Folyadékok Molekulák: másodrendű kölcsönhatás növekszik Gázok Folyadékok Szilárd anyagok cseppfolyósíthatók hűtéssel és/vagy nyomással
Folyadékok Molekulák közti összetartó erők: Másodlagos kötőerők: apoláris molekulák indukált dipól indukált dipól kölcsönhatás diszperziós (London-féle) poláris molekulák dipól dipól kölcsönhatás hidrogénkötéses rendszerek
gömb! Folyadékok Másodlagos kötőerők szerepe domináns az alkotórészek között Térfogat nem (ill. nehezen) változtatható Alak könnyen változtatható Mozgó részecskék. felület befele húzó erõ az eredõ, a felület csökkenése felé hat
Folyadékok három fő jellemzője: 1. Képesek alakváltásra (folynak) --- viszkozitás 2. Élesen meghatározott felület --- felületi feszültség 3. Párolognak --- gőznyomás, vagy tenzió
Viszkozitás Folyással szembeni belső ellenállás. A folyadék folyási képességét fejezi ki. nagyobb viszkozitás lassabb folyás Relatív viszkozitás
Viszkozitás Függ: -- hőmérséklet -- anyagi minőség Víz viszkozitása C 20 40 60 80 100 cp 1.002 0.653 0.467 0.355 0.282 folyadék Dietil éter Kloroform Benzol 0.652 CCl 4 0.969 Víz Etanol Higany Oliva olaj Motorolaj Glicerin üvegek 1 1 viszkozitás /cp 0.233 0.58 1.002 1.200 1.554 84 986 1490 nagyon nagy
Viszkozitás Meghatározza: -- másodlagos kötőerők a molekulák között - diszperziós - dipól dipól - hidrogénkötés -- molekulák alakja belső összetartás, összeakadás
Viszkozitás Mérése: mennyi idő alatt folyik át egy adott térfogatú folyadék egy adott keskeny csövön p 2 p 1 L dv _ dt pr 4 η viszkozitás π = Hagen - Poisenville egyenlet 8Lη
Felületi feszültség A folyadék felületének egységnyi megnöveléséhez szükséges energia. l F γ = F/l Az az energia, ami ahhoz szükséges, hogy a folyadék felületét megnöveljük úgy, hogy a folyadék belsejéből molekulákat juttatunk a felületre.
Függ: -- hőmérséklet -- anyagi minőség Felületi feszültség Víz felületi feszültségének hőmérsékletfüggése Gyakori folyadékok felületi feszültsége 25 C-on /N m -1 CCl 4 0.0270 Kloroform 0.0271 Benzol 0.0289 Etanol 0.0328 Glicerin 0.0634 Víz 0.0728 Higany 0.436 Üveg nagyon nagy ( C) -5 0 10 20 30 40 60 80 100 (N m -1 ) 0,0764 0,0756 0,0742 0,0727 0,0712 0,0696 0,0662 0,0626 0,0589
Nedvesítés, kapilláris nyomás csepp csepp felület felület nedvesít: θ < 90 nem nedvesít: θ > 90 Nehézségi erő: F g =r 2 πρgh Adhéziós erő: F g =2rπγ cosθ h=2γ cosθ/ρgr p c =2γ cosθ/r p c kapilláris nyomás γ felületi feszültség r a cső sugara θ határszög
Tenzidek Tenzid: kis mennyiségben is csökkenti a felületi feszültséget (amfipatikus: BuOH, ionos: SDS). γ 80-40 - 5 10 m% micella
Gőznyomás, vagy tenzió folyadék gáz [gáz] [folyadék] = K állandó Tiszta folyadék gőznyomása csak a hőmérséklettől függ. nyomás/hgmm folyadék gáz egyensúly
Gőznyomás, vagy tenzió Tiszta folyadék gőznyomása csak a hőmérséklettől függ. Kis hőmérséklet tartományra: Clausius Clapeyron egyenlet 1. A folyadék móltérfogata elhanyagolható a gőzéhez képest 2. A gőzt ideális gáznak tekintjük.
Számítási feladat: Egy 4 literes tartályban 3 liter folyadék van, melynek gőznyomása 20 ºC-on 15 kpa. a.) Mennyi a nyomás a tartályban? b.) Mennyi lesz, ha 1 liter folyadékot kiengedünk? c.) Mennyi lesz, ha 2,8 g nitrogén gázt nyomunk a tartályba? d.) Mennyi lesz, ha ezután a meglévő folyadék felét az alsó csapon kiengedjük?
Relatív és abszolút nedvességtartalom Egy gáz maximális víztartalmát a víz tenziója megszabja. Relatív: % = (p víz /p víz0 )100 % Abszolút: g víz/m 3 pv= nrt c = n/v = p/rt mol/m 3 n=m/m c = m/v = pm/rt g/m 3
3 3 Feladat: Egy téli napon teljesen kiszellőztetjük a szobánkat. A kinti hőmérséklet 0 ºC és a csapadékos időjárás következtében a levegő vízgőzre telített. Mikor eszünkbe jut becsukni az ablakokat, a szoba hőmérséklete is 0 ºC. Rémülten bekapcsoljuk a fűtést és a szobát 20 ºC-ra melegítjük. Mennyi a szoba levegőjének relatív és abszolút nedvességtartalma 20 ºC-on? A víz tenziója 0 ºC-on 0,613 kpa 20 ºC-on 2,333 kpa Mennyi lenne, ha vízet párologtatva a levegőt telítenénk vízgőzzel?
Forráspont- gőznyomás Forráspont: azon hőmérséklet, amelynél a gőznyomás értéke eléri a külső nyomást párolgás kondenzáció 760 - Et 2 O HCCl 3 CCL 4 H 2 O l. 20 C-on CO 2 (44) CuCl 3 (119) H 2 O (18) Hg (201) glicerin (92) 43000 Hgmm 170 Hgmm 18 Hgmm 0,0012 Hgmm 1,6*10-4 Hgmm nyomás/hgmm CH 3 -O-CH 3 ~ 4*10 5 Pa CO 2 ~ 58*10 5 Pa CH 3 CH 2 OH ~ 0,06*10 5 Pa SO 2 ~ 3,4*10 5 Pa dipól -20C 0C 60C 100 C
Magyarázzuk meg az alábbi adatokat a molekulák közötti kölcsönhatások alapján! Molekula Forráspont HCl -85 ºC HBr -67 ºC HI -35 ºC
Kritikus hőmérséklet Növeljük a hőmérsékletet!
Kritikus hőmérséklet Anyag Kritikus hőmérséklet ºC ---------------------------------------------- Hélium -268 (5.2 K) Neon -229 Argon -123 Kripton -64 Xenon 17 Hidrogén -240 Nitrogén -147 Oxigén -118 Klór 144 HCl 52 H 2 O 374 NH 3 132 CO 2 31 C 6 H 6 289 az a hőmérséklet, amely felett a folyadékállapot nem létezik. Kérdés: Az udvaron van két 50 literes gázpalack, az egyikben nitrogén, a másikban klórgáz van. T= 20 ºC. Mindegyiknek megmértük a nyomását: nitrogén: 1200 kpa; klór: 640 kpa (p 0 ).
Ideális folyadékelegyek T= állandó A folyadék móltörtje: x A Raoult-törvény szerint p A = x A p o A p B = x B p o B gőznyomás folyadék gőz p o A : tiszta A gőznyomása Az elegy p gőznyomása: A móltörtje p = p A + p B = x A p o A + x B po B = po B + x A (po A - po B ) A gőz móltörtje: y A x p o = A A, o o o pb xa( pa pb ) yb = + Ha p 0 A > p 0 B y A > x A y A
A móltörtje, x Gőzösszetétel görbe Fázisdiagram Hőmérséklet Forráspont görbe forrpontdiagram p= állandó
Nemideális elegyek Pozitív: különböző molekulák között kisebb a vonzás, mint az azonosak között. Negatív: különböző molekulák között nagyobb a vonzás, mint az azonosak között.
pl. HNO HO pl. EtOH H O Nemideális elegyek: Azeotrópok Gőzösszetétel görbe negatív azeotróp pozitív azeotróp Gőzösszetétel görbe Hőmérséklet Forráspont görbe Hőmérséklet Forráspont görbe A víz móltörtje, x H2O A víz móltörtje, x H2O
Nemideális elegyek: Azeotrópok