Mágnesség mágnes ferromágneses ferrimágneses domé- nekben remanencia koercitív



Hasonló dokumentumok
Anyagtudomány MÁGNESES ANYAGOK GERZSON MIKLÓS

Mágneses tér anyag kölcsönhatás leírása

Mágneses tér anyag kölcsönhatás leírása

N I. 02 B. Mágneses anyagvizsgálat G ép A mérés dátuma: A mérés eszközei: A mérés menetének leírása:

Az elektromágneses tér energiája

Magnesia. Itt találtak már az ókorban mágneses köveket. Μαγνησία. (valószínű villámok áramának a tere mágnesezi fel őket)

Tartalomjegyzék. 1. Problémafelvetés Történeti áttekintés Eddigi példák A mágnes és a mágnesesség Kísérlet...

Szilárdtestek mágnessége. Mágnesesen rendezett szilárdtestek

XII. előadás április 29. tromos

Villamos gépek működése

Az anyagok mágneses tulajdonságai

Mágneses tulajdonságok

Mágneses mező tesztek. d) Egy mágnesrúd északi pólusához egy másik mágnesrúd déli pólusát közelítjük.

Mágneses kölcsönhatás

KOVÁCS ENDRe, PARIpÁS BÉLA, FIZIkA II.

Optika Gröller BMF Kandó MTI. Optikai alapfogalmak. Fény: transzverzális elektromágneses hullám. n = c vákuum /c közeg. Optika Gröller BMF Kandó MTI

A mágneses tulajdonságú magnetit ásvány, a görög Magnészia városról kapta nevét.

Szupravezetés. Mágneses tér mérő szenzorok (DC, AC) BME, Anyagtudomány és Technológia Tanszék. Dr. Mészáros István. Előadásvázlat 2013.

Miért vonzza a vegyészt a mágnes? Németh Zoltán, Magkémiai Laboratórium, ELTE Alkímia ma

Anyagszerkezettan és anyagvizsgálat 2015/16. Mágneses anyagok. Dr. Szabó Péter János

TestLine - Fizika 8. évfolyam elektromosság alapok Minta feladatsor

1 kérdés. Személyes kezdőlap Villamos Gelencsér Géza Simonyi teszt május 13. szombat Teszt feladatok 2017 Előzetes megtekintés

TestLine - Fizika 8. évfolyam elektromosság 2. Minta feladatsor

Elektromágnesség tesztek

MÉRNÖKI ANYAGISMERET AJ002_1 Közlekedésmérnöki BSc szak Csizmazia Ferencné dr. főiskolai docens B 403. Dr. Dogossy Gábor Egyetemi adjunktus B 408

VILLANYSZERELŐ KÉPZÉS MÁGNESES TÉR ÖSSZEÁLLÍTOTTA NAGY LÁSZLÓ MÉRNÖKTANÁR

Anyagismeret tételek

Kötések kialakítása - oktett elmélet

Mikrohullámú abszorbensek vizsgálata

Mikrohullámú abszorbensek vizsgálata 4. félév


Mágnesesség, elektromágnes, indukció Tudománytörténeti háttér Már i. e. 600 körül Thalész felfedezte, hogy Magnesia város mellett vannak olyan talált

Fizikai kémia Részecskék mágneses térben, ESR spektroszkópia. Részecskék mágneses térben. Részecskék mágneses térben

Elektronegativitás. Elektronegativitás

ACÉLOK MÉRNÖKI ANYAGOK

Elektromosság, áram, feszültség

Mágneses alapjelenségek

Időben állandó mágneses mező jellemzése

Ferromágneses anyagok mikrohullámú tulajdonságainak vizsgálata

Elektromágnesség tesztek

Elektrotechnika. Prof. Dr. Vajda István BME Villamos Energetika Tanszék

Aktuátorok korszerű anyagai. Készítette: Tomozi György

Perifériáknak nevezzük a számítógép központi egységéhez kívülről csatlakozó eszközöket, melyek az adatok ki- vagy bevitelét, illetve megjelenítését

Gépészet szakmacsoport. Porkohászat

MÁGNESESSÉG. Türmer Kata

TARTALOMJEGYZÉK. Előszó 9

Négypólusok helyettesítő kapcsolásai

ÓRIÁS MÁGNESES ELLENÁLLÁS

Fázisátalakulások, avagy az anyag ezer arca. Sasvári László ELTE Fizikai Intézet ELTE Bolyai Kollégium

Mágneses mező jellemzése

Villamos tér. Elektrosztatika. A térnek az a része, amelyben a. érvényesülnek.

Optikai alapfogalmak. Az elektromágneses spektrum. n = c vákuum /c közeg. Fény: transzverzális elektromágneses hullám. (n 1 n 2 ) 2 R= (n 1 + n 2 ) 2

Bevezetés az analóg és digitális elektronikába. III. Villamos és mágneses tér

2. tétel. 1. Nemfémes szerkezeti anyagok: szerves ( polimer ) szervetlen ( kerámiák ) természetes, mesterséges ( műanyag )

-2σ. 1. A végtelen kiterjedésű +σ és 2σ felületi töltéssűrűségű síklapok terében az ábrának megfelelően egy dipól helyezkedik el.

Az anyagok mágneses tulajdonságai

A II. kategória Fizika OKTV mérési feladatainak megoldása

Kerámia, üveg és fém-kerámia implantátumok

Elektrotechnika. Ballagi Áron

9. évfolyam. Osztályozóvizsga tananyaga FIZIKA

Villamos mérések. Analóg (mutatós) műszerek. Készítette: Füvesi Viktor doktorandusz

Elektromos töltés, áram, áramkörök

Mágneses erőtér. Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat. A villamos forgógépek mutatós műszerek működésének alapja

A kovalens kötés polaritása

Mikrohullámú abszorbensek vizsgálata

Mágneses körök. Fizikai alapok. Mágneses tér

Kémiai kötések. Kémiai kötések kj / mol 0,8 40 kj / mol

Mérnöki anyagismeret. Szerkezeti anyagok

Elektromos áram, áramkör

Gépészmérnöki alapszak, Mérnöki fizika 2. ZH, december 05. Feladatok (maximum 3x6 pont=18 pont)

Király Trading KFT H-1151 Budapest Mogyoród útja Mágnesek menettel (lapos mágneses megfogó), kemény ferrit

Tervezte és készítette Géczy LászlL. szló

ÁRLISTA. Euromagnet Hungary Kft Budapest, Halom u. 20. Telefon: ,

mágnes mágnesesség irányt Föld északi déli pólus mágneses megosztás influencia mágneses töltés

LI 2 W = Induktív tekercsek és transzformátorok

Vezetési jelenségek, vezetőanyagok

Elektromos áram, áramkör, kapcsolások

Elektrokémia. A nemesfém elemek és egymással képzett vegyületeik

(Az 1. példa adatai Uray-Szabó: Elektrotechnika c. (Nemzeti Tankönyvkiadó) könyvéből vannak.)

Nanoelektronikai eszközök III.

7. ábra Shredder 8.ábra Granulátor

A réz és ötvözetei jelölése

Vezetők elektrosztatikus térben

ANYAGTUDOMÁNY ÉS TECHNOLÓGIA TANSZÉK. Anyagismeret 2016/17. Szilárdságnövelés. Dr. Mészáros István Az előadás során megismerjük

Javító és felrakó hegesztés

KIVÁLÓ MINŐSÉG, GYÖNYÖRŰ BEVONAT!

ADATTÁROLÁS: LÁGY- ÉS MEREVLEMEZEK KOVÁCS MÁTÉ

Anyagválasztás dugattyúcsaphoz

Elektromos ellenállás, az áram hatásai, teljesítmény

Mágneses mező jellemzése

Tervezte és készítette Géczy László

Nem vas fémek és ötvözetek

Korszerű alumínium ötvözetek és hegesztésük

Vezetési jelenségek, vezetőanyagok. Elektromos vezetési folyamatban töltést továbbító (elmozdulni képes) részecskék:

2. Ideális esetben az árammérő belső ellenállása a.) nagyobb, mint 1kΩ b.) megegyezik a mért áramkör eredő ellenállásával

A technológiai paraméterek hatása az Al 2 O 3 kerámiák mikrostruktúrájára és hajlítószilárdságára

MÉRÉSI JEGYZŐKÖNYV. A mérés megnevezése: Potenciométerek, huzalellenállások és ellenállás-hőmérők felépítésének és működésének gyakorlati vizsgálata

MEMS, szenzorok. Tóth Tünde Anyagtudomány MSc

Fizika minta feladatsor

műszaki habok Kizárólagos magyarországi forgalmazó:

Átírás:

Mágnesség az elektromágnesség egyik megjelenése. A 19. században tárták fel, hogy az elektromos és a mágneses jelenségek szoros kapcsolatban állnak, egymástól elválaszthatatlanok. Mozgó elektromos töltések mágneses teret keltenek, a mozgó töltésekre mágneses erők hatnak. Az egymástól függetlenül létező pozitív és negatív elektromos töltéstől eltérően mágneses egypólust még nem találtak, bár az elméleti fizika számol létezésével. Tapasztalataink szerint csak mágneses dipólus, vagyis egymástól elválaszthatatlan északi és déli pólus létezik. Az atomok maguk is parányi mágnesek. Külső mágneses tér hatására az atomok rendezettséget vesznek fel, az anyag mágneses tulajdonságokat mutat. Az anyagok mágnesezhetőségén alapul a modern információtárolás: audio- és videomagnó, mágneslemezek (floppy, winchester). Erős mágneses térben alkot részletgazdag képet az emberi szervezetről a mágneses rezonancia (MR) módszer. A Föld maga hatalmas mágnes, ezzel vált érthetővé a már évszázadok óta sikeresen használt iránytű működése. A bolygók mágneses tere alakítja ki a magnetoszférát, amely védelmet nyújt a Napból származó részecskeáram, a napszél ellen. mágnes a mágnesség alapjelenségeit mutató anyagi közeg, amelynek alapvető tulajdonságai a kétpólusú (északi és déli) sarkítottság és a más mágneses anyagokra érintkezés nélkül, a távolból is ható vonzó vagy taszító erő. Ez a sokáig rejtélyesnek tartott távolhatás a mágneses erőtér. A mágnesek vonzását már az ókorban ismerték, a 19. sz. óta pedig azt is tudjuk, hogy a villamos áramok is teremtik és követik a mágneses erőteret. Így minden anyag mágneses a maga módján a benne mozgó elektronok áramai miatt, mágneseknek azonban mégis csupán a rendezett ferromágneses és ferrimágneses szerkezetű, általában szilárd halmazállapotú állandó mágneseket nevezzük. Ezek mikroszerkezete parányi atomi mágnesek egyirányba rendeződésével épül fel az atom-párok között ható, kvantumfizikai eredetű kicserélődési kölcsönhatás erőterében, a Curie-pont alatti hőmérsékleteken. A rendezettség mikrométernyi méretű tartományokban doménekben valósul meg, és a sokféle irányú doménből összegződő eredő mágnesezettség nagy külső térerőben telítődik, majd nulla térerőnél is visszamarad a remanencia értéke, amely az ellenkező irányú koercitív

erőtérnél nullázódik. A mágnesezési folyamat hiszterézis-függvénye a mágneses eszközök műszaki alkalmazása szempontjából ad fontos információkat. mágneses eszközök a mágneses anyagok tulajdonságaira és a mágnesség fizikai jelenségeire vonatkozó tudást a társadalom hasznos céljai érdekében felhasználó műszaki alkotások. A mágnesek hiszterézis-függvényének fizikai paraméterei, a telítési és a remanens mágnesezettség, valamint a koercitív erő értékei a mágnesek alkalmazhatóságát lényegesen befolyásolják. A kemény-mágnesekben általában ritkaföldfém ötvözetek a telítési mágnesezettség, a remanencia és a koercitív erő is a lehető legnagyobb értékű. A lágy-mágneses anyagokban pl. a transzformátorok vasmagjaiban a telítési mágnesezettség nagy, de a kis értékű remanencia és koercitív erő biztosítják a hiszterézishurok területével arányos kis vasveszteséget. A számítógépi digitális memóriák mágneses vékonyrétegeiben a remanencia és a koercitív erő értékeinek a biztonságos adattároláshoz elegendően nagynak, viszont a gyors működést biztosító kis energiaveszteséghez minél kisebbnek kell lenniük. A szórakoztatóipari analóg műsorrögzítésre használt audio- és videoszalagok mágneses rétegeiben a jelek alakjának hű átvitele, a bemeneti mágnesező erőtér és a kimeneti remanens mágnesezettség lineáris arányossága a legfontosabb követelmény. Fogalmak: a. Diamágnesesség: a kisebb mágneses térerő irányába mozdulnak (Sn, Pb, Ag, Au). A fémek többségének atomjai szimmetrikus kompenzált spinű elektronpárokat, lezárt elektronhéjakat tartalmaznak, ezért az egyes elektronok mozgása során keletkező mágneses momentumok egymást kompenzálják. Külső mágneses tér az elektronok mozgását megváltoztatja, az addig kompenzált mágneses momentumú részecskéket átmenetileg aszimmetrikusan rendezi el. ún. indukált mágneses momentum jön létre, amely taszítja a mágnest. b. Paramágnesesség: néhány elektron kompenzálatlan marad, így az atomoknak saját mágneses momentumuk van, a nagyobb mágneses térerő irányába tolódnak el (Al, Pb, Cr, Ti, Mn), amelyet csak külső mágneses tér rendezhet el, orientálhatja az atomok mágneses tengelyeit az erővonalakkal párhuzamosan.

c. Ferromágnesesség: ha az atom kompenzálatlan mágneses momentuma olyan nagy, hogy az atomok mágnesessége már a szomszédos atomokat is bizonyos mértékben orientálja, mágneses szigetek jönnek létre, ahol az egyes atomok mágneses erővonalai párhuzamosak. Külső erőtér a mágneses szigetek egységesen orientálhatja, ezáltal erős, maradandó mágnes jön létre. Minden ferromágneses anyagra van egy hőmérséklet (Curie-féle pont), ahol a ferromágnesesség megszűnik. Permanens mágnesek Az állandó kutatásfejlesztés eredményeként kialakított mágnes anyagoknak köszönhetően egyre kisebb méretben egyre nagyobb mágneses energia áll rendelkezésre. A mágnesek csoportosítása: Funkciójuk szerint: - Elektromos energiát alakítunk át mozgási energiává (motorok, hangszórók) - Mozgási energiát alakítunk át elektromos energiává (generátor, mikrofon, érzékelők) - Mechanikai energiát továbbítunk (rögzítők, kuplungok, emelők, vaskiválasztó, szeparátor) A mágnes anyaga szerint: AlNi, AlNiCo ( öntött mágnes ) Ferrit mágnes ( kerámia mágnes ) Szamárium-kobalt (ritkaföldfém mágnes) Neodimium-vas-bór ( ritkaföldfém mágnes)

AlNi, AlNiCo ( öntött mágnes ) Az első izotróp AlNi mágnesek a 30-as évek elején jelentek meg. Aluminium, Nikkel és vas ötvözetéből állították elő hagyományos öntészeti technológiával. Néhány évvel később már anizotrop öntött mágneseket is készítettek, amelyek már Al, Ni, Co, Cu, Fe ötvözetéből áll. A korábban használt hajlított acélmágneseket váltotta fel. Sokkal kedvezőbb mágneses paraméterei miatt jelentős méretcsökkenést tettek lehetővé. (pl. villanyóra fékmágnese, Deprez-műszer) Előállítás: A tiszta alapanyagokat megfelelő arányban előírt technológiai sorrendben összeolvasztják és a kívánt mágnes alakjának megfelelő héjformába öntik, ahol a folyékony fémkeverék megszilárdul. A megfelelő mágneses paraméterek hőkezeléssel érhetők el. 910 C -on edzik, majd mágneses térben, adott sebességgel hűtik le. Így kialakul a kívánt irányítottság, a mágneses anizotrópia. Készülhet AlNiCo mágnes szintereléssel is, ahol a finom por alakú alapanyagokból préseléssel állítják elő a kívánt alakot, amit aztán védőgázas kemencében szinterelnek, végül hőkezelnek. A szintermágnesek jelentős szerszámozási költségei és technológiai igénye miatt áruk magasabb, mint az öntött mágneseké. Csak nagy szériák esetén gazdaságos. Mágneses jellemzők: Mágneses tulajdonságát a magas remanens indukció és viszonylag kis koercitív erő szabja meg. A mágneskör tervezésnél ezt mindig szem előtt kell tartani. Előnyeit a hosszú rudaknál (3-4 < L/D aránynál) ill. szűk légrésű mágnesköröknél lehet kihasználni. Egyes esetekben a felmágnesezés a mágneskör összeszerelése után történik (mágnesasztal, kuplung, hangszóró..) Az szakirodalom szerint stabilitására jellemző, hogy 15 év alatt kb. 5%-ot csökken a mágnesezettsége, amit újramágnesezéssel vissza lehet állítani. Azoknál az alkalmazásoknál, ahol még ilyen mértékű változás sem megengedett, ott -mesterséges öregítéssel- kell beállítani a stabil állapotot. (árammérő óra, járműipari felhasználás..) Külső ellenterekkel szemben az ellenálló képessége kicsi. Az összes létező mágnesfajtával összehasonlítva messze a legjobb a hőmérséklettűrő képessége. Megengedett maximális környezeti hőmérséklet 550 C.

Mechanikai jellemzők: Az öntött mágnesek természetes tulajdonsága a nagy keménység, a porozitás és a rideg kristályos szerkezet ezért megmunkálni köszörüléssel szokták. Az 50% körüli vastartalom miatt a korrózióra való hajlam a vaséhoz hasonló. Nem igényel külön galvanikus bevonatot. Alkalmazási terület: Hangszóró, motor, jeladó, mágnesasztal, kuplung, Ferrit mágnes kerámia mágnes 1952-ben szabadalmaztatták az izotróp-, majd 1954-ben az anizotróp ferrit mágneseket. Gyártástechnológiájuk és fizikai tulajdonságuk alapján gyakran említik kerámia mágnesekként is. Az olcsó és korlátlanul rendelkezésre álló alapanyagoknak köszönhetően áruk a legalacsonyabb. Ugyanakkor a kedvező mágneses jellemző miatt a legjobb ár/érték arányt mutatják. Előállítás: Gyártási folyamat a 80 % vasoxid és a 20 % stroncium- vagy báriumkarbonát keverék összeőrlésével kezdődik. Ezt követi a keverék kiégetése (ferritizálás), aminek az eredményeként kapjuk az oxidkerámiát (stoncimferrit vagy báriumferrit). Az újabb őrlés egészen egykristály méretig (mikronos szemcseméret) tart. Itt már elemi mágnes kristályokat kapunk. Az őrölt porból száraz vagy nedves préseléssel állítják elő a kívánt alakú mágneseket. A préselt mágneseket magas hőfokon alagútkemencékben szinterelik. Ekkor a méretek kb. 17 %-ot zsugorodnak. A pólusméreteken általában ennél szigorúbb tűrést írnak elő, ezért a végső méretet köszörüléssel állítják be. Mágneses jellemzők: Az izotróp mágnesek bármilyen irányba mágnesezhetőek és közel azonos mágneses jellemzőket mutatnak a különböző irányokban. Az anizotróp mágnesek préselése erős mágneses térben történik, ezért van egy kitüntetett, un. könnyű mágnesezési irány. Ebben az irányban sokkal kedvezőbb jellemzői vannak, mint többi irányban.

A kerámia mágnesek nagy kristály anizotrópiájának köszönhetően nagy koercitív erővel rendelkeznek, ami a külső-, gyöngítő terekkel szemben ellenállóvá teszi és biztosítja hosszú idejű stabilitást. A viszonylag alacsony remanens indukció miatt nagyobb pólusfelülettel kell tervezni. Megengedett maximális környezeti hőmérséklet 250 C. Mechanikai jellemzők: Nagyon kemények, ezért köszörülni is csak gyémántszerszámmal lehet. Rendkívül ellenállóak a korrózióval, savakkal, sókkal, olajakkal és gázokkal szemben. Alkalmazási terület: Hangszóró, motor, szeparátor, rögzítők Szamárium-kobalt (ritkaföldfém mágnes) A 60-as évek elején jelent meg a szamárium-kobalt mágnesek első generációja, melyet az SmCo5 képlettel jelölnek. Hagyományos mágnesötvözők (vas, kobalt) mellett ritkaföldfémet, szamáriumot is tartalmaz. A korábbi mágnes anyagokkal összehasonlítva sokkal kedvezőbb paraméterekkel rendelkeznek. A második generációt jelentő Sm2Co17 mágnesekre a még nagyobb koercitív erő és (BxH) max érték a jellemző. Kiváló mágneses tulajdonságaik ellenére a viszonylag magas áruk korlátozza széleskörű felhasználásukat. Előállítás : Először elkészítik a kívánt összetételű elő-ötvözetet, amelyből őrléssel finom port állítanak elő. Ebből mágnestérben történő préseléssel készül az anizotrop mágnes, vagy izo-statikus préseléssel az izotróp mágnes. Sok esetben először nagyobb hasábokat préselnek és később ezekből gyémántszemcsés tárcsákkal vágják ki a kisebb méretű hasábokat. A préselt darabokat magas hőfokon szinterelik, majd köszörülik, vágják méretre.

Mágneses jellemzők : Az izotróp mágnesek bármilyen irányba mágnesezhetőek és közel azonos mágneses jellemzőket mutatnak a különböző irányokban. Az anizotrop mágnesek préselése erős mágneses térben történik, ezért van egy kitüntetett, un. könnyű mágnesezési irány. Ebben az irányban sokkal kedvezőbb jellemzői vannak, mint többi irányban. Szamárium-kobalt mágnesek a korábbi mágnes anyagoknál nagyobb koercitív erővel rendelkeznek, ami a külső-, gyöngítő terekkel szemben ellenállóvá teszi és biztosítja hosszú idejű stabilitást. Remanens indukciója alig kisebb mint az AlNiCo-nak, de több mint duplája a ferritének. Maximális BxH szorzata 5-6- szor nagyobb, mint a korábbi mágnes anyagoknak. Megengedett maximális környezeti hőmérséklet 250 C. Mechanikai jellemzők: Nagyon kemények, ezért köszörülni is csak gyémántszerszámmal lehetséges. Keménységüknek köszönhetően a legtörékenyebb mágnesek. Normál körülmények között nem korrodálnak, ezért külön galvanikus védelmet nem igényelnek. Alkalmazási terület: Mikromotor, autóipari érzékelők, jeladók Neodimium-vas-bór ( ritkaföldfém mágnes) A Neodimium-vas-bór mágneseket 1980-ban fedezték fel. Jelenleg ez a legmodernebb mágnesfajta. A szamárium-kobalt mágnesekkel együtt a ritkaföldfém mágnesek csoportjába tartoznak. Gyártási technológiájuk is sok hasonlóságot mutat.

Előállítás: Először elkészítik a kívánt összetételű elő-ötvözetet, amelyből őrléssel finom port állítanak elő. Ebből mágnestérben történő préseléssel készül az anizotróp mágnes, vagy izo-statikus préseléssel az izotróp mágnes. Sok estben először nagyobb hasábokat préselnek és később ezekből gyémántszemcsés tárcsákkal vágják ki a kisebb méretű hasábokat. A préselt darabokat magas hőfokon szinterelik, majd köszörülik, vágják méretre. A korrózió megelőzése érdekében galvanikus bevonat (nikkel, zink,..) szükséges. Fő előnyük a szamárium-kobalttal szemben a jobb mágneses tulajdonságok és a jóval alacsonyabb ár. Mágneses jellemzők: Neodimium-vas-bór mágnesek a szamárium-kobalt mágneseknél is nagyobb koercitív erővel rendelkeznek Remanens indukciója megegyezik az AlNiCo-éval. Maximális BxH szorzata kb. másfélszerese a szamárium-kobalt mágnesének. A legnagyobb problémát a korrózió és a viszonylag alacsony maximális megengedett külső hőmérséklet jelenti. T max 80-180 C. anyagminőségtől függően. Mechanikai jellemzők: Nagyon kemények, ezért köszörülni is csak gyémántszerszámmal lehetséges. Nagy keménységük és erős mágneses terük miatt könnyen törnek vagy sérülnek, amikor egy másik mágnessel összecsapódnak. Nagyobb méretek esetén ez komoly balesetet is okozhat. Normál körülmények között korrodálnak, ezért galvanikus védelmet igényelnek. Alkalmazási terület: Hangszórók, motorok, jeladók, rögzítők, kuplungok