Számítógépes Hálózatok 2011



Hasonló dokumentumok
Broadcast és Multicast. Számítógépes Hálózatok IPv4-Header (RFC 791) Multicasting

Számítógépes Hálózatok ősz Hálózati réteg IP címzés, ARP, Circuit Switching, Packet Switching

Autonóm rendszerek (AS) tipusai. Számítógépes Hálózatok Inter-AS-Routing. Inter-AS routing: BGP (Border Gateway Protocol)

Számítógépes Hálózatok 2012

Autonóm rendszerek (AS) tipusai. Számítógépes Hálózatok Inter-AS-Routing. Inter-AS routing: BGP (Border Gateway Protocol)

Számítógépes Hálózatok 2012

Számítógépes Hálózatok 2008

Felhasználói réteg. Számítógépes Hálózatok Domain Name System (DNS) DNS Felépítés. Domain Name System

Felhasználói réteg. Számítógépes Hálózatok ősz IP címek és a Domain Name System (DNS) Domain Name System (DNS) Domain Name System

Az adott eszköz IP címét viszont az adott hálózat üzemeltetői határozzákmeg.

Számítógépes Hálózatok ősz Felhasználói réteg DNS, , http, P2P

Dr. Wührl Tibor Ph.D. MsC 04 Ea. IP kapcsolás hálózati réteg

IPv6. Számítógépes Hálózatok 2013

Számítógépes Hálózatok 2013

Elektronikus aláírás. Számítógépes Hálózatok Internet tőzfalak (firewalls) IPsec (RFC 2401)

Számítógépes Hálózatok 2010

Számítógépes Hálózatok 2008

Az RSA-séma. Számítógépes Hálózatok RSA példa. Elektronikus aláírás

Torlódás elkerülési elv: AIMD. Számítógépes Hálózatok Additive Increase Multiplicative Decrease (AIMD): Fairness és Hatékonyság

Számítógépes Hálózatok 2013

Az IPv6 a gyakorlatban

DNS és IPv6. Jákó András BME TIO

Routing update: IPv6 unicast. Jákó András BME EISzK

Dinamikus routing - alapismeretek -

Az Ethernet példája. Számítógépes Hálózatok Az Ethernet fizikai rétege. Ethernet Vezetékek

Internet Protokoll 6-os verzió. Varga Tamás

DNS hamisítás szerepe, működése, védekezés. Benda Szabolcs G-5S5A Peller Nándor G-5i10 Sőregi Gábor G-5S5A

IPv6 gyorstalpaló Mohácsi János NIIF Intézet

Domain Name System (DNS)

Konfiguráljuk be a TCP/IP protokolt a szerveren: LOAD INETCFG A menüpontokból válasszuk ki a Proctcols menüpontot:

Hálózati architektúrák laborgyakorlat

2011. május 19., Budapest IP - MIKRO MOBILITÁS

Ethernet/IP címzés - gyakorlat

Windows rendszeradminisztráció és Microsoft szerveralkalmazások támogatása. 3. óra. Kocsis Gergely, Supák Zoltán

Hálózati réteg - áttekintés

Számítógép hálózatok

IPv6. A következő generációs Internet Protocol. Dr. Simon Vilmos. docens BME Hálózati Rendszerek és Szolgáltatások Tanszék svilmos@hit.bme.

IV. - Hálózati réteg. Az IP hálózati protokoll

Hálózati Technológiák és Alkalmazások

2016 UNIVERSITAS SCIENTIARUM SZEGEDIENSIS UNIVERSITY OF SZEGED

Routing. Számítógép-hálózatok. Dr. Lencse Gábor. egyetemi docens Széchenyi István Egyetem, Távközlési Tanszék

Névfeloldás hosts, nsswitch, DNS

Windows rendszeradminisztráció és Microsoft szerveralkalmazások támogatása. 3. óra. Kocsis Gergely, Kelenföldi Szilárd

Fábián Zoltán Hálózatok elmélet

IPv6 és mobil IP. Dr. Huszák Árpád Szabadkai Műszaki Főiskola

Az internet ökoszisztémája és evolúciója. Gyakorlat 2

Gyakorló feladatok a 2. ZH témakörének egyes részeihez. Számítógép-hálózatok. Dr. Lencse Gábor

(jegyzet) október 6-8-i óra anyaga A kezdetek Az ARPA project Okok és célok ISO OSI...

VIII. Mérés SZÉCHENYI ISTVÁN EGYETEM GYŐR TÁVKÖZLÉSI TANSZÉK

IP anycast. Jákó András BME TIO

Tűzfal megoldások. ComNETWORX nap, I. 30. ComNETWORX Rt.

A hasznos teher beágyazásának biztonságát szolgáló fej- és farokrész A kiegészítő fejrészek sorrendje

Hálózat Dynamic Host Configuration Protocol

Bevezető. Az informatikai biztonság alapjai II.

A TCP/IP modell hálózati rétege (Network Layer) Protokoll-készlet: a csomagok továbbítása. Legjobb szándékú kézbesítés

20 bájt 8 bájt. IP fejléc UDP fejléc RIP üzenet. IP csomag UDP csomag

Hálózati réteg, Internet

Beállítások 1. Töltse be a Planet_NET.pkt állományt a szimulációs programba! A teszthálózat már tartalmazza a vállalat

Hálózati Technológiák és Alkalmazások. Vida Rolland, BME TMIT október 29. HSNLab SINCE 1992

Hálózati informatikus Mérnökasszisztens

A TCP/IP számos adatkapcsolati réteggel együtt tud működni:

Adatkapcsolati réteg. A TCP/IP számos adatkapcsolati réteggel együtt tud működni: Ethernet, token ring, FDDI, RS-232 soros vonal, stb.

5. Hálózati címzés. CCNA Discovery 1 5. fejezet Hálózati címzés

Médiakommunikációs hálózatok (VIHIM161) évi fóliái alapján készült

Windows rendszeradminisztráció és Microsoft szerveralkalmazások támogatása. 3. óra. Kocsis Gergely, Supák Zoltán

MULTIMÉDIA TOVÁBBÍTÁSA AZ IP FELETT

Hálózati architektúrák és Protokollok GI - 9. Kocsis Gergely

Számítógép-hálózatok. Gyakorló feladatok a 2. ZH témakörének egyes részeihez

ALAPFOGALMAK. Internet - Szolgáltatások. Internet - Építőkövek. Az Internet napjainkban INFOKOMMUNIKÁCIÓS RENDSZEREK ÉS ALKALMAZÁSOK INTERNET

Hálózatok építése és üzemeltetése

Médiakommunikációs hálózatok (VIHIM161) évi fóliái alapján készült

Számítógépes Hálózatok ősz 2006

Organizáció. Számítógépes Hálózatok ősz Tartalom. Vizsga. Web-oldal

A B C D E F. F: 4. LAN port LED G: Táp csatlakozó H: 4. LAN port I: 3. LAN port J: 2. LAN port

Mobil Internet 2 3. előadás IPv6 alapok

SIP. Jelzés a telefóniában. Session Initiation Protocol

Windows hálózati adminisztráció

Organizáció. Számítógépes Hálózatok Gyakorlati jegy. Vizsga. Web-oldal

1. A számítógép-hálózatok ISO-OSI hivatkozási modelljének hálózati rétege 1.a Funkciói, szervezése

Két típusú összeköttetés PVC Permanent Virtual Circuits Szolgáltató hozza létre Operátor manuálisan hozza létre a végpontok között (PVI,PCI)

Multiprotocol encapsulation (RFC1483) - IETF Classical IP over ATM (RFC1577) - IETF LAN Emulation (LANE) - ATM Forum Multiprotocol over ATM (MPOA) -

IP alapú kommunikáció. 5. Előadás Routing 2 Kovács Ákos

Hálózati alapok. készítette: Sallai András

DWL-G520 AirPlus Xtreme G 2,4GHz Vezeték nélküli PCI Adapter

ÉS BEVEZETÉSÉT TÁMOGATÓ TECHNOLÓGIÁK

Segédlet a Hálózati architektúrák és protokollok laborgyakorlathoz v0.6

IPv6 Biztonság: Ipv6 tűzfalak tesztelése és vizsgálata

Az internet ökoszisztémája és evolúciója. Gyakorlat 4

Tartalom. Az adatkapcsolati réteg, Ethernet, ARP. Fogalma és feladatai. Adatkapcsolati réteg. Ethernet

IP Internet Protocol. IP címzés, routing, IPv6, IP mobilitás. Dr. Simon Vilmos

Hálózati architektúrák laborgyakorlat

Kommunikációs Hálózatok 2 MPLS: Címke, VPN, TE

Hálózati architektúrák laborgyakorlat

Számítógépes Hálózatok Felhasználói réteg DNS, , http, P2P

Felhasználói réteg. Számítógépes Hálózatok Domain Name System (DNS) DNS. Domain Name System


Hálózati réteg. Feladata: a csomag eljusson a célig Több útválasztó Ez a legalacsonyabb rétek, mely a két végpont

Felhasználói kézikönyv

Számítógép hálózatok tervezése és üzemeltetése Címek, címkiosztás, routing (IPv4, IPv6)

Statikus routing. Hoszt kommunikáció. Router működési vázlata. Hálózatok közötti kommunikáció. (A) Partnerek azonos hálózatban

Átírás:

Számítógépes Hálózatok 2011 10. Hálózati réteg IP címzés, IPv6, ARP, DNS, Circuit Switching, Packet Switching 1 IPv4-Header (RFC 791) Version: 4 = IPv4 IHL: fejléc hossz 32 bites szavakban (>5) Type of Service Optimalizálás delay, throughput, reliability, monetary cost szerint Checksum (csak a fejlécnek) Source és destination IP cím Protocol: azonosítja a megfelelő protokollt pl. TCP, UDP, ICMP, IGMP Time to Live (TTL): maximális hop szám 2

IPv4 címek Osztály alapú címzés (1993-ig) 5 fix osztály, melyek mindegyikét egy prefix azonosítja A, B, C osztály: fix hosszúságú hálózat prefix és host-id D a multicast osztály; E: lefoglalt Network ID 8 16 Host ID 24 Class A 0 Network ID Host ID Class B 10 Class C 110 Multicast Addresses 32 128 NWs; 16 M hosts 16K NWs; 64K hosts 2M NWs; 256 hosts Class E 1111 Reserved for future use Class D 1110 3 IPv4 címek Problémák: A és B osztályú hálózatok sok állomást tartalmazhatnak, ami a routerek számára nehezen kezelhető subnetting Elfogynak a címek: a címosztályok sok címet pazarolnak el pl. egy szervezetnek 1000 állomással már B címosztályra lenne szüksége, ami elpazarol 64K-2K=62K címet classless addressing 4

IPv4 címek -- Subnetting Képzeljünk el egy szervezetet, amely B címosztállyal rendelkezik és a szervezeten belül több LAN van (pl. Egyetem különböző Karai, ) A központi routernek nem kell tudni minden állomásról, csak az egyes LAN-ok egy routeréről új hierarchiaszint Subnetting Bevezetünk alhálózatokat (subnet), melyeket az IP host-részéről leválasztott bitek azonosítanak (a hálózaton kívülről nem látható!) A lokális routereknek tudni kell, hol van ez a leválasztás: ez a subnet mask által adható meg Network Host Network Subnet Host 1111....1111 00000000 Mask Pl.: a subnet mask 11111111.11111111.11111111.00000000 azt jelenti, hogy az IP cím 10000100.11100110.10010110.11110011 a 10000100.11100110 hálózatban a 10010110 alhálózatban a 11110011 host-ot azonosítja 5 IPv4 címek -- Classless Inter Domain Routing (CIDR) (RFC 1519) A címoszályok nagyon sok IP címet pazarolnak 1993 óta: Classless Inter Domain Routing (CIDR) A hálózat cím és a host-id hossza szabadon adható meg hálózati maszk által. Pl.: hálózati maszk 11111111.11111111.11111111.00000000 az IP cím 10000100.11100110.10010110.11110011 a 10000100.11100110.10010110 hálózatban a 11110011 host-ot azonosítja Ezek valódi hálózatokat jelentenek amit a többi router is lát a subnetting-gel ellentétben az IP csomagokba nem kell kiegészítés többi routernek kezelni kell ezeket a változó hosszúságú hálózati címeket (forwarding és a routing algoritmus) 6

IPv4 címek -- CIDR Route aggregation A BGP, RIP v2 és OSPF routing protokollok különböző hálózatokat egy prefix által kezelhetnek Pl. minden hálózat, melynek a prefixe 10010101010* az X szomszédos routeren keresztül érhető el 7 IP cím lefordítása MAC címre: ARP (RFC 826) Address Resolution Protocol (ARP) IP cím MAC címre fordítása Broadcast a LAN-ban, lekérdezni azt, hogy melyik állomáshoz tartozik az adott IP cím Csak az a csomópont válaszol, amelyhez az IP tartozik, a MAC címmel A router akkor a csomagot oda ki tudja szállítani 8

IPv6 32 bites IP címek egyre szűkösebben állnak rendelkezésre 4 milliárd ilyen IPv4 cím van (32 Bit) de ezek statikusan hálózati és host-részre vannak osztva címek mobil telefonoknak, hűtőszekrényeknek, autóknak, stb Autokonfiguráció DHCP, Mobile IP, átszámozás Új szolgáltatások Biztonság (IPSec) Quality of Service (QoS) Multicast Egyszerűsítés a routernek Nincs IP checksum Nem partícionálja az IP csomagokat 9 A címek: DHCP DHCP (Dynamic Host Configuration Protocol) Kézi hozzárendelés (hozzákötni a MAC címhez, pl. szervereknél) Automatikus hozzárendelés (fix hozzárendelés, de nem előre beállított) Dinamikus hozzárendelés (újrakiosztás lehetséges) Új számítógép kapcsolódása konfiguráció nélkül A számítógép kér egy IP címet a DHCP szervertől Az dinamikusan hozzárendel egy IP címet a számítógéphez Miután a számítógép elhagyja a hálózatot, az IP cím újra kiosztható Dinamikus hozzárendelés esetén az IP címeket frissíteni kell Ha egy számítógép egy régi IP címet akar felhasználni, ami lejárt, vagy már újra ki van osztva akkor a kéréseket vissza kell utasítani Probléma: IP címek lopása 10

IPv6-Header (RFC 2460) Version: 6 = IPv6 Traffic Class QoS-hez (prioritásokhoz) Flow Label QoS-hez, valós idejű alkamazásokhoz Payload Length Az IP csomag fennmaradó részének (a datagrammnak) a hossza Next Header (mint IPv4-ben): pl. ICMP, IGMP, TCP, EGP, UDP, Multiplexing,... Hop Limit (Time to Live) Hop-ok max. száma Source Address Destination Address 128 Bit IPv6-Adresse 0 1 2 3 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Version Traffic Class Flow Label +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Payload Length Next Header Hop Limit +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + + + Source Address + + + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + + + Destination Address + + + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 11 IPsec Security Architecture for the IP (RFC 2401) Biztonsági protokollok Authentication Header (AH) Biztosítja az adat küldőjének authentifikációját, kapcsolat mentes adat integritást, védelemet Replay-támadásokkal szemben Encapsulating Security Payload (ESP) IP fejléc titkosítás nélkül, adatok titkosítva, authentifikálással Kulcs management: IKE (Internet Key Exchange) Protokoll Egy Security Association létrehozása Security szolgáltatásokkal védett simplex kapcsolat két állomás, vagy egy állomás és egy security gateway (router, amely támogatja IPsec-et), vagy két security gateway között Idientifikáció, kulcsok, hálózatok, megújítási időközök az authentifikációhoz és IPsec kulcsok rögzítése 12

IPsec IPsec transport üzemmódban (direkt kapcsolatokhoz) IPsec fejléc az IP fejléc és az adatok között van Megvizsgálják az IP routerek (azokban jelen kell lenni IPsec-nek) IPsec tunnel üzemmódban (ha legalább egy IPsec nélküli router közötte) Az egész IP csomagot titkosítja és a IPsec fejléccel együtt egy új IP csomagba teszi Csak a kapcsolat két végén kell hogy jelen legyen IPsec IPsec része az IPv6-nak porting IPv4-re létezik 13 IP címek és a Domain Name System (DNS) IP címek Minden hálózat interface egy hálózatban világszerte egyértelmű IP címmel rendelkezik 32 bit, amely Net-ID és Host-ID-ra oszlik Net-ID: az Internet Network Information Center adja ki Host-ID: a helyi hálózat adminisztrátor adja ki Domain Name System (DNS) Megfeleltet az IP-címnek egy nevet, mint pl. a 157.181.161.52 címnek a pandora.inf.elte.hu nevet Elosztott robosztus adatbázis 14

Domain Name System (DNS) Az emberek számára 4 byte IPv4 cím nehezen kezelhetők: 209.85.135.99 google.com-hoz 157.181.151.154 az ELTE-hez Mit jelent? 207.46.19.30 157.181.35.45 Jobb: Természetes szavak az IP-címekhez Pl. www.google.com vagy www.elte.hu A Domain Name System (DNS) lefordítja ezeket a címeket IP-címekre (és fordítva) elosztott adatbázis 15 DNS Felépítés DNS neveket képez le IP-címekre Pontosabban: neveket erőforrás-bejegyzésekre A nevek hierarchikusan struktúráltak egy névtérben Max. 63 jel komponensenként, összesen max. 255 jel Minden domain-en belül, a domain tulajdonosa ügyeli fel a névteret a domain alatt 16

DNS Resource Record Erőforrás bejegyzés (resource record RR): a domain-ekről, egyes host-okról, stb... adnak információt RR formátum: (name, ttl, class, type, value) name: pl. domain név vagy host név ttl (time to live): érvényesség (másodpercben) class: Internet esetén mindig IN type: lásd a táblázatot value: pl. IP-cím RR Példa: pandora.inf.elte.hu. 43200 IN A 157.181.161.52 17 DNS Resource Records -- Példák Példák RR tipusokra Type=A name: egy végrendszer (host) neve value: egy IP-cím Type=NS name: egy domain (pl elte.hu) value: a domain authoritative name server-jének az IPcíme Type=MX value: a name-hez tartozó mail server neve Type=CNAME name: egy alias név egy kanonikus névhez value: a kanonikus név Type = SOA (start of authority) name: a domain neve value: szerverek neve, melyek a zónához tartozó mérvadó információkat rendelkezésre bocsátják, paraméterek a zónához a zóna sorszáma, frissítési intervallum a másodlagos szervernek, 18

DNS Name Server A névtér zónákra van osztva Minden zónához tartozik egy Authoritativ Server a mérvadó információval Egy Primary Name Server Továbbá egy vagy több Secondary Name Server a megbízhatóság miatt Minden Name Server ismeri a saját zónáját a gyermek-zónák Name-Server-jeit 19 Servers/Resolvers Minden végrendszernek van egy feloldója (resolver) Tipikusan egy könyvtár, amit felhasználásokhoz kapcsolhatunk Lokális name-server-ek kézzel konfigurálva (pl. /etc/resolv.conf) Name servers Tipikusan egy zónáért felelősek Lokális szerverek A lokális végrendszereknek végeznek lekérdezéseket távoli végrendszer nevekről Megválaszolják a lekérdezéseket a lokális zónáról 20

DNS: Root Name Servers A root zonáért felelősek Jelenleg 13 root name server világszerte A-M számozva Lokális szerverek kapcsolatba lépnek a root szerverrel, ha ők nem tudják megválaszolni a lekérdezést Jól ismert root szerverekkel konfiguráltak 21 DNS lekérdezések Iteratív lekérdezés: A megkérdezett szerver annyi információt ad a válaszban, amit ő maga tud Pl. annak a szervernek a nevét, akit meg kell kérdezni Rekurzív lekérdezés: A megkérdezett szerver rekurzívan kideríti a hiányzó információt A lokális szerverek tipikusan rekurzív lekérdezési módban dolgoznak Root vagy távoli szerverek iteratívban local name server dns.eurecom.fr 1 8 requesting host surf.eurecom.fr 3 root name server 2 4 7 iterated query intermediate name server dns.umass.edu 5 6 authoritative name server dns.cs.umass.edu gaia.cs.umass.edu 22

DNS üzenet formátum 12 bytes Identification No. of Questions No. of Authority RRs Flags No. of Answer RRs No. of Additional RRs név, lekérdezés tipus mezeje Questions (variable number of answers) Erőforrás bejegyzések a válaszban Bejegyzések az authoritative szerverekhez További hasznos információ Answers (variable number of resource records) Authority (variable number of resource records) Additional Info (variable number of resource records 23 Tipikus feloldási folyamat A www.inf.elte.hu név feloldásának lépései A felhasználás hívja a gethostbyname() függvényt A végrendszer lekérdezi a lokális name server-t (S 1 ) S 1 lekérdezi a root server-t (S 2 ) a www.inf.elte.hu névvel S 2 válaszol a elte.hu-hoz (S 3 ) tartozó NS bejegyzéssel Honnan tudjuk meg az A bejegyzést S 3 -hoz Erre való az additional information section S 1 lekérdezi S 3 -t a www.inf.elte.hu névvel S 3 válaszol a www.inf.elte.hu-hoz tartozó A bejegyzéssel Több A bejegyzés is érkezhet a válaszban mit jelent ez? 24

Caching DNS válaszok tárolódnak az érintett szervereken (caching) Gyors válasz ismételt lekérdezés esetén Más lekérdezések bizonyos részeket újra felhasználhatnak a válaszból Pl. NS bejegyzéseket a domain-ekhez DNS negatív lekérdezések tárolódnak a cache-ben Ne kelljen megismételni a kudarcot Pl. elgépelés A cache-ben tárolt adatok érvényessége egy idő után lejár Az érvényesség idejét (TTL) az adat tulajdonosa határozza meg Minden bejegyzés tartalmaz TTL-t 25 Prefetching Name server minden válaszhoz adhat további adatokat Tipikusan prefetcing-hez használják CNAME/MX/NS tipikusan más végrendszer nevére mutat Válaszok tartalmazzák a végrendszerek címeit, amelyekre mutatnak az additional section részben 26

DNS lekérdezés példa Client www.inf.elte.hu Local DNS server www.inf.elte.hu NS elte.hu www.inf.elte.hu NS inf.elte.hu www.inf.elte.hu www=ipaddr root & hu DNS server elte.hu DNS server inf.elte.hu DNS server 27 Példa egy későbbi lekérdezésre ftp.inf.elte.hu root & hu DNS server Client Local DNS server ftp.inf.elte.hu ftp=ipaddr elte.hu DNS server inf.elte.hu DNS server 28

Megbízhatóság, rendelkezésre állás DNS szerverek replikáltak A name service müködik, ha egy replika működik A lekérdezések kiegyensúlyozhatók a replikák között (load balancing UDP-t használ a lekérdezéshez Megbízhatónak kell lenni Miért nem TCP? Timeout esetén alternatív szervert próbál Exponential backoff, ha visszatér ugyanahhoz a szerverhez Ugyanaz az azonosító minden lekérdezéshez Mindegy melyik szerver válaszol 29 Reverse Name Lookup Melyik számítógéphez tartozik az 157.181.161.9 IP-cím? Lekérdezés: 9.161.181.157.in-addr.arpa Miért van megfordítva a cím? dns.inf.elte.hu root arpa hu in-addr elte 157 181 161 inf dns 157.181.161.9 9 30

Dinamikus DNS Probléma Időlegesen hozzárendelt IP-címek Pl. DHCP által Dinamikus DNS Amint egy csomópont egy új IP-címet kap, regisztrálja azt azon a DNS-szerveren, amely őérte felelős Rövid TTL bejegyzések biztosítják azt, hogy a bejegyzések gyorsan aktualizálódjanak egyébként a lekérdezések rosz számítógépre irányítódnának Felhasználás Egy privát domain regisztrálása lásd www.dyndns.com 31 Circuit Switching vagy Packet Switching Circuit Switching (vonal kapcsolás) Egy kapcsolat létrehozása felhasználók között kapcsoló állomások által vonalak explicit hozzárendelésével vagy erőforrások explicit hozzárendelésével, pl. idő slots Quality of Service egyszerű, kivéve a kapcsolatfelépítés Probléma statikus hozzárendelés a kommunikációs médium inefficiens kihasználása dinamikus terhelés esetén Felhasználás Telefon, telegráf, mobil telefon 32

Circuit Switching vagy Packet Switching Packet Switching (csomag kapcsolás) Az IP alapelve Az adatokat csomagokra osztja és a csomagokat küldő/fogadó információval ellátva egymástól függetlenül küldi Probléma: Quality of Service A kapcsolat minősége az egyes csomagoktól függ A csomagok puffereződnek vagy el is veszhetnek Előny: A médium hatékony kihasználása dinamikus terhelés esetén Összefoglalva Packet Switching gyakorlatilag minden felhasználási területen felváltotta a Circuit Switching-et Ok: a médium hatékony kihasználása 33