1. ábra Klasszikus (A) és új (B) technológiák az enzimek ipari felhasználásában stabilitásuk növelésére. [12]



Hasonló dokumentumok
Egyetem u. 2. P. O. Box 158, H-8200 Veszprém, Hungary. Páter K. ú. 1, H Gödöllő, Hungary. Egyetem tér 1., Debrecen, Hungary

Lignocellulóz bontó enzimek előállítása és felhasználása

BIOETANOL ELİÁLLÍTÁSA LIGNOCELLULÓZ TARTALMÚ ALAPANYAGOKBÓL

Hibridspecifikus tápanyag-és vízhasznosítás kukoricánál csernozjom talajon

A rosszindulatú daganatos halálozás változása 1975 és 2001 között Magyarországon

MELEGZÖMÍTŐ VIZSGÁLATOK ALUMÍNIUMÖTVÖZETEKEN HOT COMPRESSION TESTS IN ALUMINIUM ALLOYS MIKÓ TAMÁS 1

TDA-TAR ÉS O-TDA FOLYADÉKÁRAMOK ELEGYÍTHETŐSÉGÉNEK VIZSGÁLATA STUDY OF THE MIXABILITY OF TDA-TAR AND O-TDA LIQUID STREAMS

A Raman spektroszkópia alkalmazása fémipari kutatásokban Raman spectroscopy in metallurgical research Dénes Éva, Koós Gáborné, Kőszegi Szilvia

On The Number Of Slim Semimodular Lattices

EN United in diversity EN A8-0206/419. Amendment

TIOLKARBAMÁT TÍPUSÚ NÖVÉNYVÉDŐ SZER HATÓANYAGOK ÉS SZÁRMAZÉKAIK KÉMIAI OXIDÁLHATÓSÁGÁNAK VIZSGÁLATA I

Új típusú csillag kopolimerek előállítása és funkcionalizálása. Doktori értekezés tézisei. Szanka Amália

NANOTECHNOLÓGIA - KÖZÉPISKOLÁSOKNAK NAOTECHNOLOGY FOR STUDENTS

Phenotype. Genotype. It is like any other experiment! What is a bioinformatics experiment? Remember the Goal. Infectious Disease Paradigm

Supporting Information

Izopropil-alkohol visszanyerése félvezetőüzemben keletkező oldószerhulladékból

Correlation & Linear Regression in SPSS

FAGYI-TUDOMÁNY FAKULTATÍV INTEGRÁLT PROJEKT KÖZÉPISKOLÁSOKNAK ICE-CREAM SCIENCE FACULTATIVE SCIENCE PROJECT FOR HIGH SCHOOL STUDENTS

Összefoglalás. Summary. Bevezetés

AZ EMÉSZTÉS ÉLETTANA. Fehérjeemésztés kimutatása földigiliszta tápcsatornájában

Környezetben részlegesen lebomló műanyag fóliák degradációjának nyomon követése

SZÉN NANOCSŐ KOMPOZITOK ELŐÁLLÍTÁSA ÉS VIZSGÁLATA

First experiences with Gd fuel assemblies in. Tamás Parkó, Botond Beliczai AER Symposium

Megnövelt stabilitású enzim-polimer nanobiokompozitok Enzyme-polymer nanobiocomposites with enhanced stability

TÁMOPͲ4.2.2.AͲ11/1/KONVͲ2012Ͳ0029

MEZŐGAZDASÁGI HULLADÉKOT FELDOLGOZÓ PELLETÁLÓ ÜZEM LÉTESÍTÉSÉNEK FELTÉTELEI

PETER PAZMANY CATHOLIC UNIVERSITY Consortium members SEMMELWEIS UNIVERSITY, DIALOG CAMPUS PUBLISHER

Using the CW-Net in a user defined IP network

ANYAGTECHNOLÓGIA. Betonfelületek vízzáróságát fokozó anyagok permeabilitása

A TRIP ACÉL PONTHEGESZTÉSÉNEK HATÁSA RESISTANCE SPOT WELDING EFFECT IN CASE OF TRIP STEEL

Construction of a cube given with its centre and a sideline

A gépészeti rendszer hatása a különböző hőszigetelési teljesítményű könnyűszerkezetes épületek energiafelhasználására

A FENYŐHELYETTESÍTÉS MŰSZAKI PROBLÉMÁI A KÜLÖNFÉLE FELHASZNÁLÁSI TERÜLETEKEN

Erősítőszálak választéka és tulajdonságaik

Regional Expert Meeting Livestock based Geographical Indication chains as an entry point to maintain agro-biodiversity

már mindenben úgy kell eljárnunk, mint bármilyen viaszveszejtéses öntés esetén. A kapott öntvény kidolgozásánál még mindig van lehetőségünk

6. Zárványtestek feldolgozása

Ionos folyadékokból előállított polimer membránok vizsgálata

PLATTÍROZOTT ALUMÍNIUM LEMEZEK KÖTÉSI VISZONYAINAK TECHNOLÓGIAI VIZSGÁLATA TECHNOLOGICAL INVESTIGATION OF PLATED ALUMINIUM SHEETS BONDING PROPERTIES


PP-por morfológiája a gyártási paraméterek függvényében

Amorf/nanoszerkezetű felületi réteg létrehozása lézersugaras felületkezeléssel

Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet Factor Analysis

Egyetem u. 2. P. O. Box 158, H-8200 Veszprém, Hungary. Páter K. ú. 1, H Gödöllő, Hungary. Egyetem tér 1., Debrecen, Hungary

KELER KSZF Zrt. bankgarancia-befogadási kondíciói. Hatályos: július 8.

Smaller Pleasures. Apróbb örömök. Keleti lakk tárgyak Répás János Sándor mûhelyébõl Lacquerware from the workshop of Répás János Sándor

DOKTORI ÉRTEKEZÉS TÉZISEI HÁROMFÁZISÚ MEGOSZLÁS ALKALMAZÁSA ÉLELMISZERFEHÉRJÉKVIZSGÁLATÁBAN

BIOSZORBENSEK ELŐÁLLÍTÁSA MEZŐGAZDASÁGI HULLADÉKOKBÓL SZÁRMAZÓ, MÓDOSÍTOTT CELLULÓZROSTOK FELHASZNÁLÁSÁVAL

A faanyag kémiai átalakulása / átalakítása

Cashback 2015 Deposit Promotion teljes szabályzat

INTERFERONI GAMMA-1B SOLUTIO CONCENTRATA. Tömény gamma-1b-interferon-oldat

FÖLDRAJZ ANGOL NYELVEN

A felület vizsgálata mikrokeménységméréssel


Lakóházak energiatudatos szellőzési rendszerei Energy conscious ventilation system of dwellings

Manuscript Title: Identification of a thermostable fungal lytic polysaccharide monooxygenase and

Vasúti kocsik vázszerkezetének a felhasználhatósága kisebb nyílások áthidalására helyi érdek8 közúti utakon

Angol Középfokú Nyelvvizsgázók Bibliája: Nyelvtani összefoglalás, 30 kidolgozott szóbeli tétel, esszé és minta levelek + rendhagyó igék jelentéssel

Correlation & Linear Regression in SPSS

Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet. Hypothesis Testing. Petra Petrovics.

A PENICILLIUM CHRYSOGENUM LAKTÓZ HASZNOSÍTÁSÁNAK VIZSGÁLATA

Összefoglalás. Summary

A jövedelem alakulásának vizsgálata az észak-alföldi régióban az évi adatok alapján

BKI13ATEX0030/1 EK-Típus Vizsgálati Tanúsítvány/ EC-Type Examination Certificate 1. kiegészítés / Amendment 1 MSZ EN :2014

Tárgyszavak: Diclofenac; gyógyszermineralizáció; szennyvíz; fotobomlás; oxidatív gyökök.

Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet Nonparametric Tests

A controlling és az értékelemzés összekapcsolása, különös tekintettel a felsőoktatási és a gyakorlati alkalmazhatóságra

Tartalomjegyzék A szénhidrogén-korszak alkonya - miként tudunk alkalmazkodni?... 1

THE RELATIONSHIP BETWEEN THE STATE OF EDUCATION AND THE LABOUR MARKET IN HUNGARY CSEHNÉ PAPP, IMOLA

1. Ábra Az n-paraffinok olvadáspontja és forráspontja közötti összefüggés

FÉMKOMPOZITOK KOPÁSÁLLÓSÁGÁNAK VIZSGÁLATA INVESTIGATION OF THE WEAR RESISTANCE PROPERTIES OF METAL MATRIX COMPOSITES

A modern e-learning lehetőségei a tűzoltók oktatásának fejlesztésében. Dicse Jenő üzletfejlesztési igazgató

FÖLDRAJZ ANGOL NYELVEN GEOGRAPHY

A FÓKUSZÁLT NAPENERGIA TÁROLÁSI ÉS HASZNOSÍTÁSI LEHETŐSÉGEI

Áprilisban 14%-kal nőtt a szálláshelyek vendégforgalma Kereskedelmi szálláshelyek forgalma, április

SiC védõréteg létrehozása karbonszálon gyors hevítéses módszerrel

Az infravörös spektroszkópia analitikai alkalmazása

APROTININUM. Aprotinin

Termoelektromos polimerek és polimerkompozitok

Néhány folyóiratkereső rendszer felsorolása és példa segítségével vázlatos bemutatása Sasvári Péter

Mikrobiális fitáz enzim előállítása és jellemzése

USER MANUAL Guest user

FÖLDMŰVELÉSTAN. Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP /1/A

AZ ÖNEMÉSZTÉS, SEJTPUSZTULÁS ÉS MEGÚJULÁS MOLEKULÁRIS SEJTBIOLÓGIÁJA

DEVELOPMENT OF HUNGARIAN AND AUSTRIAN ORGANIC FARMING. By: KOLTAI, JUDIT MAZÁN, MÁRIÓ CSATAI, RÓZSA

Tudományos Ismeretterjesztő Társulat

LOGISZTIKA A TUDOMÁNYBAN ÉS A GAZDASÁGBAN

Gibberellinek. 1. ábra: Gibberellán, gibberellinsav szerkezete. BME Alkalmazott Biotechnológia és Élelmiszertudomány Tanszék 1

A TÓGAZDASÁGI HALTERMELÉS SZERKEZETÉNEK ELEMZÉSE. SZATHMÁRI LÁSZLÓ d r.- TENK ANTAL dr. ÖSSZEFOGLALÁS

Illékony szerves vegyületek emissziójának csökkentése. Székely Edit

ACO burkolható fedlapok. ACO műszaki katalógus ACO Burkolható fedlapok UNIFACE PAVING SOLID

Nevezze meg a jelölt csontot latinul! Name the bone marked! Nevezze meg a jelölt csont típusát! What is the type of the bone marked?

A POLIELEKTROLIT/TENZID ASSZOCIÁCIÓ SZABÁLYOZÁSA NEMIONOS TENZIDEK ÉS POLIMEREK SEGÍTSÉGÉVEL

O k t a t á si Hivatal

DR. SZABÓ LÁSZLÓ 1 DOBOS GÁBOR 2

Az elektroaktív polimerek ismertetése és osztályozása, alkalmazásai. Electro active polymers, features and applications

Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet. Correlation & Linear. Petra Petrovics.

OROSZ MÁRTA DR., GÁLFFY GABRIELLA DR., KOVÁCS DOROTTYA ÁGH TAMÁS DR., MÉSZÁROS ÁGNES DR.

X. FIATAL MŰSZAKIAK TUDOMÁNYOS ÜLÉSSZAKA

NANOEZÜST ALAPÚ ANTIBAKTERIÁLIS SZÓRHATÓ SZOL KIFEJLESZTÉSE MŰANYAG FELÜLETEKRE

Átírás:

Multifunkcionális szupramolekuláris enzimkomplexek stabilizálása nanoréteggel Stabilization of multifunctional supramolecular enzyme complexes with nano-layer Hegedűs Imre, Nagy ndre Pannon gyetem, Műszaki Informatika Kar, Műszaki Kémiai Kutató Intézet gyetem u. 2. P. O. Box 158, H-8200 Veszprém, Hungary Summary Single enzyme nanoparticles (SNs) represent a new approach in industrial enzyme research (see Fig. 1) [1, 12]. The form of SN means, that each enzyme molecule is surrounded with a nanometer scale polymer matrix layer, resulting in stabilization of enzyme activity without any serious limitation for the substrate transfer from solution to the active site of the enzyme. The synthesis of SN particles is available via more or less simple laboratorial technique. Previously we have decided to apply this technique for industrial bioethanol synthesis able to comply with the requirements of green chemistry. We would like to investigate that how can the SN-enzymes digest higher-size substrates. Cellulose is the one of the most stable biopolymers and the enzymatical fermentation of cellulose to glucose under industrial conditions is a crucial point in industrial bioethanol synthesis. The most interesting step of the synthesis is the enzymatic fermentation of cellulose molecules under industrial conditions. Cellulases comprise three types of enzymes: endoglucanases, which cleave internal β-1,4-glucosidic bonds; exoglucanases, which processively act on the reducing and non-reducing ends of cellulose chains to release short-chain cellooligosaccharides; and β-glucosidases, which hydrolyze soluble cellooligosaccharides (e.g. cellobiose) to glucose. Plant cell-wall degrading enzymes exist either in complexed or non-complexed systems. The complexed systems are known as cellulosomes and tend to be present in anaerobic bacteria and fungi (see Fig. 4B). Cellulosome is one type of hyperstructures. A hyperstructure is a large, spatial association of cellular constituents such as molecules, macromolecules, and ions that performs a particular function because the constituents are associated with one another. A hyperstructure interacts with other hyperstructures at a level of organization intermediate between the macromolecule and the bacterial cell. We have tried to prepare single enzyme-complex nanoparticles where the functional unit is not only a similar single enzyme, but a multifunctional supramolecular enzyme complex which means a hyperstructure. We tried to investigate, that supramolecular hyperstructures as single nanoparticles are also as similar performance under extremely conditions as the monomolecular single enzyme nanoparticles. The detection of the SN-enzymes is possible using transmission electron microscopy The thickness of the polymer layer can be estimated to be about 3-7 nm according to Fig. 2. Celluclast BG (by Novozymes) is an enzyme complex from Trichoderma reesei. T. reesei has cellulosome on the surface of the fungal cell-wall. Whatman filter paper was used as substrate (filter paper unit, FPU) and total cellulase activity was measured using DNS-probe according the exact instructions of Ghose [13]. Preliminary results show that the size of the cross-linked polymer layer around the enzyme complex can also reduce the activity of the single enzyme nanoparticles of Celloclast BG enzyme complexes (SN-CK). But this reducing effect is not dramatically because when the polymer layer around the enzyme complex is 4 times higher, the activity of the SN-CK composite is only about a 70 % lower (about 40% of the activity of the native CK ones, see Fig. 5). According to our previous investigations [12] it was founded that (SN-CK) molecules are really more stable - at least one order of magnitude - than natural ones (CK) at room temperature (see fig. 6.) and even at more extremely conditions (37 o C, 150 rpm, see Fig. 7). In the case of SN-CK there is no change in the thermal stability between 50-80 o C ranges, while CK complex lost the 90% of its activity at 80 o C. To compare these results with the most recent publications [2-9] we can see that SN-enzymes are more stable than the most of enzyme nano-biocomposites synthesized in different way. Preliminary results show that SNenzymes are more stable than natural ones in a wide ph range (Fig. 9.) The activity of SN-CK is the same at ph 1.5 than at ph = 4.8 while the natural CK enzyme complexes decrease to 50 % of their activity in ph range between 3.0 and 10.0 and at higher and lower ph-ranges the activity natural CK-enzyme complexes is extremely low.

Bevezetés Az iparban nagy kereslet mutatkozik olyan enzimekre, amelyek nagy stabilitással rendelkeznek és szélsőséges körülmények között is pl. intenzív rázatás, magasabb hőmérséklet, vagy az optimálistól eltérő ph csak nagyon keveset, vagy semmit sem veszítenek aktivitásukból és működőképesek maradnak. Az enzimek behatárolt életideje korlátozza alkalmazhatóságukat, ezért az életidő növelése alapvető valamennyi felhasználás számára. Hosszabb életidővel rendelkező enzimekből kevesebb mennyiség elegendő, ugyanakkor növekedik az enzim reaktorok működési ideje és kibővülnek az enzim újrafelhasználás lehetőségei is. Az első technikák az enzimek stabilizálására korlátozott hatékonysággal működtek (ld. 1/A. ábra). Ilyen technika az enzim immobilizáció, A) Klasszikus technikák amely az enzim molekulának nagy szerkezetek üregeibe vagy felületére való rögzítését jelenti egyszerű adszorpcióval, vagy kovalens kötéssel (1/A/1. ábra). Az enzim molekula és a gazda anyag közötti több ponton történő kötés csökkenti az enzim degradációját, illetve az un. unfolding mechanizmusait és ilyen módon növeli az enzim működésének stabilitását. Az enzim módosítás az enzim molekula olyan kovalens reakciójával definiálható, amely funkciós csoportok vagy polimerek felszínhez kötődésével megváltoztathatja a felszíni tulajdonságokat és az enzim stabilabb működését eredményezheti (1/A/2. ábra). A fehérje mérnökség a fehérje aminosav szekvenciájának molekuláris biológiai módszerekkel történő megváltoztatását jelenti (pl. irányított evolúció vagy helyspecifikus mutagenezis) egy stabilabb belső szerkezet elérése érdekében (1/A/3. ábra). A reakció közeg mérnökség ezzel szemben az enzim B) Újabb fejlesztési lehetőségek: a hordozó méretének csökkentése 1) nzim immobilizálás 2) nzim módosítás 3) Fehérje mérnökség 4) Reakcióközeg mérnökség 1) nzimek nanorészecske hordozók felületén CdS Au α) fém nanorészecskéken Fe 3 O 4 β) mágneses nanorészecskéken 2. Rögzítés nano-méretű hordozók belsejében α) hiperelágazásos polimerekben β) dendrimerek között 5) Keresztkötött enzim- 6) Keresztkötött enzim kristályok aggregátumok nzim molekula A technikák kombinálása 3. gyedi enzim nanorészecskék: Különálló enzimek Fe e 3 O 4 Kovalens kötés α) szerves/szervetlen hibrid β) mágneses polimer burokkal nanoréteg belsejében 1. ábra Klasszikus (A) és új (B) technológiák az enzimek ipari felhasználásában stabilitásuk növelésére. [12]

körüli közeg változtatásával módosítja az enzim szerkezetét (1/A/4. ábra). Alkalmazhatnak nem vizes reakció közeget, vagy változtathatják a reakcióközeg ionösszetételét. 2. ábra. gyedi kimotripszin enzim nanorészecskék detektálása transzmissziós elektronmikroszkóppal. Az ábrán frissen készített preparátum látható. A nagyobb szemcsék esetén az enzimek nem váltak szét, úgy kerültek beburkolásra. [12] Az enzim rögzítése a katalizátor újrafelhasználás, a folyamatos működés és a termék tisztítás szempontjából is jelentős. A rögzített enzimeknek azonban gyakran kicsi az aktivitása. Az enzimműködés hatékonysága javítható a hordozó anyag szerkezetének változtatásával, vagy a hordozó méretének csökkentésével. A kisméretű hordozó részecskék nagyobb felületet biztosítanak az enzim rögzítéséhez. Mikrométeres és nanométeres méretű hordozó részecskék alkalmazásával széles körben foglalkoznak. Az utóbbi néhány évben egyre több kísérlet történik az enzimek stabilitásának nanobiokompozitok előállításával történő növelésére (1/B ábra). Az egyik irány nano-méretű hordozók felületén történő enzim rögzítés (1/B/1 ábra). Fém nanorészecskék felületéhez SdS [2] majd arany [3] - kötöttek enzimet (1/B/1/α ábra). Az enzim nem csak stabilabbá vált, hanem szelektívebb is lett. Poliakrilamid nanogéllel beburkolt Fe 3 O 4 mágneses nanorészecskék és kimotripszin enzim konjugátumokat állítottak elő (1/B/1/β ábra) [5] és az eredeti aktivitás mintegy 80 %-a megmaradt. gy másik lehetőség enzimek rögzítése nanoméretű hordozók belsejében (1/B/2. ábra). A gyógyszeriparban a fehérje hatóanyagokat un. enterikus polimer hordozóba burkolják, hogy ne tudjanak olyan könnyen lebomlani a gyomor extrém savas körülményei között. zt a beburkolást sikeresen elvégezték mintegy száznanométeres mérettartományban lévő polimer hordozóba is. Aromás poliamin hiperelágazásos (hyperbranched) polimerekkel burkoltak be lipázt (1/B/2α. ábra) [7], a hőstabilitása így 50-80 o C közé kitolódott és a stabilitása háromszorosára nőtt. Torma peroxidáz enzim felületéhez G 4.0 PAMAM dendrimereket kapcsoltak, illetve enzim-dendimer rétegeket képeztek (1/B/2β. ábra) [8] és az így előállított kompozitot bioszenzorként alkalmazták. Az egyedi enzim nanorészecskék (1/B2. ábra) különálló, néhány nanométeres, az enzim méretével összevethető vastagságú burokban tartalmazzák az enzim molekulákat, amelyek a burok stabilizáló hatása miatt stabilisabbak és aktivitásuk sem csökken jelentős mértékben. Torma peroxidázt nanogéllel burkoltak be [6], amelyhez a felszínén akrilezéssel módosított enzimet használtak (1/B3α ábra).. gyedi mágneses nanorészecskéket (porózus mágneses nanoréteggel beburkolt enzimeket) is előállítottak (1/B3β. ábra) [4], amelyek megőrizték aktivitásukat széles ph tartományban (ph = 5,5 és 9,0 között), 4 o C-on történő tárolás után megőrizték aktivitásuk 85 %-át, ami a szabad enzimek aktivitásának négyszerese. Az egyedi enzim nanorészecskéket sikerült transzmissziós elektronmikroszkóppal kimutatnunk kimotripszin enzim esetében (2. ábra) [12]. A kisebb méretű részecskék különálló kimotripszin enzim molekulák, amelyeket egyenként sikerült beburkolni a polimer védő réteggel. A polimer réteg vastagságát 3-7 nm-re becsüljük. A nagyobb méretű részecskék esetében a preparálás során az enzimek összetapadtak, nem váltak szét és így kerültek beburkolásra. Véleményünk szerint a szubsztrátum diffúziós útjának néhány nanométeres megnövekedése az enzim aktív centrumához nem okozhat detektálható aktivitás csökkenést.

(1 4)βglükán lánc (1 4)β-glükozidos kötés Krisztallin domének 3. ábra. A cellulóz rost szerkezete. A makrofibrillumokat alkotó mikrofibrillumokat nem cellulóz típusú lignin szálak kötik össze. A mikrofibrillum hemicellulózt, valamint krisztallin és parakrisztallin cellulózt tartalmaz. A biomassza legelterjedtebb molekulája cellulóz. A cellulóz a legstabilisabb biopolimer. Szerkezete összetett, glükóz építő egységekből, valamint heterogén alkotó elemekből (lignin) áll (ld. 3. ábra). zért a cellulóz bontásához több, különböző enzim együttes működése szükséges. A cellulóz bontó enzimek (cellulázok) főbb típusai 1) endoglükanáz, amely a cellulóz rost belső, kevésbé kristályos részein a cellulóz láncokat hasítja, ezáltal szabad láncevégeket állít elő 2) az exoglükanázok az így kialakult szabad láncvégektól kezdve lebontják a cellulóz láncokat cellobióz dimer egységekké, 3) a béta glükozidáz enzim a cellubiáz egységeket bontja glükózzá. zen három fő enzimcsoportnak további altípusaik lehetnek. A lignin bontásához további enzimek szükségesek. A cellulóz bontó enzimek (cellulázok) működhetnek különálló enzimekként, de sok esetben az egysejtű organizmus sejtfalának jól körülhatárolható részén egy szkaffoldin nevű fehérjéhez rögzítettek (ld. 4 ábra). Az említett celluláz enzim komplexek működéséhez hasonlóan az élő szervezetekben működő biológiailag aktív makromolekulák un. hiperstruktúrákba (hyperstructures) szerveződnek, amelyek multifunkcionális szupramolekuláris szerveződési egységek eggyel magasabb szerveződési szintet jelentenek, mint a makromolekuláris szint (enzimek, nukleinsavak, stb.) [10]. zeknek a hiperstruktúráknak, mint a molekuláknál magasabb szintű, összetett funkcionális egységeknek a tanulmányozása új utakat nyithat a molekuláris biológiában és jelentősen szélesítheti az enzimek ipari felhasználási lehetőségeit. gyedei enzim részecskék celluláz enzim komplexekből Kísérleti rész Korábbi kísérleteinkben [11, 12], valamint az irodalomban szereplő vizsgálatokban [1] is csak viszonylag kis méretű szubsztrátumot használtak a polimer réteggel beburkolt enzimek aktivitásának meghatározására. Kérdéses maradt, hogy hogyan viselkedik a preparált enzim abban az esetben, ha nagyméretű, a természetben előfordulóhoz hasonló szubsztrátummal, makromolekulákkal, illetve biopolimerekkel találkozik az enzim. zért cellulózt használtunk szubsztrátumként, méghozzá teljes szűrőpapír csíkot, amely a természetben, illetve az ipari körülményekhez legjobban hasonlító módon van jelen a rendszerben. A celluláz-enzim komplex beburkolásához Celluklaszt BG multienzim-komplexet használtunk (Novozymes). A készítmény alapanyaga Trichoderma reesei gomba celluláz enzim komplexe. A gomba a cellulázokat celluloszóma formájában tartalmazza (4. ábra). A készítmény szilárd formában, apró szemcsék formájában tartalmazza az enzim-komplexet, amelyet használat előtt 10 percig szonikáltunk. A szintézis egyes lépései valamint az egyes változtatások részletesen megtalálhatók korábbi közleményeinkben [11-12], ettől annyiban tértünk el, hogy a 365 nm-es UV-besugárzást 2 órán át alkalmaztuk. A celluláz enzim komplex működését az un. totális celluláz aktivitás mérésével vizsgáltuk

cellulóz enzimek Kötő egység (szkaffoldin) Baktérium vagy gomba sejtfal 4. ábra. A baktérium sejtfalán elhelyezkedő celluloszómában az un. szkaffolding kötő fehérjére ülnek ki a különböző specifilkus cellulózbontó enzimek és szupramolekuláris multifunkcionális komplexet (hiperstruktúra) alkotnak. A jelen lévő különböző funkciójú enzimek együttes működése vezet a cellulóz bomlásához. (szűrőpapíros vizsgálat) [13]. A módszer lényege röviden a következő: szubsztrátumként 6 cm x 1 cm méretű szűrőpapír csíkokat használtunk (Whatmanféle szűrőpapír). A szűrőpapír csíkokat összetekerve kémcsőbe helyeztük, amelyhez 1,0 ml ph = 4,80 0,05 mm-os citrát puffert és 0,5 ml enzim-oldatot adtunk. Az elegyet 50 o C-on inkubáltuk 1 órán keresztül. zt követően a celluláz enzim komplex aktivitását a glükóz bomlási termék mennyiségének detektálásával határoztuk meg. A glükóz mennyiség meghatározásához un. DNSpróbát használtunk [13]. Minden mintához 3,0 ml 3,5-dinitroszalicilsavat (DNS) tartalmazó reagenst adtunk, 5 perc forralás után 540 nm-en néztük az oldat elnyelését. Az oldat elnyelése arányos a jelen lévő redukáló cukor mennyiségével, ami arányos az enzim-rendszer cellulóz-bontó aktivitásával. Relativ aktivitás 1 0 0 1 2 3 4 Monomer mennyiség [100 μl/mg enzim] 5. ábra. Celluclast BG enzim-komplex aktivitásának változása a hozzáadott monomer mennyiségével. A monmer mennyisége beburkoló polimer réteg vastagságával arányos. A polimer védőréteggel bevont egyedi celluláz enzim-komplexek ph-stabilitását a következő módon végeztük: a szubsztrátumot és az enzimet tartalmazó elegyek ph-ját kb. 1 mólos sósav oldat 3 cseppjével 1,5-ös ph-ra savanyítottuk, illetve NaOH 3 cseppjével ph = 12,0-re lúgosítottuk. Hasonlóképpen cc. ecetsav 3 cseppjével ph = 3,5- re, illetve Na 2 HPO 4 3 cseppjével ph = 9 értékekre állítottuk be mind a natív enzim-komplex, mind a berurkolt komplex elegyének ph-ját, majd egy órán keresztül 50 o C-on inkubáltuk és a felszabadult cukortartalmat mértük DNS-próbával. Kísérleti eredmények értékelésük Azt tapasztaltuk, hogy a polimer nano-réteggel stabilizált enzim-komplex is képes bontani cellulóz makromolekulát. Vizsgáltuk a polimer réteg vastagságának hatását az enzim aktivitására. Igyekeztünk az ultraibolya sugárzásnak a korábbi kísérletek során kimért károsító hatását csökkenteni azzal, hogy a besugárzási időt csökkentettük két órára. Hasonló körülmények között a hexán fázisba oldott celluklaszt BG enzim-komplexhez 1, 2, illetve négyszeres mennyiségű monomert adtunk, amely aztán a kísérlet során feltételezhetősen 1, 2, illetve 4x hosszúságú polimer-láncokká szerveződött az enzim-komplex molekulák felületén. A különböző vastagságú polimer réteggel beburkolt enzimkomplexek rendre 60, 50 és 40%-os aktivitást mutattak a kiindulási kezeletlen enzim-komplexhez

képest. z azt mutatja, hogy a polimer-réteg akadályozza az enzim-komplex működését, de még négyszeres vastagság esetén is jó hatékonysággal működik az enzim. A polimer réteg vastagságának hatása az enzim stabilitására különböző körülmények között további kísérletek tárgya lehet. Relatív aktivitás 6. ábra. Natív (X) és beburkolt (O) Celluclast BG enzim-komplex stabilitása 20 o C-on, rázatás nélkül. Relatív aktivitás 1,0 0,0 1 0 0 40 80 120 Idő [nap] 0 1 2 3 4 5 6 idő [nap] 7. ábra. Natív (X) és beburkolt (O) Celluklaszt BG enzim-komplex stabilitása 37 o C-on, 150 rpm-mel rázatva. Összehasonlítottuk a polimer réteggel borított egyedei enzim-komplexek stabilitását szobahőmérsékleten (20 o C) rázás nélkül. Az eredmények azt mutatják, hogy hasonlóan a kimotripszin enzim stabilitás vizsgálatainál tapasztalt görbe lefutásokhoz, a celluklaszt BG enzim-komplex polimer réteggel beburkolt kompozitjának stabilitása először a natív enzimkomplexéhez hasonló módon meredeken csökken, majd mintegy 40-50 %-os aktivitás csökkenés után az enzim-komplex stabilitása enyhén csökkenő tendenciájú, viszonylag egyenesként viselkedő plató szakaszt mutat. Hasonló lefutás tapasztalható intenzívebb körülmények között, 37 o C-on, 150 rpm-mel történő rázatás során (7. ábra).. A különbség itt kevésbé szembetűnő, de ha folytattuk volna a kísérletet, elképzelhető, hogy a preparált enzim komplex stabilitása nagyobbnak mutatkozna. Relatív aktivitás 1 0 50 60 70 80 T [ o C] 8. ábra. Natív (X) és beburkolt (O) Celluclazt BG enzim-rendszer működésének hőmérséklet-függése s Relatív aktivitá 1,2 1 0 1 4 7 10 9. ábra. Natív (X) és beburkolt (O) Celluclast BG enzim-komplex aktivitásának ph-függése Megvizsgáltuk a celluklaszt enzim-rendszer működésének hőmérséklet-fügését is. A vizsgálat úgy történt, hogy egy órán át inkubáltuk az enzimet és szűrőpapírcsík szubsztrátumot tartalmazó elegyet az adott hőmérsékleteken, majd mértük a keletkezett cukor mennyiségét a DNS-próbával. Az eredmények azt mutatják, hogy 80 o C felett a natív enzim-komplexnek gyakorlatilag elvész az aktivitása, míg a beburkolt enzim aktivitása gyakorlatilag nem változik. Az előzetes kísérleti eredmények azt mutatják, hogy a vastagabb polimer réteget tartalmazó enzim-komplexek aktivitása magasabb hőmérsékleten ugyancsak változatlan marad. ph 13

Az eredmények nem mutattak változást a beburkolt celluláz komplex aktivitásában egyetlen ph-értéken sem, míg erőteljes csökkenés mutatkozott a natív enzim-komplex működésében. Összefoglalva elmondhatjuk, hogy az iparban előforduló makromolekuláris méretű szubsztrátumok bontására is alkalmas egyedi enzim nanorészecskéket sikerült előállítani. A celluloszóma több, különböző enzimből álló funkcionális egység (hiperstruktúra), amelyről kimutattuk, hogy működőképes marad a nanoréteggel történő beburkolás során. Míg a natív enzim-komplex aktivitása 90%-kal csökken, a kompozit változatlan aktivitást mutat magas hőmérsékleten és extrém ph értékeken egyaránt. Köszönetnyilvánítás A kutatómunka az OTKA 063615/2006 projekt keretében történt. Irodalomjegyzék [1] Kim, J., Grate, J.W., Wang, P., Nanostructures for enzyme stabilization, Chemical ngineering Science, 61 (3), 1017-1026 (2006). [2] Hong R., Fischer N.O., Verma A., Goodman C M, mrick T, Rotello V M, Journal of American Chemical Society, 126, 739-743 (2004). [3] Hong R., mrick T., Rotello V.M., Journal of American Chemical Society, 126 (42), 13572-13572 (2004). [4] Yang Z, Shihui S, Chunjing Z, Biochemical and Biophysical Research Communications, 367, 169-175 (2008) [5] Hong J., Xu D., Gong P., Ma H., Dong L., Yao S., Journal of Chromatography B, 850 (1-2), 499-506 (2007) [6] Ming Y, Ge Y, Liu Z, Ouyang P.K., Journal of American Chemical Society, 128, 11008-11009 (2006) [7] Ge Y, Minf Y, Lu D, Zhang M, Liu Zh, Biochemical ngineering Journal, 36, 93-99 (2007) [8] Zeng Y-L, Huang H-W, Jiang J-H, Tian M-N, Li Ch-X, Shen G-L, Yu R-Q, Analytica Chimica Acta, 604, 170-176 (2007) [9] Yao K. et al., Materials Science and ngineering: C, Article in Press, Corrected Proof (2008) [10] Norris, V., Cabin, A., Zemirline A., Acta Biotheoretica, 53, 313-330, (2005). [11] Hegedűs I., Nagy., Kovács S., MűszakiKémiai Napok 07 kiadvány, Veszprém 280. (2007) [12] Hegedűs I., Nagy., Chemical ngineering Science, 64, 1053-1060 (2009). [13] Ghose, T. K., Pure and Applied Chemistry, 59 (2) (1987)