Contrast Restoration by Adaptive Countershading

Hasonló dokumentumok
(c) 2004 F. Estrada & A. Jepson & D. Fleet Canny Edges Tutorial: Oct. 4, '03 Canny Edges Tutorial References: ffl imagetutorial.m ffl cannytutorial.m

i1400 Image Processing Guide A-61623_zh-tw

Correlation & Linear Regression in SPSS

Cluster Analysis. Potyó László

A modern e-learning lehetőségei a tűzoltók oktatásának fejlesztésében. Dicse Jenő üzletfejlesztési igazgató

discosnp demo - Peterlongo Pierre 1 DISCOSNP++: Live demo

IES TM Evaluating Light Source Color Rendition

Expansion of Red Deer and afforestation in Hungary

Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet Factor Analysis

On The Number Of Slim Semimodular Lattices

AZ ERDÕ NÖVEKEDÉSÉNEK VIZSGÁLATA TÉRINFORMATIKAI ÉS FOTOGRAMMETRIAI MÓDSZEREKKEL KARSZTOS MINTATERÜLETEN

Construction of a cube given with its centre and a sideline

Performance Modeling of Intelligent Car Parking Systems

Computer Architecture

Using the CW-Net in a user defined IP network

Rezgésdiagnosztika. Diagnosztika

Választási modellek 3

Report on the main results of the surveillance under article 11 for annex II, IV and V species (Annex B)

THS710A, THS720A, THS730A & THS720P TekScope Reference

Report on the main results of the surveillance under article 11 for annex II, IV and V species (Annex B)

EEA, Eionet and Country visits. Bernt Röndell - SES

Report on the main results of the surveillance under article 11 for annex II, IV and V species (Annex B)

Report on the main results of the surveillance under article 11 for annex II, IV and V species (Annex B)

Supplementary Table 1. Cystometric parameters in sham-operated wild type and Trpv4 -/- rats during saline infusion and

Többszempontú színpreferencia vizsgálat a fényforrás színességi koordinátájának elhelyezkedése alapján

Report on the main results of the surveillance under article 11 for annex II, IV and V species (Annex B)

ÚJ ESZKÖZÖK A TÁJÖKOLÓGIAI ELVÛ TERVEZÉSBEN: TÁJÖKOLÓGIAI VIZUÁLIS PLANTÁCIÓ (TVP)

SAR AUTOFÓKUSZ ALGORITMUSOK VIZSGÁLATA ÉS GYAKORLATI ALKALMAZÁSA 2

Effect of the different parameters to the surface roughness in freeform surface milling

A jövedelem alakulásának vizsgálata az észak-alföldi régióban az évi adatok alapján

RÉZKULTÚRA BUDAPESTEN

építészet & design ipari alkalmazás teherautó felépítmény

István Micsinai Csaba Molnár: Analysing Parliamentary Data in Hungarian

Csima Judit április 9.

Decision where Process Based OpRisk Management. made the difference. Norbert Kozma Head of Operational Risk Control. Erste Bank Hungary

PETER PAZMANY CATHOLIC UNIVERSITY Consortium members SEMMELWEIS UNIVERSITY, DIALOG CAMPUS PUBLISHER

EN United in diversity EN A8-0206/419. Amendment

Sebastián Sáez Senior Trade Economist INTERNATIONAL TRADE DEPARTMENT WORLD BANK

sorozat CD4 Katalógus füzetek

First experiences with Gd fuel assemblies in. Tamás Parkó, Botond Beliczai AER Symposium

KN-CP50. MANUAL (p. 2) Digital compass. ANLEITUNG (s. 4) Digitaler Kompass. GEBRUIKSAANWIJZING (p. 10) Digitaal kompas

Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet. Hypothesis Testing. Petra Petrovics.

Budapesti Műszaki és Gazdaságtudományi Egyetem Építőmérnöki Kar

Report on the main results of the surveillance under article 11 for annex II, IV and V species (Annex B)

BKI13ATEX0030/1 EK-Típus Vizsgálati Tanúsítvány/ EC-Type Examination Certificate 1. kiegészítés / Amendment 1 MSZ EN :2014

Széchenyi István Egyetem

Statistical Inference

Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet. Correlation & Linear. Petra Petrovics.

Supplementary materials to: Whole-mount single molecule FISH method for zebrafish embryo

Mapping Sequencing Reads to a Reference Genome

RealReflect Real-Time Visualization of Complex Reflectance Properties in Virtual Prototyping

KOGGM614 JÁRMŰIPARI KUTATÁS ÉS FEJLESZTÉS FOLYAMATA

NYOMÁSOS ÖNTÉS KÖZBEN ÉBREDŐ NYOMÁSVISZONYOK MÉRÉTECHNOLÓGIAI TERVEZÉSE DEVELOPMENT OF CAVITY PRESSURE MEASUREMENT FOR HIGH PRESURE DIE CASTING

Földtani térképek kartografálásának segítése térinformatikai módszerekkel

Ensemble Kalman Filters Part 1: The basics

1. Gyakorlat: Telepítés: Windows Server 2008 R2 Enterprise, Core, Windows 7

Milyen végzettség, jogosultság szükséges a pályázaton való részvételhez?

HAL SST CL P 30 W 230 V E14

Report on the main results of the surveillance under article 11 for annex II, IV and V species (Annex B)

Számlakezelés az ELO DocXtraktor modullal

Report on the main results of the surveillance under article 11 for annex II, IV and V species (Annex B)

Hangtompítók, Sorozat SI1. Katalógus füzetek

TÁMOPͲ4.2.2.AͲ11/1/KONVͲ2012Ͳ0029

STUDENT LOGBOOK. 1 week general practice course for the 6 th year medical students SEMMELWEIS EGYETEM. Name of the student:

Physics of ultrasonography

sorozat , Katalógus füzetek

Cloud computing. Cloud computing. Dr. Bakonyi Péter.

Csatlakozás a BME eduroam hálózatához Setting up the BUTE eduroam network

FÖLDRAJZ ANGOL NYELVEN

Proxer 7 Manager szoftver felhasználói leírás

Report on the main results of the surveillance under article 11 for annex II, IV and V species (Annex B)

Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet Nonparametric Tests

A BÜKKI KARSZTVÍZSZINT ÉSZLELŐ RENDSZER KERETÉBEN GYŰJTÖTT HIDROMETEOROLÓGIAI ADATOK ELEMZÉSE

FAMILY STRUCTURES THROUGH THE LIFE CYCLE

KÉPI INFORMÁCIÓK KEZELHETŐSÉGE. Forczek Erzsébet SZTE ÁOK Orvosi Informatikai Intézet. Összefoglaló

Poliamid csövek, Sorozat TU1. Katalógus füzetek

Vágógyűrűs csatlakozók. Katalógus füzetek

Az Ön kézikönyve KONICA MINOLTA

Formula Sound árlista

A jövőbeli hatások vizsgálatához felhasznált klímamodell-adatok Climate model data used for future impact studies Szépszó Gabriella

Gottsegen National Institute of Cardiology. Prof. A. JÁNOSI

Descriptive Statistics

2. Local communities involved in landscape architecture in Óbuda

Road construction works

Üzleti élet Nyitás. Nagyon hivatalos, a címzettnek meghatározott rangja van, aminek szerepelnie kell

Report on the main results of the surveillance under article 11 for annex II, IV and V species (Annex B)

Cég név: Készítette: Telefon: Fax: Dátum:

Üzleti élet Nyitás. Nagyon hivatalos, a címzettnek meghatározott rangja van, aminek szerepelnie kell

Angol Középfokú Nyelvvizsgázók Bibliája: Nyelvtani összefoglalás, 30 kidolgozott szóbeli tétel, esszé és minta levelek + rendhagyó igék jelentéssel

Correlation & Linear Regression in SPSS

3. Történeti kertek rekonstrukciója Tatai Angolkert és Alcsúti Habsburg kastély kertje

Szakmai továbbképzési nap akadémiai oktatóknak december 14. HISZK, Hódmezővásárhely / Webex

Pletykaalapú gépi tanulás teljesen elosztott környezetben

Sorozat 550. Katalógus füzetek

TÉRGAZDÁLKODÁS - A TÉR MINT VÉGES KÖZÖSSÉGI ERŐFORRÁS INGATLAN NYILVÁNTARTÁS - KÜLFÖLDI PÉLDÁK H.NAGY RÓBERT, HUNAGI

}w!"#$%&'()+,-./012345<ya

Report on the main results of the surveillance under article 11 for annex II, IV and V species (Annex B)

Unification of functional renormalization group equations

LED alkalmazások. Schanda János

Ister-Granum EGTC. Istvan FERENCSIK Project manager. The Local Action Plans to improve project partners crossborder

Átírás:

Contrast Restoration by Adaptive Countershading Grzegorz Krawczyk, Karol Myszkowski, and Hans-Peter Seidel MPI Informatik, Saarbrücken, Germany Eurographics 2007, Sept. 7 th, Prague

The Importance of Contrast Contrast communicates contents of images objects and their texture changes in illumination separates foreground from background Contrast influences judgment of overall image quality

Causes of Poor Contrast Contrast lost during HDR tone mapping tone mapping is essentially contrast compression studied in [Smith et al. 2006] results are numerically optimized further enhancement requires non-numerical knowledge Weak contrast in images caused by poor illumination impedes comprehension of spatial organization [Luft et al. 2006]

Purpose: Contrast Restoration Measure Lost Contrast at Several Feature Scales Reference HDR Image Enhance Lost Contrast in Tone Mapped Image Tone Mapped Image communicate lost image contents maintain image appearance Enhanced TM Image

Purpose: Contrast Restoration Measure Missing Contrast at Several Feature Scales Reference Depth Map Enhance Missing Contrast in The Input Image Input Image Enhanced Image

Method: Adaptive Countershading Enhanced Image Perceptual illusion to enhance contrast Cornsweet Countershading gradual darkening / brightening towards a contrasting edge contrast appears with economic use of dynamic range Possible space to enhance a numerically optimized tone mapping solution (!)

Previous Work Image Enhancement without Reference histogram equalization, unsharp masking, etc. manual adjustment of parameters substantial change in the image appearance Enhancement with Reference depth-darkening [Luft et al. 2006] enhancement with color [Smith et al. 2006] Multi-resolution image enhancement substantial change to appearance of the image amplification of certain frequencies knowledge of HVS often applied

Contributions Better communicate image contents with a minimal change to the image appearance. 1. Adaptive countershading (enhancement with reference) generalization of unsharp masking application of contrast illusion to image enhancement 2. Multi-resolution contrast metric change in contrast between an image and its reference automatic adjustment of image enhancement considers features at several scales 3. Visual detection model based on the perception of countershading masking of profiles in the image

Details of Contrast Illusion ACTUAL SIGNAL WHAT YOU SEE 1. Contrast between areas caused by brightness profiles 2. Properties: shape of the profile matches the shape of the enhanced feature amplitude of the profile defines the perceived contrast noise (texture) does not cancel the illusion profiles must not be discernible

Construction of Simple Profile (1/2) SIGNAL (e.g. TM) REFERENCE (e.g. HDR) + - Profile from low-pass filtered reference Size and amplitude adjusted manually This is unsharp masking RESTORED REFERENCE

Construction of Simple Profile (2/2) SIGNAL (texture preserved) REFERENCE (with texture) + - Well preserved texture in signal is exaggerated by profile Improved method for constructing profiles: profile must contain only features that require enhancement

Correct Profile for Textured Area Profile constructed directly from the reference image contains high frequency features which exaggerate texture Sub-band components allow to select features high frequency component present only at high contrast edge

Multi-resolution Contrast Metric Measure Lost Contrast at Several Feature Scales Reference HDR Image 1 Tone Mapped Image Contrast ratios at several scales. 0 1 2 3 4 5 6 7

Link: Contrast Metric & Profiles 1 4 7 1. Scale of contrast measure defines the profile size 2. Contrast ratio at each scale defines the sub-band amplitude (blue) 3. Contrast for larger scales appears also on smaller scales the full profile is always reconstructed (red)

Formula: Countershading Profile amplitude of profile sub-band component of profile 1. Contrast ratio R l on scale l drives the amplitude of sub-band component of profile at size l 2. Sum of N sub-band components gives the countershading profiles P that match the contrasts in the reference image

Adaptive Countershading final contrast restoration progress of restoration Objectionable visibility of countershading profiles

Recap Adaptive countershading (so far) input image compared to its original (reference) profiles enhance selected features in the input image amplitudes match contrasts in the reference image Limits visual: profiles become visible technical: image saturation due to dynamic range Solution: Visual Detection Model detect visible profiles and attenuate their amplitude conflict: attenuation reduces the enhancement

Visual Detection Model luminance level ΔL 2 visibility threshold ΔL 1 relative contrast sensitivity (8) (7) (6) (5) (4) (3) (2) (1) 1 m=0.70 0.6 m=0.40 0.4 m=0.30 m=0.20 0.2 0.1 m=0.05 0.045 0.1 0.3 1 3 5 10 22 cycles per degree of visual angle contrast sensitivity sensitivity to Cornsweet profile Luminance masking absolute luminance level L defines minimum perceivable luminance difference ΔL defined by t.v.i. functions Spatial contrast sensitivity reduced sensitivity to low frequencies defined by CSF functions improved by supra-threshold measurements of Cornsweet profile

Hiding Countershading Profiles Contrast masking existing contrast masks new signals of similar orientation and frequency defined by a power function of contrast present in an area Essential improvement previous models allow for rather small amplitudes of profiles

Limits of Countershading Profiles perceived contrast 0.5 infinity 0.4 3deg 2deg 0.3 1deg 0.5deg 0.2 0.1 0.2deg 0 0 0.1 0.2 0.3 0.4 0.5 edge contrast 0.5deg Measurements plot for the Cornsweet effect contrast at the profile edge (x) and the matching contrast at the step edge (y) Masking allows for stronger enhancement Maximum correction depends on profile size natural images unlikely require correction of a large contrast with a small profile

Saturation of Profiles Profiles which exceed the dynamic range cause loss of details in the image To prevent saturation, we limit the amplitudes of larger scale sub-band components

Adaptive Countershading without visual model with visual model

Restoration of TM Images (1/3)

Restoration of TM Images (2/3) reference HDR image (clipped) countershading of tone mapping countershading profiles tone mapping

Restoration of TM Images (3/3) reference HDR image (clipped) countershading of tone mapping countershading profiles tone mapping

C-shading vs. Unsharp Mask adaptive countershading unsharp masking tone mapping

Depth Map as Contrast Reference depth information original image adaptive countershading depth darkening [Luft2006]

Conclusions Summary application of Cornsweet illusion to image enhancement automatic enhancement given the reference data visual detection model maximize apparent contrast prevent objectionable artifacts generalization of unsharp masking no manual intervention possibility of selective enhancement Future work new applications (other reference data for correction) validation with human subjects study the effect in animations

Thank You!