44. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY. Megyei forduló április 11.

Hasonló dokumentumok
44. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY. Megyei forduló április mal, így a számjegyeinek összege is osztható 3-mal.

7. Számelmélet. 1. Lehet-e négyzetszám az a pozitív egész szám, amelynek tízes számrendszerbeli alakjában 510 darab 1-es és valahány 0 szerepel?

Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév 2. forduló haladók II. kategória

1. Legyen egy háromszög három oldalának a hossza a, b, c. Bizonyítsuk be, hogy Mikor állhat fenn egyenlőség? Kántor Sándorné, Debrecen

A 2014/2015. tanévi Országos Középiskolai Tanulmányi Verseny első forduló MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató

48. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY Megyei forduló HETEDIK OSZTÁLY MEGOLDÁSOK = = 2019.

Számelmélet Megoldások

Elemi matematika szakkör

FOLYTATÁS A TÚLOLDALON!

44. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY. Országos döntő, 1. nap május 29.

2015. évi Bolyai János Megyei Matematikaverseny MEGOLDÁSI ÉS ÉRTÉKELÉSI ÚTMUTATÓ 9. osztály

OSZTHATÓSÁG. Osztók és többszörösök : a 3 többszörösei : a 4 többszörösei Ahol mindkét jel megtalálható a 12 többszöröseit találjuk.

BÖLCS BAGOLY LEVELEZŐS MATEMATIKAVERSENY III. forduló MEGOLDÁSOK

Arany Dániel Matematikai Tanulóverseny 2008/2009-es tanév első (iskolai) forduló haladók II. kategória

Bizonyítási módszerek - megoldások. 1. Igazoljuk, hogy menden természetes szám esetén ha. Megoldás: 9 n n = 9k = 3 3k 3 n.

1 = 1x1 1+3 = 2x = 3x = 4x4

Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév 1. forduló haladók III. kategória

BÖLCS BAGOLY LEVELEZŐS MATEMATIKAVERSENY IV. forduló MEGOLDÁSOK

45. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY. Megyei forduló

Számelmélet. 4. Igazolja, hogy ha hat egész szám összege páratlan, akkor e számok szorzata páros!

FELADATOK ÉS MEGOLDÁSOK

Megoldások 9. osztály

MEMO (Middle European Mathematical Olympiad) Szoldatics József, Dunakeszi

Arany Dániel Matematikai Tanulóverseny 2014/2015-ös tanév első (iskolai) forduló Haladók II. kategória

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Számelmélet

A lehetetlenségre visszavezetés módszere (A reductio ad absurdum módszer)

XX. Nemzetközi Magyar Matematika Verseny

PYTAGORIÁDA. 1. Két szám összege 156. Az első összeadandó a 86 és a 34 különbsége. Mekkora a másik összeadandó?

46. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY NEGYEDIK OSZTÁLY

Az Országos Középiskolai Tanulmányi Verseny tanévi második fordulójának feladatmegoldásai. x 2 sin x cos (2x) < 1 x.

Az Országos Középiskolai Tanulmányi Verseny tanévi első fordulójának feladatmegoldásai

Arany Dániel Matematikai Tanulóverseny 2010/2011-es tanév 1. forduló haladók III. kategória

Számelmélet, műveletek, egyenletek, algebrai kifejezések, egyéb

Arany Dániel Matematikai Tanulóverseny 2016/2017-es tanév Kezdők III. kategória I. forduló

Arany Dániel Matematikai Tanulóverseny 2016/2017-es tanév első (iskolai) forduló Haladók II. kategória

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Számelmélet

47. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY Megyei forduló NYOLCADIK OSZTÁLY JAVÍTÁSI ÚTMUTATÓ

43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY ORSZÁGOS DÖNTŐ 1. forduló NYOLCADIK OSZTÁLY- MEGOLDÁSVÁZLATOK

XXIV. NEMZETKÖZI MAGYAR MATEMATIKAVERSENY Szabadka, április 8-12.

FELADATOK ÉS MEGOLDÁSOK

Lehet hogy igaz, de nem biztos. Biztosan igaz. Lehetetlen. A paralelogrammának van szimmetria-középpontja. b) A trapéznak két szimmetriatengelye van.

Minden feladat teljes megoldása 7 pont

SZÁMELMÉLET FELADATSOR

A 2013/2014. tanévi Országos Középiskolai Tanulmányi Verseny MATEMATIKA II. KATEGÓRIA (GIMNÁZIUM)

A tanévi matematika OKTV I. kategória első (iskolai) fordulójának pontozási útmutatója

45. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY NEGYEDIK OSZTÁLY

A Katedra Matematikaverseny 2013/2014-es döntőjének feladatsorai Összeállította: Károlyi Károly

Varga Tamás Matematikaverseny Javítási útmutató Iskolai forduló 2016/ osztály

4 = 0 egyenlet csak. 4 = 0 egyenletből behelyettesítés és egyszerűsítés után. adódik, ennek az egyenletnek két valós megoldása van, mégpedig

1. Mit nevezünk egész számok-nak? Válaszd ki a következő számok közül az egész számokat: 3 ; 3,1 ; 1,2 ; -2 ; -0,7 ; 0 ; 1500

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások

43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY MEGYEI FORDULÓ HATODIK OSZTÁLY JAVÍTÁSI ÚTMUTATÓ

8. OSZTÁLY ; ; ; 1; 3; ; ;.

SzA XIII. gyakorlat, december. 3/5.

1. megold s: A keresett háromjegyű szám egyik számjegye a 3-as, a két ismeretlen számjegyet jelölje a és b. A feltétel szerint

4. Számelmélet, számrendszerek

Matematika 7. osztály

Minden feladat teljes megoldása 7 pont

Geometriai transzformációk

Feladatlap. a hatosztályos speciális matematika tantervű osztályok írásbeli vizsgájára (2006)

Hraskó András, Surányi László: spec.mat szakkör Tartotta: Hraskó András. 1. alkalom

FELADATOK ÉS MEGOLDÁSOK

46. TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY Megyei forduló ÖTÖDIK OSZTÁLY JAVÍTÁSI ÚTMUTATÓ

NÉGYOSZTÁLYOS FELVÉTELI Részletes megoldás és pontozás a Gyakorló feladatsor I-hez

46. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY Megyei forduló ÖTÖDIK OSZTÁLY JAVÍTÁSI ÚTMUTATÓ

43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY MEGYEI FORDULÓ HARMADIK OSZTÁLY JAVÍTÁSI ÚTMUTATÓ. Minden feladat helyes megoldása 7 pontot ér.

Az egyszerűsítés utáni alak:

TUDOMÁNYOS ISMERETTERJESZTŐ TÁRSULAT

148 feladat ) + ( > ) ( ) =?

Arany Dániel Matematikai Tanulóverseny 2015/2016-os tanév 1. forduló Haladók III. kategória

XXVI. Erdélyi Magyar Matematikaverseny Zilah, február II. forduló osztály

1. Mit nevezünk egész számok-nak? Válaszd ki a következő számok közül az egész számokat: 3 ; 3,1 ; 1,2 ; -2 ; -0,7 ; 0 ; 1500

Érdemes egy n*n-es táblázatban (sorok-lányok, oszlopok-fiúk) ábrázolni a két színnel, mely éleket húztuk be (pirossal, kékkel)

FOLYTATÁS A TÚLOLDALON!

Matematika levelezős verseny általános iskolásoknak II. forduló megoldásai

FELADATOK ÉS MEGOLDÁSOK

IV. Vályi Gyula Emlékverseny november 7-9.

1. Az ábrán látható táblázat minden kis négyzete 1 cm oldalhosszúságú. A kis négyzetek határvonalait akarjuk lefedni. Meg lehet-e ezt tenni

illetve a n 3 illetve a 2n 5

ELLENİRIZD, HOGY A MEGFELELİ ÉVFOLYAMÚ FELADATSORT KAPTAD-E!

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások. 21 és 5 7 = 15

Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév első (iskolai) forduló haladók II. kategória

Az Országos Középiskolai Tanulmányi Verseny tanévi első fordulójának feladatmegoldásai

Geometriai alapfogalmak

Láthatjuk, hogy az els szám a 19, amelyre pontosan 4 állítás teljesül, tehát ez lesz a legnagyobb. 1/5

BOLYAI MATEMATIKA CSAPATVERSENY KÖRZETI SZÓBELI FORDULÓ OKTÓBER osztály

Kombinatorika. Permutáció

Vektorgeometria (1) First Prev Next Last Go Back Full Screen Close Quit

Kijelentéslogika, ítéletkalkulus

Skatulya-elv. Sava Grozdev

Németh László Matematikaverseny április 16. A osztályosok feladatainak javítókulcsa

Az Országos Középiskolai Tanulmányi Verseny tanévi első fordulójának feladatmegoldásai. 81f l 2 f 2 + l 2

F 1999/2000. Iskolai (első) forduló november. Hány olyan háromszög van, amelynek csúcsai az adott pontok közül valók?

HHF0CX. k darab halmaz sorbarendezésének a lehetősége k! Így adódik az alábbi képlet:

BOLYAI MATEMATIKA CSAPATVERSENY ORSZÁGOS DÖNTŐ SZÓBELI (2007. NOVEMBER 24.) 3. osztály

BOLYAI MATEMATIKA CSAPATVERSENY ORSZÁGOS DÖNTŐ SZÓBELI (2016. NOVEMBER 19.) 3. osztály

Boronkay György Műszaki Középiskola és Gimnázium Vác, Németh László u : /fax:

Témák: geometria, kombinatorika és valósuínűségszámítás

A logika, és a matematikai logika alapjait is neves görög tudós filozófus Arisztotelész rakta le "Analitika" című művében, Kr.e. IV. században.

Átírás:

44. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY Megyei forduló - 2015. április 11. HETEDIK OSZTÁLY - Javítási útmutató 1. Ki lehet-e tölteni a következő táblázat mezőit pozitív egész számokkal úgy, hogy minden sorban és minden oszlopban a számok szorzata egyenlő legyen? 10 3 14 35 1. megoldás Tegyük fel, hogy létezik helyes kitöltés. Legyen a középső oszlop első eleme x, a második y. x 10 3 y 14 35 Mivel a középső sor és a középső oszlop szorzata megegyezik, így 3 y 14 = x y 35. Mivel y > 0, ezért ebből 3 14 = x 35 következik. Mivel x egész, a jobb oldal osztható 5-tel, a bal oldal viszont nem, ez ellentmondás. Tehát nem lehet a táblázatot megfelelően kitölteni. 2. megoldás A szorzatok egyenlőségéből következik, hogy a szorzatok prímfelbontásában az 5 kitevője megegyezik. Legyen a középső sor középső mezőjében lévő szám prímfelbontásában az 5 kitevője n. A középső sor szélső számai nem oszthatók 5-tel, így ennek a sornak a szorzatában az 5 kitevője n. A középső oszlopban a 35 osztható 5-tel, így ennek az oszlopnak a szorzatában az 5 kitevője legalább n + 1. Tehát a középső sor és a középső oszlop szorzatában az 5 kitevője különböző, így a szorzatok nem lehetnek egyenlők. Tehát nem lehetséges a táblázatot megfelelően kitölteni.

3. megoldás Mivel a számok között szerepel 5-tel osztható, bármely sor vagy oszlop szorzatának oszthatónak kell lennie 5-tel. Mivel a középső sor megadott számai 5-tel nem oszthatók, ezért a középsőnek 5-tel oszthatónak kell lennie. Ekkor a középső oszlop szorzatában ez a szám, és a 35 is szerepel, ezért a szorzat 25-tel is osztható. Emiatt viszont a középső sor szorzata is 25-tel osztható, tehát a középső szám is 25-tel osztható. Így viszont a középső oszlop szorzata már 125-tel is osztható lesz. Ezt folytatva adódik, hogy a középső számnak az 5 tetszőlegesen nagy hatványával oszhatónak kell lennie. Mivel csak pozitív egészeket írhatunk a mezőkbe, nincs megfelelő középső szám, így a kitöltés nem lehetséges. 2. Van 6 darab, egyforma, L-alakú műanyag lapunk, amelyek 3 egységnégyzetből vannak összeállítva:. Mind a 6 műanyag lap felhasználásával építünk egybefüggő síkbeli alakzatokat úgy, hogy csak teljes négyzetoldal mentén szabad illeszteni a lapokat egymáshoz, és nem lehet a lapokat egymásra helyezni. Lehet-e a kapott alakzat kerülete: (a) 18? (b) 25? (c) 28? (d) 38? (e) 40? Ha igen, akkor mutass példát a megfelelő kerületű alakzatra! Ha nem, akkor bizonyítsd be, hogy nem lehet! Az (a), (c), (d) kérdések esetén elérhető a megadott kerület, például az alábbi alakzatok esetén: (a) (c) (d) K = 18 K = 28 K = 38 A fentiektől különböző helyes megoldások is egy-egy pontot érnek. (3 1 = 3 pont) Egy lap kerülete 8 egység, így a 6 darab összkerülete 6 8 = 48 egység. Az összeillesztett alakzat

kerületébe az érintkező négyzetoldalak nem számítanak bele, ez összesen páros egységnyivel csökkenti a kerületet. Így a kerület mértéke csak páros lehet, nem lehet 25 egység. A (b) kérdésre a válasz így nemleges. Mivel az alakzat egybefüggő, legalább 5 lap-pár érintkezik egymással négyzetoldalban. Minden ilyen érintkezés legalább 2 egységnyivel csökkenti a kerületet, így az legfeljebb 48 2 5 = 38 egységnyi lehet. Tehát a kerület nem lehet 40 egység, így a (d) kérdésre is nemleges a válasz. Megjegyzés. Az (a), (c), (d) kérdések esetén akkor és csak akkor jár 1-1 pont, ha van helyes konstrukció. A (b) és (d) esetekben sem jár pont önmagában a válaszért, itt az indoklás kidolgozottságától függően adhatunk esetenként 1 vagy 2 pontot. 3. 8 pozitív egész szám szorzata 500-ra végződik. Hány páros szám lehet a 8 között? Minden általad lehetségesnek gondolt darabszámra mutass példát! Bizonyítsd, hogy más lehetőség nincs! Egy tízes számrendszerben felírt szám pontosan akkor osztható 4-gyel, ha az utolsó két jegyéből alkotott kétjegyű szám osztható 4-gyel. Mivel a 00 osztható 4-gyel, ebből következik, hogy a szorzat osztható 4-gyel. Egy tízes számrendszerben felírt szám pontosan akkor osztható 8-cal, ha az utolsó három jegyéből alkotott kétjegyű szám osztható 8-cal. Az 500 nem osztható 8-cal, tehát a szorzat sem osztható 8-cal. Tehát a szorzat prímtényezős felbontásában a 2-es a második hatványon szerepel, azaz legalább egy és legfeljebb két páros szám van a 8 között. Ha csak egy számban szerepel 2-es prímtényező, akkor az illető szám osztható 4-gyel, de már 8-cal nem, a többi pedig mind páratlan. Erre egy lehetséges példa: 500, 1, 1, 1, 1, 1, 1, 1. Ha a 2-es prímtényező két számban is szerepel, akkor a 8 szám közül kettő páros, de már 4-gyel nem osztható, a többi pedig mind páratlan. Erre példa: 250, 2, 1, 1, 1, 1, 1, 1. Megjegyzés. Egy jó példa indoklás nélkül esetenként: 1-1 pont. Ugyanarra az esetre adott több példáért nem jár több pont.

4. ABCDEF egy konvex hatszög a síkban. Tudjuk, hogy az ABDE és a BCEF négyszögek paralelogrammák. Bizonyítsd be, hogy CDF A négyszög is paralelogramma! Készítsünk a feltételeket kielégítő ábrát: E D C F A B Mivel ABDE paralelogramma, így AD és BE kölcsönösen felezik egymást. Hasonlóan, mivel BCEF is paralelogramma, így BE és CF szintén kölcsönösen felezik egymást. Ezek szerint a BE szakaszt mind AD, mind CF felezi, így a felezőpont egyértelműsége miatt egymást BE felezőpontjában metszik (mondjuk M-ben). E D C M F A B Sőt, mivel BE mindkettőt felezte, így az M pont mind AD-nek, mind pedig CF -nek felezőpontja. Azaz AD és CF egymást kölcsönösen felezik, és mivel nem esnek egy egyenesre, ez éppen azt jelenti, hogy AF DC paralelogramma.

5. Egy nagy asztalra piros (P) és kék (K) korongokat pakolunk. Az első sorba 100 darabot helyezünk el. Ezt követően az első sor alá két-két korong közé egy-egy újabbat teszünk, mégpedig úgy, hogy két egyforma alá pirosat, két különböző alá kéket rakunk. Majd ugyanezt a szabályt mindig egy-egy sorral lejjebb alkalmazva teszünk korongokat a harmadik, negyedik,..., végül a századik sorba (ide már csak egyetlen korong kerül). Igaz-e, hogy ha az első sorban van kék korong, akkor összesen legalább 100 kék korong lesz az asztalon? 1. megoldás Ha egy sorban van kék korong, akkor az összes felette levőben is van. Ez azért igaz, mert kék korongot akkor helyezünk le, ha felette egy kék és egy piros volt szomszédos. Ha az utolsó sor egyetlen korongja kék, akkor a fentiek miatt mind a 100 sorban van legalább egy-egy. Így van összesen legalább 100 kék korong. Ha a legalsó sorban piros korong van, akkor vegyük az a sort, amelyik a kék korongokat tartalmazó sorok közül a legalacsonyabban van. Mivel alatta csupa piros korong van, így ebben a sorban minden korong egyforma színű, tehát mindegyik kék. Legyen ebben a sorban k darab kék korong. Mivel minden sorban eggyel kevesebb korong van, mint az előzőben, így efelett még 100 k darab sor van. Ezek mindegyikében van legalább egy-egy kék korong az első megállapításunk szerint, ez legalább 100 k darab. Így összesen legalább k + (100 k) = 100 darab kék korong, tehát az állítás igaz. 2. megoldás Ha egy sorban van kék korong, akkor az összes felette lévő sorban is van. Ez azért igaz, mert kék korongot akkor helyezünk le, ha felette egy kék és egy piros volt szomszédos. A kirakás után egyértelműen létezik egy olyan sor, amelyben még van kék korong, de alatta már nincs. Ha ez az n-edik sor, akkor a felette lévő n 1 sor mindegyikében van legalább egy-egy kék korong, ami legalább n 1 kék korong. Ha az n-edik sor alatt még vannak korongok, azok mind pirosak. Így az n-edik sorban nem lehet egymás mellett piros és kék korong, hiszen alájuk kék kerülne. Mivel kék korong van ebben a sorban, és kék mellett nem lehet piros, így mindegyik kék. Mivel az első sorban 100 korong van, és minden sorban eggyel kevesebb, mint az előzőben, így az n-edik sorban 101 n darab korong van, amelyek mindegyike kék. Így összesen legalább (n 1) + (101 n) = 100 darab kék korongot raktunk ki, tehát az állítás igaz.