Nukleáris környezetvédelem

Hasonló dokumentumok
Nukleáris környezetvédelem Környezeti sugárvédelem

A sugárvédelem alapjai

Nukleáris környezetvédelem

Mesterséges radioaktivitás = hasznos emberi tevékenységhez köthetı anyagok

Nukleáris környezetvédelem

Sugárvédelem alapjai. Nukleáris alapok. Papp Ildikó

Dozimetria és sugárvédelem

Radioaktív elemek környezetünkben: természetes és mesterséges háttérsugárzás. Kovács Krisztina, Alkímia ma

Nukleáris környezetvédelem Környezeti sugárvédelem

Radon-koncentráció relatív meghatározása Készítette: Papp Ildikó

A természetes és mesterséges sugárterhelés forrásai, szintjei. Salik Ádám

Sugárvédelem és dozimetria reaktorokban. A mőszaki (munkahelyi) sugárvédelem elemei. A BME Oktatóreaktor sugárvédelmi rendszere

Radon a környezetünkben. Somlai János Pannon Egyetem Radiokémiai és Radioökológiai Intézet H-8201 Veszprém, Pf. 158.

Nukleáris környezetvédelem Környezeti sugárvédelem

Nukleáris környezetvédelem Környezeti sugárvédelem

Nukleáris környezetvédelem Környezeti sugárvédelem

Sugárvédelem alapjai. Atomenergetikai alapismeretek. Dr. Czifrus Szabolcs BME NTI

Ionizáló sugárzások dozimetriája

Az ionizáló sugárzások előállítása és alkalmazása

Sugárvédelem. 2. előadás

Az ionizáló sugárzások előállítása és alkalmazása

Radioaktivitás biológiai hatása

Sugárvédelem kurzus fogorvostanhallgatók számra. Töltött részecskék elnyelődése. Sugárzások és anyag kölcsönhatása. A sugárzások elnyelődése

IVÓVIZEK RADIOANALITIKAI VIZSGÁLATA

A sugárvédelem alapelvei. dr Osváth Szabolcs Fülöp Nándor OKK OSSKI

A PAKSI ATOMERŐMŰ NEM SUGÁR- VESZÉLYES MUNKAKÖRBEN FOGLALKOZTATOTT DOLGOZÓI ÉS LÁTOGATÓI SUGÁRTERHELÉSE

Sugárvédelem nukleáris létesítményekben. Átfogó [fenntartó] SVK Osváth Szabolcs (OKK-OSSKI-LKSO)

A sugárzás biológiai hatásai

Az atommag összetétele, radioaktivitás

ÉRTELMEZŐ INFORMÁCIÓK ÉS MEGHATÁROZÁSOK A SUGÁRVÉDELEMBEN

Bővített fokozatú SUGÁRVÉDELMI TANFOLYAM

Sugárvédelem alapjai

Sugárzások kölcsönhatása az anyaggal

Radioaktív lakótársunk, a radon. Horváth Ákos ELTE Atomfizikai Tanszék december 6.

Sugárvédelem alapjai. Atomenergetikai alapismeretek. Dr. Czifrus Szabolcs BME NTI

Atomerőmű. Radioaktívhulladék-kezelés

Kibocsátás- és környezetellenırzés a Paksi Atomerımőben. Dr. Bujtás Tibor Debrecen, Szeptember 04.

Sugárvédelem és jogi alapjai

Izotóp geológia: Elemek izotópjainak használata geológiai folyamatok értelmezéséhez.

Az ionizáló sugárzások el állítása és alkalmazása

Az ionizáló sugárzások fajtái, forrásai

Sugárvédelmi feladatok az egészségügyben. Speciális munkakörökben dolgozók munkavégzésére vonatkozó általános és különös szabályok.

Sugárvédelem és jogi alapjai

Izotóp geológia: Elemek izotópjainak használata geológiai folyamatok értelmezéséhez.

Dozimetriai alapfogalmak. Az ionizáló sugárzás mérése

Deme Sándor MTA EK. 40. Sugárvédelmi Továbbképző Tanfolyam Hajdúszoboszló, április

Beltéri radon mérés, egy esettanulmány alapján

Nemzeti Népegészségügyi Központ Sugárbiológiai és Sugáregészségügyi Főosztály

Radon, mint nyomjelzı elem a környezetfizikában

FIZIKA. Radioaktív sugárzás

1. A radioaktív sugárzás hatásai az emberi szervezetre

Sugárzások és anyag kölcsönhatása

50 év a sugárvédelem szolgálatában

SUGÁRVÉDELMI EREDMÉNYEK 2014-BEN

Bomlási módok. p: a bomlásban kibocsátott részecskék. m: nyugalmi tömeg E kin. : kinetikus (mozgási) energia

Felhasználható szakirodalom

Sugárvédelmi Ellenőrző és Jelző Rendszerének vizsgálata

RADIOAKTÍV HULLADÉK; OSZTÁLYOZÁS, KEZELÉS ÉS ELHELYEZÉS. (Dr. Kanyár Béla, SE Sugárvédelmi Szolgálat)

LAKOSSÁGI SUGÁRTERHELÉS október 6 (szerda), 15:40-16:50, Árkövy terem

Környezetgazdálkodás ban gépészmérnöki diplomát szerzett Dr. Horváth Márk ben ő lett az első Fizikai Nobel-díj tulajdonosa.

Radioaktív anyagok terjedése a környezetben

CSERNOBIL 20/30 ÉVE A PAKSI ATOMERŐMŰ KÖRNYEZETELLENŐRZÉSÉBEN. Germán Endre PA Zrt. Sugárvédelmi Osztály

Sugárvédelem és jogi szabályozása Fizikus alapképzés Elıadásvázlat

EGÉSZTESTSZÁMLÁLÁS. Mérésleírás Nukleáris környezetvédelem gyakorlat környezetmérnök hallgatók számára

Sugárvédelmi mérések és berendezések

Radioaktivitás biológiai hatása

Radioaktív sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktív sugárzások detektálása.

Radioaktív anyagok terjedése a környezetben

rvédelem Dr. Fröhlich Georgina Ionizáló sugárzások a gyógyításban ELTE TTK, Budapest Országos Onkológiai Intézet Sugárterápiás Központ Budapest

Az atommag összetétele, radioaktivitás

SUGÁRVÉDELMI EREDMÉNYEK 2016-BAN. Dr. Bujtás Tibor

NUKLEÁRIS LÉTESÍTMÉNYEK LÉGNEMŰ 14C KIBOCSÁTÁSÁNAK MÉRÉSE EGYSZERŰSÍTETT LSC MÓDSZERREL

Radonmérés és környezeti monitorozás

Sugárvédelem és jogi szabályozása

Nemzeti Akkreditáló Testület. MÓDOSÍTOTT RÉSZLETEZŐ OKIRAT (1) a NAT /2015 nyilvántartási számú akkreditált státuszhoz

Sugárterápia. Ionizáló sugárzások elnyelődésének következményei. Konzultáció: minden hétfőn 15 órakor. 1. Fizikai történések

ÉRTELMEZŐ INFORMÁCIÓK MEGHATÁROZÁSOK

Sugárvédelem és jogi szabályozása

Környezeti monitorozás

Atomfizika. Radioaktív sugárzások kölcsönhatásai Biofizika, Nyitrai Miklós

Röntgensugárzás az orvostudományban. Röntgen kép és Komputer tomográf (CT)

Sugárterápia. Ionizáló sugárzások elnyelődésének következményei

Jakab Dorottya, Endrődi Gáborné, Pázmándi Tamás, Zagyvai Péter Magyar Tudományos Akadémia Energiatudományi Kutatóközpont

RADIOKÉMIA. László Krisztina, F ép. I. lh., I. emelet, 135

SUGÁRVÉDELMI ÉRTÉKELÉS ÉVRE

Sugárzás kölcsönhatása az anyaggal 1. Fény kölcsönhatása az anyaggal. 2. Ionizáló sugárzás kölcsönhatása az anyaggal KAD

Radioaktív hulladékok és besorolásuk

Felhasználható szakirodalom

Folyadékszcintillációs spektroszkópia jegyz könyv

PROMPT- ÉS KÉSŐ-GAMMA NEUTRONAKTIVÁCIÓS ANALÍZIS A GEOKÉMIÁBAN I. rész

Radioaktivitás és mikrorészecskék felfedezése

SUGÁRVÉDELMI HELYZET 2003-BAN

FIZIKA. Atommag fizika

RADIOLÓGIAI TÁJÉKOZTATÓ

Sugárvédelem és jogi szabályozása Fizikus alapképzés Elıadásvázlat

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei

TESTLab KALIBRÁLÓ ÉS VIZSGÁLÓ LABORATÓRIUM AKKREDITÁLÁS

Neutron- és gamma-dózisteljesítmény mérése az Oktatóreaktor 4. vízszintes csatornájánál

RÉSZLETEZŐ OKIRAT (3) a NAH /2015 nyilvántartási számú akkreditált státuszhoz

Radioaktív sugárzás elnyelődésének vizsgálata

Átírás:

Nukleáris környezetvédelem 1. Dózisfogalmak 2. Az ionizáló sugárzások egészségkárosító hatásai 3. A dózis meghatározásának mérési és számítási módszerei 4. A sugárvédelmi szabályzás rendszere 5. Természetes radioaktivitás a környezetben, radioaktív hulladékok 6. Szennyezések transzportja a környezetben, környezeti monitorozás

Dózisfogalmak - Ionizáló sugárzások A közeg és a sugárzás közötti kölcsönhatás szerint: - Közvetlenül ionizáló sugárzások: α, β, γ, Röntgen az elektronoknak képesek azok ionizációjához elegendı energiát átadni. - Közvetve ionizáló sugárzás: neutron: atommagokkal való kölcsönhatás során ionizációra képes részecskék jelennek meg. Az anyagi közegnek a sugárzással kölcsönhatásra képes alkotórészei: elektronok, az atom elektromágneses erıtere, atommag. Az elektronokkal való ütközés nem minden esetben vezet azok ionizációjára. A sugárzás által több lépésben átadott energia egy része (általában 60-70 %-a) nem ionizációt, csak gerjesztést eredményez, azaz összességében a közeg termikus energiáját növeli meg.

Alfa- és bétasugárzás elnyelése az anyagban Ütközés elektronokkal energia átadása, ionizáció, gerjesztés

Lineáris energiaátadási tényezı (LET) alfa- és bétasugárzásra LET = de/dx

Alfa- és bétasugárzás elnyelése α-sugárzás LET-értéke vízben: > 100 kev/µm Energiaátvitel: ionizáció β-sugárzás LET-értéke vízben: 5-10 kev/µm Energiaátvitel: - elektronnal ionizáció/gerjesztés; - atom elektromágneses erıterével: fékezési sugárzás (folytonos röntgensugárzás, energiája a közeg rendszámától is függ), Cserenkov-sugárzás: az adott közegben érvényes fénysebességnél nagyobb sebességő elektron látható fényt is kibocsát. A hatótávolság lényegesen kisebb, mint az energia-átvitelben részt vevı elektronok összes úthossza!

Gamma-sugárzás elnyelése Foton energiaátadása részben hullám- részben anyagi természető rendszernek ütközés Elektronnal (ionizáció többféle kölcsönhatásban) Atommaggal (abszorpció küszöbreakció, csak >5 MeV energiánál) Atom elektromágneses erıterével (küszöbreakció, csak >1.2 MeV energiánál)) Általános törvényszerőség: sztochasztikus (véletlenszerő) kölcsönhatás Az energiát átvett elektronok kinetikus energiája: - További ionizációt okozhat; - Ionizáció nélküli gerjesztést okozhat; - Szekunder fotonsugárzás (folytonos Röntgen-sugárzás) keltését eredményezheti.

Fotonsugárzás gyengülése ( * x) I = I0 *exp µ Párhuzamos fotonnyaláb gyengülése anyagi közegben µ = σ σ ρ A A = Z* σ = A N V * ρ A M A e m m 2 3 2 m atom atom mól 3 m mól µ = σ e = elektron h.ü.k. σ A = atomi h.ü.k. ütközés: abszorpció vagy rugalmatlan szórás, a µ ezek valószínőségének összegét képviseli de dx E inc. µ/ρ [m 2 /kg] µ= lineáris energiaátadási tényezı = térfogategységre jutó hatásos ütközési keresztmetszet µ/ρ = tömegabszorpciós tényezı = tömegegységre jutó h.ü.k. LET = de/dx = lineáris energiaátadási tényezı

de E J D =, Gray, Gy dm m kg Elnyelt dózis Fizikai és biológiai dózisfogalmak dd dt = Φ * E µ ρ Φ E = dn dt *f R*E 2 4*r * π R H = D * w R [Sievert, Sv ] γ 2 Egyenérték dózis dd dt w R sugárzási tényezı - a LET függvénye w R,α = 20, w R,γ = 1, w R,β = 1, w R,n = 2,5 20 Milyen sejti hatáshoz kapcsolódik??? = k * A Négyzetes gyengülési törvény dózisszámítás fotonoktól származó külsı sugárterhelés esetére r

Az ionizáló sugárzások egészséget károsító hatásai Determinisztikus hatás: - küszöbdózishoz kötött (0.3 0.4 Gy) - szövetpusztulást okoz a sugárzás - akut/azonnali hatás - életveszélyes károsodások: központi idegrendszer, emésztırendszer, vérképzı rendszer Ha tá s 1 00% 0% Küs z öb Dóz is

Sztochasztikus hatás: - nincs küszöbdózis (kis dózisok hatása nem igazolt) - sejtmutációt okoz a sugárzás (javító mechanizmus) - kockázat-dózis-függvény lineáris (?) Koc ká z a t m = 5*10-2 /S v Dóz is

A dózist okozó sugárforrás és a dózist elszenvedı személy kölcsönös pozíciója szerint külsı és belsı sugárterhelés jöhet létre. H = E H Tw T[Sv] T Effektív dózis w T szöveti súlyozó tényezı T w T = 1 kockázat/effektív dózis-egyenes meredeksége: 5 10-2 eset / Sv Szöveti súlyozó tényezık: ivarszervek w T =0.20 (genetikus hatás) w T =0.08 (ICRP#103) szomatikus hatások legérzékenyebb w T =0.12 tüdı, gyomor, belek, vörös csontvelı + emlı érzékenyek w T =0.05 máj, vese, pajzsmirigy stb. (ICRP #103) kissé érzékeny w T =0.01 bır, csontfelszín

Dózis mérése és számítása Külsı dózis Dózismérıvel, dózisteljesítmény-mérıvel mérhetı Számítási egyenlet (foton-dózisteljesítményre) k γ dózistényezık: pontforrásra, elnyelı anyagokra határozható meg Belsı dózis közvetlenül nem mérhetı Meghatározás módjai: egésztest-számlálás, vér- és exkrétum-analízis, bejutó anyagok (levegı, víz, ételek) analízise DCF [Sv/Bq] dóziskonverziós tényezı egységnyi radioaktivitás inkorporációjához köthetı effektív dózis A dózist fıként a radioaktivitást hordozó anyag tartózkodási ideje határozza meg Akut (pillanatszerő) vagy krónikus (folyamatos) bevitel eltérı effektív dózist eredményeznek

Külsı sugárterhelés mérése Dózismérés: utólagos kiértékelés filmdózismérı, nyomdetektor - kémiai változás TLD: szilárdtest-dózismérı (termolumineszcencia) elektronikus dózismérık: elektroszkóp, impulzusüzemő gáztöltéső és félvezetı detektorok Dózisteljesítmény-mérés: azonnali kiértékelés impulzusüzemő gáztöltéső és félvezetı detektorok szerves szcintillátor detektor

Külsı sugárterhelés mérésének feltétele Bragg-Gray elv A detektort és a mérendı személyt azonos távolságba helyezve a sugárforrástól mindkettıt azonos energiafluxus éri. D D x m = Φ Φ E, x E, m * µ ( ) ρ µ ( ) ρ x m = f m Az abszorpciós együttható energiafüggése legyen azonos a detektorra és a testszövetre - szövetekvivalens detektor - energiafüggetlenség = azonos energiafüggés a két közegre. Ekkor a mérıeszköz és a viselı személy dózisa minden sugárzási energiánál azonosan arányos lesz.

Belsı sugárterhelés számítása H T = u S S R R R R R ( S T ) * w * E * f * Q * 1 m T Belsı dózis a T cél (target) szövetben, az S forrás (source) szövetekbıl kiinduló R sugárzásoktól. u: a forrás-szövetekben bekövetkezı bomlások száma. Q: az R sugárzásnak az S szövetbıl kiinduló és a T szövetben elnyelıdı hányada DCF = H E A intake DCF = dóziskonverziós tényezı [Sv/Bq] Eltérı lehet -Beviteli útvonal szerint (belégzés vagy lenyelés), -Kémiai forma szerint (a testnedvekben oldható vagy nem oldható) -Életkor szerint

Belsı sugárterhelés számítása A dózisszámításhoz a minták analízise szükséges. Az analízis akkor lehetséges, ha Ismertek a minta összetevıi, vagy azok az analízis eredményeibıl meghatározhatók, A mennyiségi összetétel számításához hatásfokkalibráció áll rendelkezésre. η = I m megszámolt Hatásfok: részecske A * f γ összes

Lekötött dózis Két további dózismennyiség T H C = H E ( t) dt 0 Kollektív dózis C = H E, i n i i A szervezetben 1 évnél hosszabb ideig jelenlévı nuklid által T=50 vagy T=70 év alatt okozott effektív dózis Adott forrásból i számú, egyenként n i tagú embercsoportnak okozott dózis, egysége személy Sv.

4. Sugárvédelmi szabályzás - A sugárvédelem alapelvei Determinisztikus hatáshoz vezetı dózis legyen lehetetlen Csak az alkalmazásokhoz kapcsolható dózis korlátozható, a természetes eredető nem a korlátozás a többletdózisra vonatkozik Indokoltság: a sugárforrás alkalmazásának több elınye legyen, mint kára Optimálás: az alkalmazás a lehetı legnagyobb elınnyel kell, hogy járjon optimális dózisszint tervezési alap ALARA (As Low As Reasonably Achievable) Egyéni korlátozás immissziós és emissziós korlátok át nem léphetık, ha a tervezési alap helyes volt.

A dóziskorlátozás rendszere DL immissziós korlát foglalkozási korlát lakossági korlát 20 msv/év (5 év átlagaként) 1 msv/év A A DC - emissziós korlát (dózismegszorítás) max, i és A max, i * DCF i i max, i << DL DC s DC A ki, i Az emissziós és immissziós korlátok nem keverhetık i és DC < DL DCF i DC A kibocsátott aktivitás a környezeti terjedés során jelentısen hígul

A dóziskorlátozás rendszere 4/3 Szabályzásból kizárt sugárzási helyzetek (Exclusion) természetes radioaktivitás az emberi testben, kozmikus sugárzás a Föld felszínén Elhanyagolható dózis: H i 10 µsv/év Mentességi szint: (Exemption) egy sugárforrás, illetve egy adott radioaktív koncentrációval jellemzett anyag a legkedvezıtlenebb forgatókönyv mellett sem okoz H i -nél nagyobb dózist (foglalkozási vagy lakossági helyzetben). [Bq], [Bq/kg] Felszabadítási szint: (Clearance) egy korábban sugárvédelmi szabályozás alá tartozó anyag kivonható a szabályzás alól (lakossági helyzetben.) [Bq/kg], [Bq/m 2 ] Hasonlóság: kapcsolat H i -vel. Eltérés: forgatókönyv

5. Természetes és mesterséges radioaktivitás a környezetben radioaktív hulladékok 5/1 Természetes radioaktivitás: * kozmikus sugárzás szoláris, galaktikus, befogott részecskék világőrben: protonok, α-részecskék, pozitív ionok légkörben: neutronok, fékezési fotonsugárzás (Föld felszínén: 25-30 nsv/h) * kozmogén radionuklidok ( 3 H, 14 C, 7 Be) *ısi radionuklidok (az ıs-nap életciklusa során többféle ciklus -ban keletkeztek) Legfontosabbısi radionuklidok: - 40 K (T= 1.28 milliárd év, belsı sugárterhelés: 0.3 msv/év) - bomlási sorozatok: 238 U, 232 Th, 235 U

238 U bomlási sorozata 5/2 238 U: T= 4.47 milliárd év (4-6 ppm a Föld felszínén) bomlási sor leányelemek között 226 Ra, 222 Rn 222 Rn (T= 3.8 nap) rövid felezési idejő, α- és β - -sugárzó leányelemei 218 Po, 214 Pb, 214 Bi, 214 Po belsı sugárterhelés: átlagosan 1.0 2.0 msv/év 222 Rn-koncentráció (EEC): szabad levegın 1 10 Bq/m 3 zárt térben 5 100 Bq/m 3 sok radon: pince, bánya, barlang, építıanyag kevés radon: víz felett aktivációs termékek 238 U ból nukleáris reaktorban: 239 Pu stb. hasadóanyag, nagy DCF

További bomlási sorozatok 5/3 232 Th: T= 14.1 milliárd év (7-10 ppm a Föld felszínén) bomlási sor - leányelemek: köztük 220 Rn 220 Rn (T= 55 s) kevéssé tud kikerülni a levegıbe dózisjárulék 0.1 msv/év 235 U: T= 0.71 milliárd év (a természetes urán 0.7 %-a) a nukleáris energiatermelés legfontosabb alapanyaga: indukált hasadás neutronok hatására

5/4 Természetes sugárterhelés : átlagosan 2-3 msv/év belsı sugárterhelés 65 % külsı sugárterhelés 35 % (kozmikus sugárzás, ısi nuklidok a talajból, építıanyagokból) továbbá: orvosi eredető sugárterhelés átlagosan 0.3 msv/év Az elsı dolgozatban szereplı tananyag itt ér véget.

5/5 Mesterséges radioaktivitás hulladékok/üzemi kibocsátások - Nukleáris reaktorok hulladékai hasadási ( 131 I, 137 Cs) aktivációs ( 239 Pu) és korróziós ( 60 Co) termékek - Nukleáris robbantások, fegyverkísérletek hulladékai - Ipari sugárforrások - Orvosi (diagnosztikai és terápiás) sugárforrások - TENORM : mesterséges okból megnövekedett természetes sugárterhelés * szén-, olaj- és gáztüzeléső erımővek (salak, hamu, pernye) * nukleáris üzemanyag elıállítása * egyéb

S = i AK i MEAK i 5/6 Kategóriák a mentességi szint (MEAK [Bq/kg]) alapján: kis-, közepes- és nagyaktivitású hulladék AK: aktivitás-koncentráció [Bq/kg] Kisaktivitású hulladék (LLW) 1 < S < 1000 Közepes akt. h. (ILW) 10 3 < S <10 6 Nagy akt. h. (HLW) S > 10 6, hıfejlıdés > 2 kw/m 3 Mentesség Felszabadítás??? azonosság: kapcsolat az elhanyagolható dózissal (10 µsv/év) eltérés: forgatókönyvek

Radioaktív hulladék menedzsment Győjtés Osztályozás, minısítés Térfogatcsökkentés Kondicionálás Átmeneti és/vagy végleges elhelyezés Alternatív megoldások: kiégett nukleáris üzemanyag reprocesszálása, hosszú felezési idejő hulladék-komponensek transzmutációja 5/7

Térfogatcsökkentés A, 0 Általános: préselés, égetés, bepárlás Specifikus: felületi (szorpció), térfogati (extrakció) Kondicionálás Cementezés (LLW, ILW) Bitumenezés (szerves LLW) Üvegesítés (HLW) VR = DF = c c A c A c,1, 0 I 5/8

5/9 Radioaktív hulladék elhelyezése Mérnöki gátak mélységi védelem módszere Átmeneti: telephelyen belül vagy önálló felszíni telephelyen (KKÁT) Végleges: LLW ILW: felszínközeli vagy mélységi lerakóhely (Püspökszilágy *** Bátaapáti) HLW: mélységi lerakóhely (Boda BAF) Alternatíva: reprocesszálás TENORM és nukleáris energiatermelés összehasonlítása üzemi adatok Kibocsátott összes radioaktivitás (1988): Paks AE: Ajka, Pécs szénerımő: 0.5 MBq/MW 3-4000 MBq/MW

6. Szennyezések terjedése a környezetben 6/1 Általános terjedési egyenlet: dc dt = A + D + R + P λc A : advekció (hajtóerı: gravitáció, hidrosztatikai nyomás) D : diffúzió (hajtóerı: kémiai potenciál) R : reakció (fizikai és kémiai szorpció, ioncsere stb.) (hajtóerı: kémiai potenciál) P : ülepedés (hajtóerı: gravitáció) (forrástag idıben állandó) Homogén rendszerek: levegı, felszíni víz, karsztvíz Heterogén rendszerek: talajvíz, geológiai rétegek, biológiai anyagok Terjedési egyenletek inverze szükséges az emissziós korlátozás megállapításához Nukleáris/radiológiai balesetek, kibocsátások Windscale, Three Mile Island, Csernobil, Goiania, Algeciras, Tokai-mura. Csernobil becsült magyarországi hatása 1 3 msv

Terjedési egyenletek c t S P R D A t c * ) ( λ + + + + = c t S c grad D div c grad u t c * ) ( )) ( * ( ) ( * λ + + = c t S i c D i x c u t c z y x i i x * ) ( ) * ( *,, λ + + = = Általános egyenlet idıfüggı forrástaggal Advekció és diffúzió kifejtése Egyirányú advekció, homogén diffúzió 6/2

Nukleáris környezeti monitorozás 6/3 DL és DC betartásának ellenırzése: Mérés Kiértékelés Beavatkozás A feladatok hasonlóak normális és baleseti helyzetben is. Irányadó szintek szükségesek minden radionuklidra a környezeti közegekben (levegı, víz, talaj stb.) Biztonság: a szint mérhetı kell, hogy legyen, mielıtt az irányadó szintet túllépnénk. Monitorozás: mintavétel, mérés és kiértékelés szervezett, standard rendszere.

Nukleáris környezeti monitorozás 6/4 Helyi rendszerek: emissziót produkáló létesítmény körül [= kibocsátás-ellenırzés??] Regionális rendszerek: immisszió ellenırzése nagyobb területen egyenletesen elosztott mérıállomásokkal Gamma-dózisteljesítmény folyamatos mérése KORAI RIASZTÁS Légköri szennyezıdés folyamatos mérése dúsításos mintavétellel KORAI RIASZTÁS aeroszol- és jódszőrés (elemi, szerves) Szakaszos mintavételezéses módszerek: - száraz és nedves légköri kihullás, - felszíni-, ivó- és talajvíz, - talaj- és biológiai minták.

Nukleáris környezeti monitorozás korai riasztást adó rendszerek Gamma-dózisteljesítmény mérése folyamatos/automatizált mérési adatgyőjtés környezeti dózisteljesítmény (talajszint) : 70 180 nsv/h OSJER riasztási szint : 500 nsv/h 6/5 Természetes radioaktivitás: szintje eltérı a környezetben, általában nem tárgya a szabályozásnak. (kozmikus sugárzás, földi radioaktivitás) TENORM: technologically enhanced naturally occurring radioactive material alkalmazásnak tekintendı, szabályozandó. Mesterséges radioaktivitás: alkalmazások kibocsátása, radioaktív hulladékok stb. Berendezések ionizáló sugárzása (pl. Röntgen) kikapcsolható.

Nukleáris környezeti monitorozás korai riasztást adó rendszerek környezeti dózisteljesítmény monitorozása hosszú idın át dózisteljesítmény [nsvh] 6/6 A felvételen három különbözı hatás látható: helyi hatások (emisszió), gyors környezeti hatások (változó szintő szennyezés), lassú környezeti hatások. A jelszint nem éri el a riasztási küszöböt. A felvétel részletes értékelésre e formában nem alkalmas.

dózisteljesítmény [nsvh] Nukleáris környezeti monitorozás korai riasztást adó rendszerek helyi hatások a környezeti dózisteljesítményre 6/7 Oktatóreaktorban frissen elıállított 24 Na sugárforrások ideiglenes tárolását érzékelte a monitor. A felfutó él a mővelet pillanatszerőségére, a lefutás a fıkomponens felezési idejére jellemzı.

dózisteljesítmény [nsvh] Nukleáris környezeti monitorozás korai riasztást adó rendszerek környezeti csapadékcsúcsok A csapadék kimossa a levegıbıl a talaj felszínére az aeroszolhoz kötött radon-leányelemeket. Ezek ( 222 Rn és 220 Rn-származékok) feldúsulása a ülepedési sebességtıl és hatásfoktól, bomlása az effektív felezési idıtıl függ. Hasonló alakú profilok származhatnak mesterséges eredető radioaktív szennyezést tartalmazó pöfföktıl is.

Nukleáris környezeti monitorozás korai riasztást adó rendszerek környezeti dózisteljesítmény mérése 6/8 Következtetések: A dózisteljesítmény változása képet ad a környezet állapotáról. Helyi rendszerek: jelzik a helyi változásokat is. Regionális rendszerek: nehéz (néha lehetetlen) megkülönböztetni a természetes növekedést a mesterséges szennyezéstıl. A biztonságos riasztási küszöb jóval nagyobb kell, hogy legyen a természetes ingadozás maximumánál. További mérési módszer szükséges a jobb érzékenység eléréséért és a téves riasztások kizárásához.

Nukleáris környezeti monitorozás korai riasztást adó rendszerek aeroszol mintavételezés és mérés 6/9 Légköri radioaktív szennyezés dúsítása és mérése mintázás: speciális szőrık az alábbi anyagokra: - aeroszol, - atomos vagy molekuláris jód, - szerves jódvegyületek mérés: alfa/béta, gamma-spektrometria eljárás: folyamatos/automatikus mőködés, mozgószőrıs vagy állószőrıs kivitel

Nukleáris környezeti monitorozás aeroszol mintavételezés és mérés a kibocsátási forrás közelében 6/10 Lokális rendszer egy emissziós forrás köré telepítve Várható szennyezési profil: egységugrás-függvény Activity on filter Elınyös módszer: mozgó szőrıszalag (differenciálás) time

Nukleáris környezeti monitorozás 6/11 aeroszol mintavételezés és mérés a kibocsátási forrástól távol Regionális rendszer egyenletesen elosztott állomások - immisszió felügyelete Várható szennyezési profil: elnyújtott, lassan növekvı Activity on filter Elınyös módszer: álló szőrılap (integrálás) time

Nukleáris környezeti monitorozás környezet-ellenırzés aeroszol mintavétellel Az állomás vezérlı programja az alábbi feladatokat látja el: Adatgyőjtés a detektor(ok)tól; Nukleáris spektrumok kiértékelése mesterséges radioaktivitás azonosítása változó természetes alapvonalon mért érték [Bq/m 3 ]; Természetes radioaktivitás értéke: Rn EEC [Bq/m 3 ] KIMUTATÁSI HATÁR megadása, ha mesterséges radioaktivitást nem detektált; A detektor(ok) rendszeres kalibrálása; Elektromechanikus elemek vezérlése (szivattyú, szőrıkezelés stb.); Adatgyőjtés más mérıberendezésekbıl (meteorológiai szenzorok, dózisteljesítmény-mérı stb.); Kommunikáció a központi számítógéppel.

Nukleáris környezeti monitorozás Detektorok válaszának modellezése 6/12 Basic equation for activity build-up on filter surface (I m = measured intensity [cps]) I m * ttrue γ fγ C. η = * t LIVE 0 * V*(1 e λ λt t ) dt* t LIVE TRUE η γ : efficiency for the gamma line of the given isotope, f γ : gamma abundance of the given gamma line, t LIVE : live time, t TRUE : true time, λ: decay constant, V. : volume rate of pump. After integration and solving for C, mean activity concentration during sampling cycle [Bq/m 3 ] C Im = η * f γ γ 1 * V λ * t * 1 e 1 λ * t TRUE λ* t TRUE TRUE Ezeket a számításokat a kiértékelı programnak kell elvégeznie.

222 Rn alfa-béta spektrum 6/13

220 Rn + 222 Rn alfa-béta 6/14 spektrum

222 Rn 6/15

Radon LDs - Time 6/16

Nukleáris környezeti monitorozás korai riasztást adó rendszerek aeroszol-mintavétellel 6/17 Összefoglalás: Részecskeszőrı és azt követıen jódszőrıt is alkalmazhatunk. Regionális rendszereknél az álló szőrı elınyösebb. Nuklidspecifikus meghatározás szükséges, hogy megkülönböztessük a természetes és a mesterséges radioaktivitást. Jelentendı értékek: természetes radioaktivitás ( 222 Rn-EEC stb.) minıség-ellenırzés mesterséges radioaktivitás (radionuklid, aktivitás-koncentráció, KIMUTATÁSI HATÁR )