0644. MODUL SZÁMELMÉLET. Közös osztók, közös többszörösök KÉSZÍTETTE: PINTÉR KLÁRA



Hasonló dokumentumok
0645. MODUL SZÁMELMÉLET. Gyakorlás, mérés KÉSZÍTETTE: PINTÉR KLÁRA

0643. MODUL SZÁMELMÉLET. Törzsszám (prímszám), összetett szám, prímtényezős felbontás KÉSZÍTETTE: PINTÉR KLÁRA

16. modul: ALGEBRAI AZONOSSÁGOK

MATEMATIK A 9. évfolyam. 1. modul: HALMAZOK KÉSZÍTETTE: LÖVEY ÉVA

4. modul: MŰVELETEK A VALÓS SZÁMOK KÖRÉBEN

7. Számelmélet. 1. Lehet-e négyzetszám az a pozitív egész szám, amelynek tízes számrendszerbeli alakjában 510 darab 1-es és valahány 0 szerepel?

Számelmélet. 4. Igazolja, hogy ha hat egész szám összege páratlan, akkor e számok szorzata páros!

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I.

2005_01/1 Leírtunk egymás mellé hét racionális számot úgy, hogy a két szélső kivételével mindegyik eggyel nagyobb a két szomszédja szorzatánál.

TANMENET IMPLEMENTÁCIÓ ELŐREHALADÁS BESZÁMOLÓ. Rendszerezés, kombinativitás. Induktív gondolkodás általánosítás. megtalálása különböző szövegekben.

Egész számok. pozitív egész számok: 1; 2; 3; 4;... negatív egész számok: 1; 2; 3; 4;...

1. Mit nevezünk egész számok-nak? Válaszd ki a következő számok közül az egész számokat: 3 ; 3,1 ; 1,2 ; -2 ; -0,7 ; 0 ; 1500

OSZTHATÓSÁG. Osztók és többszörösök : a 3 többszörösei : a 4 többszörösei Ahol mindkét jel megtalálható a 12 többszöröseit találjuk.

Matematika A 9. szakiskolai évfolyam. 11. modul EGYENLETEK, EGYENLŐTLENSÉGEK MEGOLDÁSA. Készítették: Vidra Gábor és Koller Lászlóné dr.

Amit a törtekről tudni kell Minimum követelményszint

0567. MODUL TÖRTEK. Törtekről tanultak összefoglalása KÉSZÍTETTE: BENCZÉDY-LACZKA KRISZTINA, MALMOS KATALIN

Matematika A 9. szakiskolai évfolyam. 1. modul GONDOLKODJUNK, RENDSZEREZZÜNK!

1. Mit nevezünk egész számok-nak? Válaszd ki a következő számok közül az egész számokat: 3 ; 3,1 ; 1,2 ; -2 ; -0,7 ; 0 ; 1500

MATEMATIK A 9. évfolyam. 2. modul: LOGIKA KÉSZÍTETTE: VIDRA GÁBOR

;3 ; 0; 1 7; ;7 5; 3. pozitív: ; pozitív is, negatív is: ;

III.7. PRÍM PÉTER. A feladatsor jellemzői

MATEMATIKAI KOMPETENCIATERÜLET A

Amit a törtekről tudni kell 5. osztály végéig Minimum követelményszint

MATEMATIKA C 9. évfolyam 4. modul OSZTOZZUNK!

Függvény fogalma, jelölések 15

Óravázlat Matematika. 1. osztály

Feladatok a MATEMATIKA. standardleírás 2. szintjéhez

4. modul EGYENES ÉS FORDÍTOTT ARÁNYOSSÁG, SZÁZALÉKSZÁMÍTÁS

Számelmélet Megoldások

DIAGNOSZTIKUS MÉRÉS. 33. modul

2. modul MŰVELETEK RACIONÁLIS SZÁMOK KÖRÉBEN

0564. MODUL TÖRTEK. Törtek egyszerűsítése, bővítése KÉSZÍTETTE: BENCZÉDY-LACZKA KRISZTINA, MALMOS KATALIN

Módszertani megjegyzés: A kikötés az osztás műveletéhez kötődik. A jobb megértés miatt célszerű egy-két példát mu-

10. modul: FÜGGVÉNYEK, FÜGGVÉNYTULAJDONSÁGOK

Matematika. 1. évfolyam. I. félév

MATEMATIKA VERSENY

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet

Számelméleti alapfogalmak

17. modul: EGYENLETEK, EGYENLŐTLENSÉGEK, KÉTISMERETLENES EGYENLETEK

Gyakorló feladatok 9.évf. halmaznak, írd fel az öt elemű részhalmazokat!. Add meg a következő halmazokat és ábrázold Venn-diagrammal:

13. modul: MÁSODFOKÚ FÜGGVÉNYEK

Megoldások p a.) Sanyi költötte a legkevesebb pénzt b.) Sanyi 2250 Ft-ot gyűjtött. c.) Klára

0563. MODUL TÖRTEK. Törtek összehasonlítása KÉSZÍTETTE: BENCZÉDY-LACZKA KRISZTINA, MALMOS KATALIN

Matematika A 9. szakiskolai évfolyam. 16. modul EGYBEVÁGÓSÁGOK. Készítette: Vidra Gábor

TÖRTEK ÖSSZEHASONLÍTÁSA, EGYSZERŰSÍTÉSE, BŐVÍTÉSE

Hatványozás. A hatványozás azonosságai

I. Egyenlet fogalma, algebrai megoldása

Matematika 7. osztály

2. Feladatsor. N k = {(a 1,...,a k ) : a 1,...,a k N}

2016/2017. Matematika 9.Kny

Szorzás, osztás 1000-ig. A műveletek tulajdonságai 1. Hány pötty van Erika rajzán? Írj róla összeadást és szorzást is!

A kompetencia alapú matematika oktatás. tanmenete a 9. osztályban. Készítette Maitz Csaba

A SZÁMFOGALOM KIALAKÍTÁSA

11. modul: LINEÁRIS FÜGGVÉNYEK

Pótvizsga matematika 7. osztály (Iskola honlapján is megtalálható!) Tételek

2016/2017. Matematika 9.Kny

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Számelmélet

Törtek. Rendelhetőek nagyon jó szemléltethető eszközök könyvesboltokban és internetek is, pl:

SzA XIII. gyakorlat, december. 3/5.

Számelmélet évfolyam. Szerkesztette: Blénessy Gabriella, Dobos Sándor, Fazakas Tünde, Hraskó András, Rubóczky György október 19.

NÉGYOSZTÁLYOS FELVÉTELI Részletes megoldás és pontozás a Gyakorló feladatsor I-hez

Dudás Gabriella Hetényiné Kulcsár Mária Machánné Tatár Rita Sós Mária. sokszínû. 5 gyakorló. kompetenciafejlesztõ munkafüzet. 2.

4. Számelmélet, számrendszerek

Matematika A 9. szakiskolai évfolyam. 14. modul GEOMETRIAI ALAPFOGALMAK. Készítette: Vidra Gábor

A pillangóval jelölt feladatok mindenki számára könnyen megoldhatók. a mókussal jelölt feladatok kicsit nehezebbek, több figyelmet igényelnek.

1. Írd le számjegyekkel illetve betűkkel az alábbi számokat! Tízezer-hétszáztizenkettő Huszonhétmillió-hétezer-nyolc

Matematika A 9. szakiskolai évfolyam. 15. modul SÍKIDOMOK. Készítette: Vidra Gábor

Melyik nagyobb? 9. modul. Készítette: Abonyi tünde

kié nagyobb? 10. modul Készítette: Abonyi tünde

HHF0CX. k darab halmaz sorbarendezésének a lehetősége k! Így adódik az alábbi képlet:

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

ÍRÁSBELI ÖSSZEADÁS, KIVONÁS. A MŰVELETI SORREND SZÁMÍTÁSOKBAN ÉS SZÖVEGES FELADATOK MEGOLDÁSA SORÁN. 9. modul

Próbaérettségi feladatsor_a NÉV: osztály Elért pont:

Egész számok értelmezése, összehasonlítása

0653. MODUL TÖRTEK. Szorzás törttel, osztás törttel KÉSZÍTETTE: BENCZÉDY LACZKA KRISZTINA, MALMOS KATALIN

Curie Matematika Emlékverseny 6. évfolyam Országos döntő Megoldása 2017/2018.

MÉRÉSEK, GEOMETRIAI SZÁMÍTÁSOK

Matematika (alsó tagozat)

MATEMATIKA B 1. ÉVFOLYAM EMBER A TERMÉSZETBEN. 10. modul TESTRÉSZEINK! Készítette: Schmittinger Judit

Matematika A 9. szakiskolai évfolyam. 8. modul AZ ABSZOLÚTÉRTÉK-FÜGGVÉNY ÉS MÁS NEMLINEÁRIS FÜGGVÉNYEK

Matematika A 9. szakiskolai évfolyam. 7. modul EGYENES ARÁNYOSSÁG ÉS A LINEÁRIS FÜGGVÉNYEK

Számelmélet, 7 8. évfolyam

MATEMATIKA VERSENY

Műveletek egész számokkal

Számelmélet, műveletek, egyenletek, algebrai kifejezések, egyéb

I. A gyökvonás. cd c) 6 d) 2 xx. 2 c) Szakaszvizsgára gyakorló feladatok 10. évfolyam. Kedves 10. osztályos diákok!

MATEMATIKA C 12. évfolyam 4. modul Még egyszer!

Középszintű érettségi feladatsorok és megoldásaik Összeállította: Fazakas Tünde; dátum: november. I. rész

Racionális számok: Azok a számok, amelyek felírhatók két egész szám hányadosaként ( p q

1. Tekintsük a következő két halmazt: G = {1; 2; 3; 4; 6; 12} és H = {1; 2; 4; 8; 16}. Elemeik felsorolásával adja meg a G H és a H \ G halmazokat!

Másodfokú egyenletek. 2. Ábrázoljuk és jellemezzük a következő,a valós számok halmazán értelmezett függvényeket!

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

5. modul: ARÁNYOSSÁG, SZÁZALÉKSZÁMÍTÁS

Szerb Köztársaság FELADATOK AZ ÁLTALÁNOS OKTATÁS ÉS NEVELÉS ZÁRÓVIZSGÁJÁRA. a 2017/2018-as tanévben TESZT MATEMATIKÁBÓL UTASÍTÁS A TESZT MEGÍRÁSÁHOZ

Matematika A 9. szakiskolai évfolyam. 13. modul SZÖVEGES FELADATOK. Készítette: Vidra Gábor

Hány darab? 5. modul

SZÁMKERESZTREJTVÉNYEK

A 5-ös szorzó- és bennfoglalótábla

6. OSZTÁLY. Az évi munka szervezése, az érdeklõdés felkeltése Feladatok a 6. osztály anyagából. Halmazok Ismétlés (halmaz megadása, részhalmaz)

Diszkrét matematika I.

Átírás:

0644. MODUL SZÁMELMÉLET Közös osztók, közös többszörösök KÉSZÍTETTE: PINTÉR KLÁRA

0644. Számelmélet Közös osztók, közös többszörösök Tanári útmutató MODULLEÍRÁS A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási pontok A képességfejlesztés fókuszai Közös osztók megkeresése. Relatív prímek. Törtek egyszerűsítése. Közös többszörösök. Törtek összeadása. Szöveges feladatok. óra 6. osztály Számfogalom és a műveletek elmélyítése. Törtek egyszerűsítése, összeadása. Matematikai szakszavak megfelelő használata. Induktív gondolkodás általánosítás. Szabály megállapítása, alkalmazása. Halmazszemlélet: részhalmaz, halmazok közös része, üres halmaz. Logika és, vagy kötőszavak helyes értelmezése, minden, van olyan helyes használata. AJÁNLÁS A legnagyobb közös osztó és legkisebb közös többszörös keresésében is a számok színképéből indulunk ki. A szabályokat viszont semmiképp sem mondjuk ki a prímtényezők alapján, azt hagyjuk 7. osztályra. Megmutatjuk a legnagyobb közös osztó és a legkisebb közös többszörös alkalmazását a törtekkel való számolásnál, és gyakorlati példákban. Gyakorlatilag jó lenne órában tanítani az anyagot, kézenfekvő a szétbontás a legnagyobb közös osztóra és a legkisebb közös többszörösre. A hiányzó óra megnyerhető az oszthatósági szabályokon, ha sikerül egy óra alatt megtanítani a végződéses szabályokat. A -vel, 5-tel oszthatóság ismert, a 8-cal való oszthatóság szabályát nem feltétlen szükséges elmélyíteni, így ez lehetséges. Esetleg a törtektől is nyerhető óra, hiszen itt is előfordul törtek egyszerűsítése és közös nevezőre hozása. A jelen felépítést indokolja, hogy a hangsúly most a megalapozáson van, inkább a legkisebb közös többszörösöknél maradjanak el dolgok, hiszen ezek a törtekkel való számolásnál és a 7. osztályos számelméletnél részletesen előkerülnek újra. TÁMOGATÓ RENDSZER Feladatlapok, Feladatgyűjtemény ÉRTÉKELÉS A gyerekek munkájának megfigyelése, az ügyes megoldások jutalmazása.

0644. Számelmélet Közös osztók, közös többszörösök Tanári útmutató MODULVÁZLAT Lépések, tevékenységek Kiemelt készségek, képességek Eszközök, Feladatok I. Közös osztók 1. Közös osztók legnagyobb közös osztó Számolási képesség. Kombinatív képességek. Szabályalkotás. 1. feladatlap, Színes rudak csoportonként. Gyakorlás, szöveges feladatok, törtek egyszerűsítése Alkalmazás. Rendszerezés.. feladatlap Feladatgyűjtemény: 1 4. II. Közös többszörösök 1. Közös többszörösök legkisebb közös többszörös Számolási képesség. Kombinatív képességek. Szabályalkotás.. Gyakorlás, szöveges feladatok, törtek közös nevezőre Alkalmazás. Rendszerezés. hozása. feladatlap Színes rudak csoportonként. feladatlap

0644. Számelmélet Közös osztók, közös többszörösök Tanári útmutató 4 A FELDOLGOZÁS MENETE I. Közös osztók 1. Közös osztók legnagyobb közös osztó A gyerekek csoportban dolgoznak. Minden csoport kap egy számpárt, a számok színképét ki kell rakniuk, ez alapján meghatározni a számok osztóit és halmazábrában elhelyezni azokat. Szükségük lesz a gyerekeknek színes ceruzákra, hogy a füzetükben rögzíthessék a színképet, és a számok osztóit. 1. FELADATLAP 1. Rakjuk ki a számok színképét, keressük meg az összes osztóikat és helyezzük el halmazábrában, az egyik halmazba az egyik szám, a másikba a másik szám osztóit. A szám párok: 0 4; 0 75; 6 54; 4 60; 11 17; 0 6. 0 osztói 4 osztói 15 0 10 5 1 6 7 1 14 4 Írjuk fel a két halmaz közös részében levő számokat, ezek a 0 és a 4 közös osztói. 1; ; ; 6.

0644. Számelmélet Közös osztók, közös többszörösök Tanári útmutató 5 0 osztói 75 osztói 0 10 6 1 15 5 75 5 TUDNIVALÓ: közös osztók. 1; ; 5; 15. 6 osztói: 1; ; ; 4; 6; 9; 1; 18; 6. 54 osztói: 1; ; ; 4; 6; 9; 16; 18; 7; 54. közös osztók: 1; ; ; 4; 6; 9; 18. 4 osztói: 1; ; ; 4; 6; 1; 4. 60 osztói: 1; ; ; 4; 5; 6; 10; 1; 15; 0; 0; 60. közös osztók: 1; ; ; 4; 6; 1. 101 osztói: 1; 11.. 17 osztói: 1; 17 közös osztó: 1. 0 osztói: 1; ; 4; 5; 10; 0. 6 osztói: 1; ; 7; 9; 1; 6. közös osztó: 1. Két természetes szám közös osztói közül a legnagyobbat a két szám legnagyobb közös osztójának nevezzük. Jele: (0; 4) = 6 Frontálisan nézzük végig az összes számpárt. Figyeljük meg a közös prímtényezőket a színképekben, vegyük észre, hogy a legnagyobb közös osztó színképében az összes közös osztó színe megtalálható.

0644. Számelmélet Közös osztók, közös többszörösök Tanári útmutató 6 Tehát az összes közös prímtényező szorzata adja a legnagyobb közös osztót. (0; 75) = 15 (6; 54) = 18 (4; 60) = 1 (11; 17) = 1 (0; 6) = 1 Ha két szám legnagyobb közös osztója 1, a számokat relatív prímeknek nevezzük. Közösen állapítsuk meg a következőket: Két prímszám legnagyobb közös osztója 1. Két szám legnagyobb közös osztója akkor is lehet 1, ha egyik szám sem prím. Frontálisan oldjuk meg a következő feladatot alapul véve az előbbi halmazábrákat. Az igaz megállapításokat a gyerekek jegyezzék le a füzetükbe.. Döntsük el a következő állítások közül melyik igaz, melyik hamis. a) Két szám legnagyobb közös osztójának minden közös osztójuk osztója. igaz b) Két szám közös osztóinak mindkét szám többszöröse. igaz c) Van két olyan a, b szám, melyekre a és b legnagyobb közös osztója nem egyenlő b és a legnagyobb közös osztójával. hamis d) Két szám legnagyobb közös osztója a két szám különbségének is osztója. igaz Az utolsó állítás vizsgálata segít nagy számok legnagyobb közös osztójának keresésében, hiszen (a; b) = (a; b a), és így tovább, egyre kisebb számokkal kell dolgoznunk. Ez előkészíti az euklideszi algoritmust a legnagyobb közös osztó meghatározására, amellett, hogy egyszerűbb módszert ad az osztók keresésénél. Mutassuk meg ezt a következő példán: Keressük a számok legnagyobb közös osztóját a színképük alapján és a különbségek alkalmazásával is.. Keressük meg a 60 és a 756 legnagyobb közös osztóját! (60; 756) = (60; 756 60) = (60; 96) = (60; 6) = 6 60 = 5 756 = 7 Ebből (60; 756) =.. Gyakorlás, szöveges feladatok, törtek egyszerűsítése A következő feladatlapot egyénileg vagy csoportban közösen is megoldhatják a gyerekek. Az 1. feladat a legnagyobb közös osztó gyakorlására szolgál, időt takarítunk meg, ha csoportonként oldják meg a gyerekek, és egy gyerek egy szám színképét és összes osztóját keresi meg. A. egy alkalmazás, aminek a második fele házi feladatnak adható. A. feladat törtek egyszerűsítésénél alkalmazza a közös osztót, hiszen mindig közös osztóval egyszerűsítünk, és ha egy lépésben hajtjuk végre az összes lehetséges egyszerűsítést, akkor a legnagyobb közös osztóval egyszerűsítünk. Ha egy tört tovább nem egyszerűsíthető, akkor a számlálója és a nevezője relatív prímek.

0644. Számelmélet Közös osztók, közös többszörösök Tanári útmutató 7. FELADATLAP 1. Rakd ki és rajzold le a 4, a 6 és az 54 színképét és osztóikat! Állapítsd meg a (4;6)-t, és a (6;54)-t! Ábrázold az osztókat egy halmazábrában és keresd meg, mennyi a három szám legnagyobb közös osztója? 4 osztói 54 osztói 8 4 1 4 1 6 18 7 9 54 6 6 osztói. A nagy és kis téglalapok oldalai is egész egység hosszúságúak. A négy kis téglalap közül háromba beírtuk a területét. Mennyi a negyedik kis téglalap területe, és mekkorák lehetnek a kis téglalapok oldalai? 1 0 45 5 18 0 7 56 Az első téglalapnál az elválasztó vonalak vízszintesen + 5, függőlegesen 4 + 6 lehetnek, vagy vízszintesen 6 + 10, függőlegesen +. A másik téglalapnál vízszintesen 9 + 7, függőlegesen 5 + 8.

0644. Számelmélet Közös osztók, közös többszörösök Tanári útmutató 8. Kösd össze a törteket a tovább már nem egyszerűsíthető alakjával! Mivel egyszerűsíthetjük a törteket? 16 189 = (6-mal) 1 8 = (7-tel) 4 6 9 = (-mal) 14 = (7-tel) 1 4 105 140 = (5-tel) 4 4 6 = (1-gyel) II. Közös többszörösök 1. Közös többszörösök legkisebb közös többszörös Ritmus játék: Osszuk három részre az osztályt! A tanár mondja sorban a természetes számokat egyenletes ritmusban. 0-val kezdünk, amire mindegyik csoport ad hangot. Ezután az első csoport minden második számra tapsol, a második minden harmadikra az asztalra üt a tenyerével, a harmadik minden ötödikre dobbant a lábával. Figyeljük meg, mely számoknál van többféle hang! Ábrázoljuk számegyenesen, mely számokra milyen hangok voltak! Állapítsuk meg a következőket: a taps a többszöröseire hangzik, a tenyérrel csapás a többszöröseire hangzik, a dobbantás az 5 többszöröseire hangzik. Melyek azok a számok, amikor egyszerre két csoport adott hangot? Két szám közös többszörösei: taps és csapás: a és a közös többszörösei, amik a 6-nak többszörösei, a legkisebb pozitív többszörös a 6. taps és dobbantás: a és az 5 közös többszörösei, amik a 10-nek többszörösei, a legkisebb pozitív többszörös a 10. csapás és dobbantás: a és az 5 közös többszörösei, amik a 15-nek többszörösei, a legkisebb pozitív többszörös a 15. Melyek azok a számok, amelyekre egyszerre mindhárom csoport adott hangot? Három szám közös többszörösei: taps, csapás és dobbantás: a a és az 5 közös többszörösei, amik a 0-nak többszörösei.. FELADATLAP TUDNIVALÓ: Két természetes szám közös többszörösei közül a legkisebb pozitív számot a két szám legkisebb közös többszörösének nevezzük. 6;15 = 0 Jele: [ ]

0644. Számelmélet Közös osztók, közös többszörösök Tanári útmutató 9 A következő feladaton csoportban dolgoznak a gyerekek a színes rudakkal. Utána közösen megbeszéljük. 1. Rakjuk ki a következő számok színképét és keressük meg a legkisebb közös többszörösüket! 9 15; 45 4 6; 1 6 7; 4 18 4. 7 Frontálisan oldjuk meg a következő feladatot alapul véve az előbbi megoldásokat. Az igaz megállapításokat a gyerekek jegyezzék le a füzetükbe.. Döntsd el a következő állítások közül melyik igaz, melyik hamis! Az igaz állításokat mutassuk meg színképekkel, a hamisra mutassunk ellenpéldát a) Két szám legkisebb közös többszöröse a szorzatuk. Hamis: a szorzat közös többszörös, de csak akkor a legkisebb, ha a két szám relatív prím. b) Két szám legkisebb közös többszöröse osztója a többi közös többszörösnek. Igaz. c) Két szám legkisebb közös többszörösének és legnagyobb közös osztójának szorzata egyenlő a két szám szorzatával. Igaz: mutassuk meg a színképekkel!. Gyakorlás, szöveges feladatok, törtek közös nevezőre hozása Frontálisan oldjuk meg a következő feladatot, amelyben megmutatjuk a legkisebb közös többszörös alkalmazását a törtek közös nevezőre hozásánál.. Végezd el a következő műveleteket! A lehető legkisebb közös nevezővel dolgozz! 1 5 4 + 5 49 + = = 15 6 0 0 11 7 +14 47 + = = 8 1 4 4 5 0 + 9 9 + = = 18 4 7 7 9 4 45-16 9 = = 1 15 60 60 6- = = 7 14 14 14 1 14-5 9 = = 5 7 5 5 A gyerekek önállóan oldják meg a Feladatgyűjtemény 5-8. feladatait, utána közösen ellenőrizzük.

0644. Számelmélet Közös osztók, közös többszörösök Tanári útmutató 10 FELADATGYŰJTEMÉNY 1. Az iskolai évkönyvbe a végzős osztályok minden tanulójáról raknak egy képet. Úgy akarják elhelyezni a képeket osztályonként külön-külön, hogy minden sorban ugyanannyi kép legyen. Legtöbb hány képet rakhatnak egy sorba, ha az osztálylétszámok: 0; 4; 6? A három szám legnagyobb közös osztója 6.. A négyzetekbe 1-9-ig beírtuk a természetes számokat, majd soronként és oszloponként összeszoroztuk őket és a szorzatokat odaírtuk a megfelelő helyre. Találd ki a szorzatokból a számok eredeti elhelyezkedését! 4 4 1 6 8 48 9 7 5 15 7 84 160. Egy téglatest minden élének hossza centiméterben mérve egész szám. Mekkora lehet a térfogata, ha két lapjának területe 4 cm és 6 cm? A közös él a két terület közös osztója lehet: 1,,, 4, 6 cm, a térfogatok rendre 4 6 = 864 cm, 4 18 = 4 cm, 4 1 = 86 cm, 4 9 = 16 cm, 4 6 = 144 cm lehetnek. 4. Ha 4 15 = 1; 6 10 = és 9 1 =, akkor mennyi 1 1? A művelet eredménye a legnagyobb közös osztó, így 1 1 = 1. 5. Kati a buszmegállóhoz megy, ahonnan 5 percenként indul a 4-es, 6 percenként a 1-es busz egész órától kezdve. Kati 8 óra után perccel érkezik a megállóba. Mikor jön legközelebb egyszerre mind a két busz? 8 óra 0 perckor. 6. Az első 10 pozitív egész szám legkisebb közös többszörösét a fáraó számának is nevezik, mert egy egyiptomi piramis sírkamrájának falán találták hieroglifákkal leírva. Melyik ez a szám? 50 7. Peti a bélyegeit rakja be az albumba. Megállapítja, hogy kettesével, hármasával, ötösével és hatosával is rakhatná őket, minden sorba ugyanannyi bélyeg kerülne. Legkevesebb hány bélyege van Petinek?,, 5, 6 legkisebb közös többszöröse a 0. 8. Az osztály tanulóit egyforma létszámú csoportokra akarják osztani. Akár négyesével, akár ötösével alkotnak csoportokat, kimarad egy tanuló. Legkevesebb hány tanuló járhat az osztályba? A létszámnál 1-gyel kisebb szám a 4 és az 5 legkisebb közös többszöröse, így az osztály létszám: 1.

0644. Számelmélet Közös osztók, közös többszörösök Tanári útmutató 11 9. A következő szám pároknak mennyi a legnagyobb közös osztója és a legkisebb közös többszöröse? a) 88 és 56; (88;56) = 8; [88;56] = 616; b) 69 és 115; (69; 115) = ; [69; 1] = 49; c)150 és 1155; (150; 1155) = 15; [150; 1155] = 11550; d) 40 és 00. (40; 00) = 1; [40; 00] = 4040.