dózis veszélyességét (kártételét). Antropomorf dózisfogalom és mértékegység: az emberi szövetek, sejtek viselkedése befolyásolja a dózisértéket. w R α 20 β, γ 1 n 5 20

20

21 Effektív dózis E = H w T Sv, Sievert T w T = 1 w T : szöveti súlyozó tényező A gyorsan osztódó, rövid ciklusidejű sejtek a legérzékenyebbek. ivarszervek 0.2 legérzékenyebbek Közepesen érzékenyek tüdő, gyomor, belek, vörös csontvelő w T 0.12 máj, vese, pajzsmirigy stb. 0.05 kissé érzékeny bőr, csontfelszín 0.01

22

23 Egyéb dózisfogalmak Lekötött dózis: inkorporálódott, és a szervezetben 1 évnél tovább jelenlévő radioaktív anyag effektív dózisa H C = 0 t dh E dt dt Kollektív dózis: Egy embercsoport tagjainak egy adott sugárforrástól származó effektív dózisának összege. Csak az emisszió mértékéül használható. C = i H E,i n i Sv

24 Belső sugárterhelés dózisa H T = 1 m T S u s R w R E R f R Q R (S T) A H T szöveti egyenértékdózist egy adott radioizotópra határozzuk meg. u S : az egyes forrás-szövetekben bekövetkező bomlások száma [darab] w R: sugárzási tényező [Sv/Gy] E R : sugárzási energia [kev/részecske] f R : részecske-gyakoriság [részecske/bomlás] m T : a célpont-szövet tömege [kg] Q az R sugárzásfajtának az S (source) szövetből kiinduló és a T (target) szövetben energiát leadó hányada (elnyelési hányad) S=T is lehetséges

25 Belső sugárterhelés dózisa DCF = E A Intake DCF = dóziskonverziós tényező [Sv/Bq]: egységnyi inkorporált aktivitás (A intake ) adott útvonalon (belégzés vagy lenyelés) és adott kémiai formában történő bevitele által kiváltott egyenérték-dózis (szervekre). Eltérő lehet: Beviteli útvonal szerint (belégzés vagy lenyelés), Kémiai forma szerint (a testnedvekben oldható vagy nem oldható) Életkor szerint.

26 Néhány számadat A kozmikus sugárzás járulékai: tengerszinten mindössze 0,27 msv/év, 4000 méteres magasságban azonban már 2 msv/év, 8 km magasságban akár 34 μsv/h. A kozmogén radioaktív izotópok belélegzésétől és nagyobbrészt a fogyasztásától eredő átlag belső sugárterhelése 10 μsv/év. Sugárterhelés repülőgépen 7-12 km magasban pl. Európa- Észak- Amerika repülőút alatt 30-45 μsv. Űrhajósok sugárterhelése 300-500 km magasságban az űrállomáson 0,3 mgy/nap. A természetes sugárterhelés több, mint fele (1,26 msv/év) a 222 Rn-tól származik.

27 Külső dózisterhelés számítása dd dt = φ E μ ρ ahol φ E = dn f dt R E R 4 r 2 π Érvényesség: pontszerű γ-sugárforrásra, gyengítetlen (primer) fotonsugárzásra. φ E : energiaáram-sűrűség [J/(m 2 s)] A=dN/dt : a sugárforrás aktivitása [Bq] f R : részecske-(foton)gyakoriság [foton/bomlás] E R : fotonenergia [J/foton]

28 Külső dózisterhelés számítása Négyzetes gyengülési törvény a dózisszámítás alapja: μ a j ρ dd dt = k γ A r 2 ahol k γ = k,j f j E j 4 π j: összegzés az egyes energiákra, k pedig a közegekre kγ: dózistényező, szokásos dimenziója: [(μgy/h)/(gbq/m 2 )]

29 Dózisteljesítmény számítása nem pontszerű (kiterjedt) sugárforrásra A felület explicit függvényével; Pontszerű elemekre bontással; Az önabszorpció figyelembe vételével dd dt = c A f(r, μ, ρ, V) Ahnesjö, A. Med. Phys. 16 577-92

30 Exponenciális sugárgyengülési törvény Feltevés: párhuzamos nyaláb Megoldás: D x = D 0 e μx Az ábra forrása: http://www.radprocalculator.com/files/shieldingandbuildup.pdf, A hozzáférés ideje: 2014.03.24.

31 Shielding D(x) = D 0 B e μx B build-up tényező: a szórt sugárzás részaránya a dózist okozó intenzitásban B=B(μx) Az ábra forrása: http://www.radprocalculator.com/files/shieldingandbuildup.pdf, A hozzáférés ideje: 2014.03.24.

32 Az ionizáló sugárzások biológiai hatásai

33 A biológiai hatások osztályozása Szomatikus: egy biológiai egyeden jelentkezik Genetikai: egy populáción jelentkezik VAGY

34 A biológiai hatások osztályozása Direkt hatás a sugárenergia elnyelődése és a kiválasztott elsődleges folyamat ugyanazon molekulán következik be, amelyen a fixálódott szerkezeti és működésbeli változásokat észleljük. Indirekt hatás az energiaabszorpció, majd az általa kiváltott hatás különböző molekulákon jön létre. Legfontosabb példa a szabad gyök képződés. VAGY

35 A biológiai hatások osztályozása Determinisztikus: A károsodás súlyossága függ a dózistól, a hatás egy bizonyos küszöbdózis fölött következik be. Sztochasztikus: A károsodás valószínűsége függ a dózistól, küszöbdózis nincs.

36 A hatásmechanizmusról dióhéjban Az ábra forrása: Dr. Sáfrány Géza Sugárbiológia előadás

37 A hatásmechanizmusról dióhéjban

38 A hatásmechanizmusról dióhéjban Relatív biológiai hatás (RBE): azt mutatja meg, hogy egy adott sugárzás biológiai hatása milyen viszonyban van 250 kev-os röntgen sugárzás hatásával.

39 Az ionizáló sugárzás determinisztikus hatása Küszöbdózishoz kötött (0,3 0,4 Gy) Szövetpusztulást okoz a sugárzás Életveszélyes károsodások: központi idegrendszer, emésztőrendszer, vérképző rendszer

40 Az ionizáló sugárzás determinisztikus hatása Akut/azonnali hatás 1 Gy-nél nagyobb dózis (egész test) esetén 1. Kezdeti szakasz (hányás, étvágytalanság, émelygés, fejfájás, levertség, mozgáskoordinációs zavar) 2. Lappangási szakasz (2-3 Gy dózisnál 3-4 hét is lehet, 10 Gy felett nincs lappangás) 3. Kritikus szakasz (magas láz, pontszerű bőrbevérzések, vérképben elváltozások, immunrendszer károsodása, 3-4 Gy egésztest dózis esetén 60 napon belül halál a betegek kb. 50%-ánál) 4. Regeneráció szakasza (kedvező lefolyás, a 3 szakasz tünetei visszafejlődnek)

41 Az ionizáló sugárzás sztochasztikus hatása A fő célpont a sejtmag DNS-állománya, nincs küszöbdózis (kis dózisok hatása nem igazolt) Sejtmutációt okoz a sugárzás (javító mechanizmus) Kockázat-dózis-függvény lineáris (?)

42 A kockázat effektív dózis függvény meghatározása Elfogadott forma: LNT (linear no threshold) Kérdőjelek: A függvény megállapításához tiszta adatok (pontos mérések, minta és kontroll csoport szükségesek) Hormézis: a kis dózisok immunitást okoznak? A kis dózisoknál nincs sejthalál javul a mutáns sejtek túlélési hányada? A függvény összes kockázatra vonatkozik, de a tumor szervekben jelenik meg. Primer tumor vagy áttét? Mennyi időn át adhatók össze a dózisok?

43 A sugárvédelem dóziskorlátok alapelvei, dóziskorlátozási rendszer

44 Rövid történeti áttekintés 1895: W. K. Röntgen elektroncső-kísérlet közben felfedezi a később róla elnevezett sugárzást. 1896: H. Becquerel: az első magfizikai jelenség észlelése uránsóból kilépő radioaktív sugárzás. 1898: Marie Curie-Sklodowska, P. Curie: radioaktivitás szó alkalmazása, sugárzásdetektor készítése, rádium és polónium felfedezése. 1925: Létrejön az International Committee on Radiological Units (ICRU) - nemzetközi sugárvédelmi bizottság megalakítását 1928: Létrejön az első nemzetközi sugárvédelmi szervezet, neve 1950 óta ICRP International Commission on Radiation Protection. 1957: Létrejön az International Atomic Energy Agency (IAEA), vagy magyarul Nemzetközi Atomenergia Ügynökség (NAÜ)

45 Sugárvédelmi szabályozás Nemzetközi ajánlások, irányelvek: ICRP #60 (1991) IAEA Safety Series #115 (1996), 96/29 EU Directive Új ajánláscsomag: ICRP #103(2007) IAEA General Safety Requirements GSR Part 3 (2013) Magyar jogszabályok: 1996. évi CXVI. tv. (atomtörvény) kisebb módosítások 2011-ben. Személyi sugárvédelem: egészségügy, ÁNTSZ (16/2000. SzEM-rendelet) Környezeti sugárvédelem: környezetvédelem, felügyelőségek (15/2001. KöM. rendelet) Nukleáris biztonság: Országos Atomenergia Hivatal

46 A sugárvédelem alapelvei (ICRP 26, 60,103) Determinisztikus hatáshoz vezető dózis legyen lehetetlen. Csak az alkalmazásokhoz kapcsolható dózis korlátozható, a természetes eredetű nem a korlátozás a többletdózisra vonatkozik. Indokoltság: a sugárforrás alkalmazásának több előnye legyen, mint kára. Az indokoltság nem tisztán sugárvédelmi, hanem széleskörű társadalmi feladat (ICRP 103). Optimálás: az alkalmazás a lehető legnagyobb előnnyel kell, hogy járjon ALARA (As Low As Reasonably Achievable). Egyéni korlátozás immissziós és emissziós korlátok nem léphetők át, ha a tervezési alap helyes volt.

47 Sugárvédelmi szabályozás Elhanyagolható dózis 10 µsv/év közvetlenül nem deklarálták DL dóziskorlát - immisszió korlátozása effektív dózis külső és belső sugárterhelés összege foglalkozási korlát 20 msv/év (100 msv/5 év) lakossági korlát 1 msv/év normális és baleseti helyzetekre külön szabályozás DC - dózismegszorítás - emisszió korlátozása kiemelt létesítmények 0.1 0.03 msv/év kibocsátási szintek egyes radionuklidokra: Bq/év DL s DC DC A max,i : A dózismegszorítás betartása esetén még bevihető max. aktivitások i A max,i DCF i

48 Sugárvédelmi szabályozás Az egy személybe az i-edik nuklidból bejutó aktivitás sokkal kisebb, mint a kibocsátható. A normális üzemelés során kibocsátott aktivitás nem koncentrálódhat egyetlen személyben. Az emissziós korlátozás két lényegi eleme, a létesítmény környezetében élő lakosságra vonatkozó dózismegszorítás és a létesítményből levegőbe és vízi úton A i,max A i,ki kibocsátott aktivitás (kibocsátási határértékek) közötti kapcsolatot a TERJEDÉSI MODELLEK teremtik meg. A modell és egy valóságos terjedési folyamat összevetése a validálás.

49 Munkavállalókra Lakossági és munkavállalói dóziskorlátok Évi 20 msv effektív dózis 5 évre átlagolva (ICRP), azaz 100 msv/5 év, de egy évben nem lehet több, mint 50 msv Szemlencsére Bőrre Végtagokra 150 msv egyenérték dózis 500 msv 1 cm 2 területre átlagolva 500 msv Tanulók, gyakornokok 16-18 év között Évi 6 msv effektív dózis Szemlencsére Bőrre Végtagokra A lakosság tagjaira Évi 1 msv effektív dózis Szemlencsére Bőrre 50 msv egyenérték dózis 150 msv 1 cm 2 területre átlagolva 150 msv 15 msv egyenérték dózis 50 msv 1 cm 2 területre átlagolva

50 Dózismérés

51 A dózismérés alapelve Bragg-Gray elv: A dózismérő (m) és az emberi testszövet (x) tömegabszorpciós együtthatójának aránya ne függjön a sugárzás energiájától. f m = D x D m = φ E φ E μ ρ x μ ρ m

52 KERMA kinetic energy released in mass absorption E f = E el m + E el m+δm + E f részecske kerma sugárzási kerma E f az m tömegbe belépő foton energiája; E f* a kilépő szórt fotonok maradék energiája; Szekunder részecske egyensúly (SzRE): az elnyelő közeg egy, a beeső primer sugárzás irányára merőleges differenciális vastagságú szeletében a primer kölcsönhatás során energiát felvett, a szeletet elhagyó részecskék száma és energiája megegyezik a külső szeletekből az adott szeletbe érkező szekunder részecskék számáva és energiájával.

53 KERMA Az emberi szervezetbe irányuló foton- és elektronsugárzásra az SzRE 70 μm mélységben beáll.

54 Külső sugárterhelés mérése Dózismérés: utólagos kiértékelés személyi dozimetria filmdózismérő - kémiai változás TLD: szilárdtest-dózismérő (termolumineszcencia) Elektronikus dózismérők: impulzusüzemű gáztöltésű detektoro félvezető detektorok, buborék detektorok Dózisteljesítmény-mérés: azonnali kiértékelés területi dozimetria impulzusüzemű gáztöltésű detektorok szerves szcintillációs detektor

55 Külső sugárterhelés mérése Követelmények: energiafüggetlenség : a kijelzett dózis ne függjön az egyes részecskék energiájától Intenzitás/dózisteljesítmény arányosság Felejtés = 0 a dózis ne változzék a mérés és a kiértékelés között

56 Belső sugárterhelés meghatározása Közvetlen dózismérés nem lehetséges Közvetett mérés: az inkorporált aktivitás meghatározása Nehézség: pillanatnyi mérések, tartózkodási idő ismerete szükséges Vizsgálati módszerek: inkorporálható közeg (levegő, víz, élelmiszer) analízise: radiokémiai feldolgozás + α- és β-sugárzók mérése; γ- spektrometria testnedv-, exkrétumanalízis: α- és β-sugárzók mérése, γ-spektrometria; testrész- és egésztest-analízis: γ-spektrometria

57 Az atomreaktor, mint sugárforrás

58 Az üzemelő atomreaktor, mint sugárforrás α, β, γ, n-sugárzás is megtalálható α - források: üzem közben a kis áthatolóképesség miatt kis jelentőségű β - források: üzem közben a kis áthatolóképesség miatt kis jelentőségű

59 Az üzemelő atomreaktor, mint sugárforrás γ - források: ~10 20 foton/s 1375 MW esetében trícium-aktivitás: nitrogén-aktivitás: 1 2 H(n, γ) 3 1 H 16 8O(n, p) 16 7 N n-források: Sugárvédelmi szempontból a prompt neutronok fontosak Nagy neutronforrás-erősség (~10 20 neutron/s 1375 MW esetében) A szerkezeti elemek aktivációja (γ,n) reakciók 17 8O(n, p) 17 7 N

60 A leállított atomreaktor, mint sugárforrás α, β, γ, n-sugárzás is megtalálható α - források: A kiégett üzemanyag és a nagyaktivitású hulladék hőfejlődését és sugárkárosodását befolyásolják. β - források: A leállított reaktor ill. a kiégett üzemanyag remanens hőfejlődését nagymértékben befolyásolják.

61 A leállított atomreaktor, mint sugárforrás n-források: Spontán hasadásból és (α,n), (γ,n) reakciókból Neutronforrás-erősség: ~ 10 9-10 10 neutron/s

62 Felhasznált irodalom Csom Gyula: Atomerőművek üzemtana I. kötet IV. fejezet, Műegyetemi Kiadó, 1997. Fehér István, Deme Sándor: Sugárvédelem, ELTE Eötvös Kiadó, 2010. Köteles György: Sugáregészségtan, Medicina Könyvkiadó Rt., 2002 Pesznyák Csilla, Sáfrány Géza: Sugárbiológia elektronikus tankönyv, http://www.osski.hu/kiadvanyok/sugbiol/sugarbiologia_tankonyv.pdf Zagyvai Péter: Sugárvédelem és jogi szabályozása c. tárgyhoz készített diasorai

63 Köszönöm a figyelmet!