O 1.1 A fény egyenes irányú terjedése



Hasonló dokumentumok
2. OPTIKA 2.1. Elmélet Geometriai optika

EÖTVÖS LABOR EÖTVÖS JÓZSEF GIMNÁZIUM TATA FELADATLAPOK FIZIKA. 11. évfolyam. Gálik András. A Tatai Eötvös József Gimnázium Öveges Programja

Geometriai optika. A fénytan (optika) a fényjelenségekkel és a fény terjedési törvényeivel foglalkozik.

Nyugat-magyarországi Egyetem Geoinformatikai Kara. Csordásné Marton Melinda. Fizikai példatár 1. FIZ1 modul. Optika feladatgyűjtemény

A fény útjába kerülő akadályok és rések mérete. Sokkal nagyobb. összemérhető. A fény hullámhoszánál. A fény hullámhoszával

d) Az a pont, ahova a homorú tükör az optikai tengely adott pontjából kiinduló sugarakat összegyőjti.

FIZIKA munkafüzet. o s z t ály. A Siófoki Perczel Mór Gimnázium tanulói segédlete

Fénysugarak visszaverődésének tanulmányozása demonstrációs optikai készlet segítségével

Fénytörés vizsgálata. 1. feladat

Optika feladatok (szemelvények a 333 Furfangos Feladat Fizikából könyvből)

4. modul Poliéderek felszíne, térfogata

Fizika 8. osztály. 1. Elektrosztatika I Elektrosztatika II Ohm törvénye, vezetékek ellenállása... 6

FIZIKA MUNKAFÜZET 7-8. ÉVFOLYAM IV. KÖTET

10. évfolyam, negyedik epochafüzet

BALESETVÉDELMI TUDNIVALÓK ÉS MUNKASZABÁLYOK

I.- V. rendű vízszintes alapponthálózat I.- III. rendű magassági alapponthálózat Állandó- és ideiglenes pontjelölések Őrjelek Végleges pontjelölések

X. Fénypolarizáció. X.1. A polarizáció jelenségének magyarázata

Fizika 11. osztály. 1. Mágneses mező szemléltetése és mérése, mágneses pörgettyű (levitron) Lenz törvénye: Waltenhofen-inga, Lenz-ágyú...

Felkészülést segítő kérdések Gépszerkesztés alapjai tárgyból

Eszközök: Két egyforma, könnyen mozgó iskolai kiskocsi rugós ütközőkkel, különböző nehezékek, sima felületű asztal vagy sín.

Mikrohullámok vizsgálata. x o

Kör-Fiz 3 gyak.; Mérések refraktométerekkel; PTE Környezetfizika és Lézersp. Tanszék

Méréssel kapcsolt 3. számpélda

MATEMATIKAI KOMPETENCIATERÜLET A

Modern Fizika Laboratórium Fizika BSc 22. Kvantumradír

EMELT SZINTŰ ÍRÁSBELI VIZSGA

Tanulói munkafüzet. Fizika. 8. évfolyam 2015.

MAC 550 Profile. Felhasználói kézikönyv

Elektromágneses hullámok, a fény

Kísérletek mikrohullámokkal I-II.

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

Alak- és helyzettűrések

Építész-informatika 3, Számítógéppel segített tervezés Kiegészítő- levelező képzés: Számítástechnika gyakorlat

Pécsi Tudományegyetem. Szegmentált tükrű digitális csillagászati távcső tervezése

Tartalomjegyzék. 1. Hagyományos fakötések rajzai Mérnöki fakötések rajzai Fedélidomok szerkesztése,

Axonometria és perspektíva. Szemléltető céllal készülő ábrák

Fizika 2. Feladatsor

TARTALOMJEGYZÉK ELŐSZÓ GONDOLKOZZ ÉS SZÁMOLJ! HOZZÁRENDELÉS, FÜGGVÉNY... 69

L Ph 1. Az Egyenlítő fölötti közelítőleg homogén földi mágneses térben a proton (a mágneses indukció

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Térgeometria

FAIPARI ALAPISMERETEK

ÉPÍTÉSZETI ÉS ÉPÍTÉSI ALAPISMERETEK

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria V.

Fizika belépő kérdések /Földtudományi alapszak I. Évfolyam II. félév/

EURÓPAI UNIÓ AZ EURÓPAI PARLAMENT

MUNKAANYAG. Péntekné Simon Edina. Női szoknya alapszerkesztése, modellezése, szabásminta készítése és szériázása. A követelménymodul megnevezése:

Körmozgás és forgómozgás (Vázlat)

Anyagszerkezettan és anyagvizsgálat (BMEGEMTAGK1)

2010. május- június A fizika szóbeli érettségi mérései, elemzései

GÉPÉSZETI ALAPISMERETEK

MATEMATIKA A 10. évfolyam

Tanulói munkafüzet. FIZIKA 11. évfolyam emelt szintű tananyag egyetemi docens

KÉRDÉSEK_TECHNOLÓGIA MUNKATERÜLET: GÉPÉSZET ÉS FÉMMEGMUNKÁLÁS OKTATÁSI PROFIL: LAKATOS

Mit mond ki a Huygens elv, és miben több ehhez képest a Huygens Fresnel-elv?

MUNKAANYAG. Földi László. Szögmérések, külső- és belső kúpos felületek mérése. A követelménymodul megnevezése:

MATEMATIKAI KOMPETENCIATERÜLET A

MATEMATIKA ÍRÁSBELI ÉRETTSÉGI-FELVÉTELI FELADATOK május 19. du. JAVÍTÁSI ÚTMUTATÓ

Bevezetés. Párhuzamos vetítés és tulajdonságai

B2. A FÉNY FOGALMA, FÉNYJELENSÉGEK ISMERTETÉSE,

MÛSZAKI INFORMÁCIÓK. Érzékelési távolság

Általános gépészeti technológiai feladatok. Géprajzi alapismeretek Gépészeti szakszámítások

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Térgeometria

Az ellipszis, a henger AF 22 TORZS/ HATODIK/Tor62al98.doc

Leképezési hibák. Főtengelyhez közeli pontok leképezésénél is fellépő hibák Kromatikus aberráció A törésmutató függ a színtől. 1 f

Feladatok GEFIT021B. 3 km

Készítette:

ÁBRÁZOLÓ GEOMETRIA. Csavarvonal, csavarfelületek. Összeállította: Dr. Geiger János. Gépészmérnöki és Informatikai Kar MISKOLCI EGYETEM

Geodézia 4. Vízszintes helymeghatározás Gyenes, Róbert

!HU B_! SZABADALMI LEÍRÁS B HU B B 61 F 5/38. (11) Lajstromszám: (19) Országkód

EGYEZMÉNY. 52. Melléklet: 53. számú Elõírás. 2. Felülvizsgált változat

MAC 2000 Performance II. Gépkönyv

Nyugat-magyarországi Egyetem Geoinformatikai Kara. Gyenes Róbert. Geodézia 4. GED4 modul. Vízszintes helymeghatározás

Akuszto-optikai fénydiffrakció

1. A gyorsulás Kísérlet: Eszközök Számítsa ki

Az Európai Unió Hivatalos Lapja L 91/1. (Nem jogalkotási aktusok) IRÁNYELVEK

MATEMATIKA KOMPETENCIATERÜLET A

GÉPJÁRMŰ SEBESSÉGMÉRŐ BERENDEZÉSEK

Kézi forgácsolások végzése

12. FIZIKA munkafüzet. o s z t ály. A Siófoki Perczel Mór Gimnázium tanulói segédlete

Ponyvagarázs. Összeszerelési útmutató. Verzió: 480 cm X 250 cm X 180(220) cm Dátum: december 10. Készítette: minimumgarazs.

MUNKAANYAG. Gergely József. Keretszerkezetek készítése. A követelménymodul megnevezése: Alapvető tömörfa megmunkálási feladatok

SZABADALMI LEÍRÁS 771H7. szám.

HÁROM ELŐADÁSI KÉSZÜLÉK. Dr. Pjeiffer Péter tanársegédtől. (I. tábla.) I. Javított Pascal-féle hydrostikai fenéknyomási készülék.

V. A MIKROSZKÓP. FÉNYMIKROSZKÓPOS VIZSGÁLATOK A MIKROSZKÓP FELÉPÍTÉSE ÉS MŐKÖDÉSE

Nyugat-magyarországi Egyetem Geoinformatikai Kara. Dr. Engler Péter. Fotogrammetria 2. FOT2 modul. A fotogrammetria geometriai és matematikai alapjai

Használati utasítás DOSATRON D25 RE2 gyógyszeradagolóhoz

2.1 Fizika - Mechanika Rezgések és hullámok. Mechanikai rezgések és hullámok Kísérletek és eszközök mechanikai rezgésekhez és hullámokhoz

MUNKAANYAG. Szabó László. Oldható kötések alkalmazása, szerszámai, technológiája. A követelménymodul megnevezése: Épületgépészeti alapfeladatok

Tartalom ELEKTROSZTATIKA AZ ELEKTROMOS ÁRAM, VEZETÉSI JELENSÉGEK A MÁGNESES MEZÕ

A fizika középszintű szóbeli érettségi vizsga témakörei és a hozzá kapcsolódó kísérletek/ mérések/ ábraelemzések 2015.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria I.

Témakörök fizikából ősz

Felszín- és térfogatszámítás (emelt szint)

UTASÍTÁSOK AZ UNICLIC BURKOLÓANYAG LERAKÁSÁHOZ

: A riasztásvezérlő áramkör nem aktiválódik, amíg 5 vagy 120 másodperces mozgásmentes időtartam be nem következik a védett területen.

EGYEZMÉNY. 22. Melléklet: 23. számú Elõírás. 2. Felülvizsgált szövegváltozat

ACÉLÍVES (TH) ÜREGBIZTOSÍTÁS

Beépítési segédlet. Multiclear üregkamrás polikarbonát lemezekhez. A-Plast Kft.

Matematika felvételi feladatok bővített levezetése 2013 (8. osztályosoknak)

Használati útmutató. Páraelszívó EFA

Átírás:

O 1.1 A fény egyenes irányú terjedése 1 blende 1 és 2 rés 2 összekötő vezeték Előkészület: A kísérleti lámpát teljes egészében egy ív papírlapra helyezzük. A négyzetes fénynyílást széttartó fényként használjuk (letakarva, illetve levéve és fordítva felillesztve, adott esetben a lámpát megfordítva). A fény ne terjedjen át a beépített lencsén. A lámpa körvonalát átrajzoljuk. 1. Kísérlet: A peremsugarak egyes pontjait megjelöljük, és a lámpát eltávolítjuk. Ezután a megjelölt pontokat vonalzóval összekötjük, és az egyeneseket a metszési pontig meghosszabbítjuk. Ennek a pontnak a lámpa izzójának helyét kell jelezni. 2. Kísérlet: Most a négyzetes fény-nyílást párhuzamos fényre állítjuk (takarót levéve, majd fordítva felhelyezve). A fény most kilép a beépített lencséből. Újra tapasztalhatjuk a fény egyenes vonalú terjedését. Az egy réssel ellátott blende segítségével egy keskeny fénysugarat hozunk létre. A sugár két pontját megjelöljük, és a lámpa eltávolítása után a vonalzóval a sugár helyét megrajzoljuk. Következtetések: 1. A fény a fényforrástól egyenes irányban terjed. 2. Egy keskeny fénysugárnyaláb közelítőleg egy sugárral helyettesíthető és szemléltethető.

O 1.2 Árnyék 1 átlátszó műanyagvályú 2 összekötő vezeték Előkészület: A kísérleti lámpát teljes egészében egy papírlapra helyezzük. A négyzetes fénynyílást széttartó fényként használjuk (fedelét letakarva, illetve levéve és fordítva feltéve, adott esetben a lámpát megfordítva). Megrajzoljuk a lámpa körvonalát. 1. Kísérlet: A műanyagvályút kb. 6 cm-re a lámpától, a keskeny oldalával úgy helyezzük el, hogy az átláthatatlan fenékrésze a kísérleti lámpa irányába nézzen. Az árnyék szélének két-két pontját megjelöljük, és a műanyagtest eltávolítása után a pontokat vonalzóval összekötjük. 2. Kísérlet: A műanyagtestet valamivel nagyobb távolságba helyezzük a lámpa elé, és újra megrajzoljuk az árnyék szélét. Az árnyékok nagyságát összehasonlítjuk. Mindkét árnyék szélét balra metszéspontig meghosszabbítva megállapíthatjuk, hogy a metszéspont a lámpa izzójának helyét adja. Következtetések: 1. Az árnyék annál nagyobb, mennél közelebb helyezzük az árnyékot adó tárgyat a fényforráshoz. 2. Az árnyék is igazolja a fény egyenes vonalú terjedését. 2

O 1.3 Fény és árnyék 1 optikai pad vagy 2 állványsín 1 sínösszekötő 1 állványrúd 10 cm 1 ernyő, fehér 2 csúszka rögzítő csavarral 1 csúszka skála, ernyő és mutató részére 1 föld-hold modell 2 összekötő vezeték Egy egyszerű kísérlettel bemutatjuk az árnyalakok, illetve árnyjátékok elvét. Közben megvizsgáljuk az árnyalakok méretének a fényforrás távolságától való függését. Kísérlet: Felépítés az ábra szerint. A kísérleti lámpát az állványrúddal a rögzítő csavaros csuszkával az optikai padra rögzítjük. A kísérleti lámpát kerek nyílással alkalmazzuk. A kísérleti lámpával, mint fényforrással, kézzel árnyképeket hozunk létre az ernyőn. Az ernyő 50 cm távolságra legyen a fényforrástól. Ki tudja a legszebb képet előállítani? Most egy tartórúdon levő golyónak vizsgáljuk meg az árnyképét. Ennek érdekében a föld-hold modell földgömbjét egy csuszkába tesszük, és a fényforrástól 30 cm távolságra az optikai padra helyezzük. Ezután a gömböt a fényforrástól 20 cm-re, majd 40 cm-re toljuk el, mialatt az ernyő a helyén marad. Eredmények: A tárgy távolsága 20 cm 40 cm árnyék nagyobb/kisebb mint 30 cm-nél árnyék erősebb/gyengébb mint 30 cm-nél Következtetés: Minél messzebb van az árnyékadó tárgy a fényforrástól, annál kisebb az árnyék. Az árnyék erőssége ugyanakkor növekszik.

O 1.4 Árnyékmag, félárnyék 2 állványsín 30 cm 2 rögzíthető lámpa 12 V fényellenző csővel 2 lencse- és fényellenző tartó 2 csúszka az optikai padhoz 1 csúszka skálához, ernyőkhöz és mutatóhoz 1 föld-hold modell 4 összekötő vezeték Meghatározzuk az árnyékmag és félárnyék fogalmait, megvitatjuk a lehetőség szerint pontalakú és kiterjedt fényforrás közötti különbséget. Két fényforrás alkalmazásával meg lehet mutatni a félárnyék keletkezését. Kísérlet: Felépítés az ábra szerint. A két rögzíthető lámpát az árnyékolócsőre tűzzük, és egymástól kb. 15 cm távolságra csúszkák segítségével az állványra helyezzük. Az ernyőt a réses csuszkába dugjuk, és a másik állványsínre tesszük. A második állványsín merőlegesen áll a két lámpát tartó állványsínre. A gömböt (föld a föld-hold modellről) kb. 20 cm-re az ernyő elé csuszkával a sínre helyezzük. A lámpák és az ernyő közötti távolság kb. 50 cm legyen. A gömböt mindkét lámpával megvilágítjuk és megvizsgáljuk az árnyék képét. Először két különálló árnyék keletkezik. Most a gömböt az ernyőhöz közelítjük (kb. 10 cm-re az ernyőhöz). Az árnyék most árnyékmagból és félárnyékból áll. Váltakozva az egyik fényforrást eltakarjuk (kézzel) és összehasonlítjuk a megmaradó árnyékképet a két lámpával előállított árnyékképpel. Hogyan keletkezik a félárnyék? A megvilágított gömbön megfigyelhetjük a sajátárnyékot is. Következtetés: Egy testnek két fényforrásnak közel egyenlő irányból való megvilágításával a test utáni térben árnyékmag és félárnyék keletkezik.

O 1.5 Holdfázisok 1 optikai pad vagy 2 állványsín és 1 sínösszekötő 1 állványrúd 10 cm 2 csúszka rögzítő csavarral 1 föld-hold modell 2 összekötő vezeték A holdfázisokat egy egyszerű modell segítségével mutatjuk be. Kísérlet: Felépítés az ábra szerint. A kísérleti lámpát a kerek nyílásával használjuk. A kísérleti lámpa fénye jelenti a napfényt. A fényforrástól kb. 20 cm távolságra, a föld-hold modellt egy csúszkába rögzítjük. A holdat a föld körül mozgatva látható, hogy mindig a nap felé eső oldal van megvilágítva. Ha a holdat a földről nézzük, láthatjuk a különböző holdfázisokat. Következtetés: A holdat a föld körüli mozgása során különböző módon látjuk megvilágítva. Megkülönböztetünk teleholdat, félholdat és újholdat. 2

O 1.6 Nap- és holdfogyatkozás 1 optikai pad vagy 2 állványsín és 1 sínösszekötő 1 állványrúd 10 cm 2 csúszka, rögzítő csavarral 1 föld-hold modell 2 összekötő vezeték A föld-hold modell segítségével bemutatjuk a nap-, illetve holdfogyatkozás keletkezését. Kísérlet: Felépítés az ábra szerint. A kísérleti lámpát a kerek nyílásával használjuk. A kísérleti lámpa fénye jelenti a napfényt. A fényforrástól kb. 30 cm távolságra a föld-hold modellt egy csúszkába rögzítjük. A hajlított földtengely az optikai padtól oldalirányba hajoljon. Napfogyatkozás: A hold a nap és a föld között található (konjugáció). Ennek során megkülönböztethetjük a hold árnyékmagjának és félárnyékának területeit. Milyen holdfázisban következhet be ez a jelenség? Holdfogyatkozás: A hold a földárnyékban van (oppozíció). Milyen holdfázisban következhet be a jelenség? Következtetés Fogyatkozás akkor következhet be, amikor vagy a hold árnyéka a földfelületre vagy a földárnyék a holdfelületre esik. Megjegyzés Egy lényeges különbség van a modell és a valóság között: mivel a holdpálya síkja a földpálya síkjához képest eltér, nem minden esetben alakul ki újholdnál napfogyatkozás és teleholdnál holdfogyatkozás, ahogy ez a modellnél kialakul. 2

O 1.7 Lyukkamera Egy tárgy képét legegyszerűbben egy lyukkamera segítségével állíthatjuk elő. 1 optikai pad vagy 2 állványsín és 1 sínösszekötő 1 állványrúd 10 cm 2 csúszka az optikai pad részére 1 csúszka, rögzítő csavarral 1 lencse- és blendetartó 1 feltűzhető diatartó 1 átlátszó ernyő tartóban 1 L-blende 1 készlet lyukblende, dián 2 összekötő vezeték Kísérlet: Felépítés az ábra szerint. A kísérleti lámpát a kerek nyílással alkalmazzuk. A kísérleti lámpára feltűzzük az L-blendét. A lyukkamerát (d = 3 mm) a diatartó segítségével a blendetartóra tűzzük, ezt pedig egy csúszkával kb. 6 cm-re a kísérleti lámpa elé, az optikai padra helyezzük. A lyukas-blendétől 10 cm-re az átlátszó ernyőt csúszkával az optikai padra helyezzük. Az ernyőn a világító tárgy (L-blende) képét láthatjuk. Az ernyőt most amilyen közelre csak lehet, a lyukas blendéhez toljuk. A kép erősebb, felismerhetőbb lesz. A képet tovább javíthatjuk, ha kisebb lyukú blendét (1 mm) alkalmazunk. Kérdések: 1. Hogyan befolyásolja a lyuk nagysága a kép világosságát? 2. Hogyan lehet egy rajz segítségével a kép keletkezését megmagyarázni? 3. Mivel magyarázható, hogy nagyobb blendével a kép életlenebb lesz? Következtetés Lyukkamerával, (egy kis lyukkal ellátott kamerával) egy tárgy képét tudjuk előállítani. Kisebb blendenyílás a kép erősségét (kontúrosságát) javítja, de közben csökken a kép világossága.

O 1.8 Fénymérő 2 állványsín 2 rögzíthető lámpa, 12 V, árnyékoló csővel 1 állványrúd 10 cm 2 csúszka az optikai pad részére 1 csúszka, rögzítő csavarral 1 csúszka skála, ernyő és mutató részére 2 lencse- és blendetartó 1 ernyő, fehér 4 összekötő vezeték A fénymérő két fényforrás fényerejének összehasonlítását teszi lehetővé. Előkészület: Felépítés az ábra szerint. Mindkét rögzíthető lámpát a blendetartóba helyezzük. Mindkét állvány-sínre csúszka segítségével felhelyezünk egy-egy rögzíthető lámpát. A két állványsínt kb. 8 cm távolságra egy-mástól párhuzamosan helyezzük el. Kb. 5 cm-re az állványsín elé helyezzük a 10 cm-es állványrúdat a rögzítő-csavaros csúszkában, mögötte a résbe helyezett ernyővel. Mindkét lámpa az ernyőtől egyenlő távolságra legyen. A rögzíthető lámpák kb. 35 cm távolságra legyenek az állványrúdtól. 1. Kísérlet: Az egyik rögzíthető lámpára 9 voltos feszültséget kapcsolunk, a másik lámpára változtatható egyenáramot. Az egyenáramot úgy szabályozzuk, hogy az állványrúd mindkét árnyképe egyforma sötét legyen. Az egyik lámpa eltakarásával megállapíthatjuk, hogy melyik árnykép melyik lámpától származik. Mivel mind-két lámpa az ernyőtől egyenlő távolságra van, egyenlő megvilágítási erősség esetén az ernyőn a fényerősség egyenlő. Most megállapíthatjuk, hogyan változnak az árnyképek, ha a két fényforrás közül az egyik világosabb, mint a másik. Az egyenáramot egyszer úgy szabályozzuk, hogy az általa világító lámpa fénye kevésbé világos legyen, mint a másik, majd úgy szabályozzuk, hogy fénye erősebb legyen, mint a másik lámpáé. 2. Kísérlet: A szabályozható egyenáramra kötött lámpát az ernyőhöz közelebb toljuk. Az általa képzett árnykép most világosabb lesz. A feszültség csökkentésével előállíthatjuk újra az eredeti világosságú árnyképet. A megvilágítás erőssége újra egyenlő, a két lámpa fényereje azonban különbözik egymástól, mivel nem egyenlő távolságra vannak az ernyőtől. Következtetés Ha két fényforrás azonos távolságra van egy tárgytól, és a tárgyakat egyenlő fényerősséggel világítjuk meg, a lámpák fényereje azonos.

O 2.1 Visszaverődés síktükörről 1 blende 1 és 2 réssel 1 tükör, tömbalátéten 1 optikai korong 2 összekötő vezeték Előkészület: Az optikai korongot a kísérleti lámpa elé helyezzük. A lámpát a négyzetes nyílással párhuzamos fényként alkalmazzuk (fedelet levéve és fordítva visszahelyezve). Az optikai korongra, a tömbalátétre szerelt tükröt a tengelykereszt mentén úgy helyezzük el, hogy a tükör az üveg vastagságával egyező vastagságban a vonal elé kerüljön. 1. Kísérlet: A párhuzamos fénysugár a tükörre esve, saját magára verődik vissza. A lámpát az optikai korong mentén elforgatjuk (a forgatás középpontja a tengelykereszt legyen) úgy, hogy a fénysugár ferdén essen a tükörre. Megfigyelhetjük, hogy a visszaverődött fénysugár is párhuzamos sugárnyalábot alkot. 2. Kísérlet: Az egyrésű blendét feltőzzük a lámpára. A fénysugarat pontosan az optikai korong közepére irányítjuk. Megmérjük a beesés szögét (a merőleges vetületre vonatkoztatva!) és a visszaverődés szögét, majd megismételjük a mérést különböző beesési szögekkel. Következtetések 1. Egy párhuzamos fénysugár visszavert fénysugara is párhuzamos. 2. A visszaverődés szöge megegyezik a beesés szögével.

O 2.2 Képalkotás síktükrön 1 blende 1 és 2 réssel 1 tükör, tömbalátéten 2 összekötő vezeték Előkészület: Rajzoljunk egy ív papír közepére felülről lefelé egy egyenest. Helyezzük az egyenesre a tömbön lévő tükröt úgy, hogy az üveg vastagságával a vonal elé kerüljön. A kísérleti lámpát négyzetes nyílással széttartó fényként alkalmazzuk (fedelet vagy levéve, vagy fordítva felhelyezve). A kísérleti lámpára a két-réses blendét helyezzük fel. Kísérlet: Helyezzük úgy a kísérleti lámpát a papír egyik felére, hogy mindkét fénysugár ferdén vetődjön a tükörre. A kísérleti lámpa izzójának még a papírlap felett kell lenni. A fényforrástól induló és a visszavert fénysugarakat két ponttal megjelöljük, majd a fényforrás és a tükör eltávolítása után megrajzoljuk. A fényforrástól jövő sugarakat metszéspontjukig, ami az izzó helyét jelöli, meghosszabbítjuk. A visszavert sugarakat szintén meghosszabbítjuk metszéspontjukig. Ezek látszólag innen indulnak ki. Ez a fényforrás tükörképe. Kérdés Hasonlítsuk össze a tükörkép helyzetét a fényforrás helyzetével. Mekkora a tükörtől mért távolsága? Következtetés A tárgy és képe a tükörtől egyenlő távolságra van.

O 2.3 Visszaverődés homorú tükörről 1 blende 3 és 5 réssel 1 homorú és domború tükör 2 összekötő vezeték Előkészület: Helyezzük a kísérleti lámpát egy papírlap baloldalára, amire előzőleg balról jobbra (optikai tengely) egy egyenest rajzoltunk. A kísérleti lámpát a négyzetes nyílással párhuzamos fényként alkalmazzuk (fedelet levéve és fordítva visszahelyezve). A háromréses blendét a kísérleti lámpára helyezzük. A homorú és domború tükröt két ujjunkkal, ujjainkat kissé befelé görbítve tartjuk. A rögzítőkengyellel és csavarokkal a szalagtükör görbületi ívét rögzítjük. A homorú tükröt a papírlap egyenesére merőlegesen helyezzük a papírra. Megjelöljük a tükör helyzetét. A fénysugarak az egyenessel párhuzamosan esnek a tükörre. 1. Kísérlet: A fénysugarak visszaverődnek a szalagtükörről. Láthatjuk, hogy azok egy pontban, a gyújtópontban gyűlnek össze. Jelöljük meg ezt a pontot. A pont tükörtől mért távolságát gyújtótávolságnak nevezzük. Jelöljük meg a tükör görbületi középpontját is, aminek a távolsága a gyújtótávolság kétszerese lesz. 2. Kísérlet: Ismételjük meg a kísérletet az öt-réses blendével, a középső fénysugarat azonban az ujjunkkal, vagy egy papírcsíkkal takarjuk le. Jelöljük meg ismét a gyújtópontot. 3. Kísérlet: Lazítsuk meg az egyik tükörrögzítő csavart és ujjunkkal egy kissé hajlítsuk meg jobban a tükröt (csavart újra meghúzni!). Helyezzük fel a kísérleti lámpára újra a három-réses blendét. Hasonlítsuk össze a különböző görbülettel adódó gyújtópontok helyzetét. Következtetés Tengelypárhuzamos fénysugarak visszaverődve a gyújtópontban metszik egymást. Ez igen jó pontossággal a tükör és görbületi középpontja távolságának felezőpontjára esik.

O 2.4 Képalkotás a homorú tükrön 1 blende 1 és 2 réssel 1 homorú- és domborútükör 2 összekötő vezeték A képalkotáshoz három különleges sugár visszaverődésének ismerete szükséges. Előkészület: Helyezzük a kísérleti lámpát egy papírlap baloldalára, amire előzőleg balról jobbra (optikai tengely) egy egyenest rajzoltunk. A kísérleti lámpát a négyzetes nyílással párhuzamos fényként használjuk (fedelet levéve és fordítva visszahelyezve). Helyezzük fel a kísérleti lámpára az egyréses blendét. A homorú és domború tükröt két ujjunkkal, ujjainkat kissé befelé görbítve tartjuk. A rögzítő kengyellel és a csavarokkal a szalagtükör görbületi ívét rögzítjük. A homorú tükröt a papírlap egyenesére merőlegesen helyezzük a papírra. Jelöljük meg a tükör helyzetét. Tengelypárhuzamos sugarak segítségével állapítsuk meg a gyújtópontot és jelöljük meg a kétszeres távolságra eső görbületi középpontot is. Kísérlet: Bocsássunk sorban egymás után egy sugarat az M görbületi középpont (fősugár) felé, egy sugarat az F gyújtópont (gyújtósugár) felé és egy párhuzamos sugarat 2 cm távolságra az optikai tengelytől a tükörre. Jelöljük meg a visszavert sugarakat egyenként két pontjukkal, majd a tükör eltávolítása után vonalzóval rajzoljuk meg őket. Eredmények 1. A fősugár saját magába verődik vissza. 2. A gyújtósugár a visszaverődés után tengelypárhuzamos lesz. 3. A párhuzamos sugár, mint gyújtósugár verődik vissza.

O 2.5 Pont leképzése a homorú tükrön 1 blende 1 és 2 réssel 1 homorú és domború tükör 2 összekötő vezeték A homorú tükör segítségével egy pontszerű fényforrás képét állítjuk elő. Előkészület: Helyezzük a kísérleti lámpát egy papírlap baloldalára, amire előzőleg balról jobbra egy egyenest rajzoltunk optikai tengelyként. A kísérleti lámpát a négyzetes nyílással először párhuzamos fényként alkalmazzuk (fedelet levéve és fordítva visszahelyezve). Helyezzük a kétréses blendét a kísérleti lámpára. A homorú és domború tükröt két ujjunkkal, ujjainkat kissé befelé görbítve tartjuk. A rögzítő-kengyellel és csavarokkal a tükörszalag görbületi ívét rögzíthetjük. Helyezzük a homorú tükröt a papírlapra, az egyenesre merőlegesen, és határozzuk meg a tükör gyújtópontját. Kísérlet: Alkalmazzuk a széttartó sugaraknak megfelelő fénynyílást (fedelet levéve és fordítva viszszahelyezve) és helyezzük fel a kétréses blendét. Irányítsuk mindkét fénysugarat enyhén ferde irányban a tükörre. Közben a kísérleti lámpának a gyújtóponton kívül kell lenni. A visszavert sugarak egy pontban találkoznak. Ez a pont a fényforrás képe. Pontokkal jelöljük meg a beeső és visszavert sugarakat, majd a tükör és fényforrás eltávolítása után rajzoljuk meg a sugarakat. Következtetés Az a fény, ami egy, a gyújtóponton kívüli tárgytól esik a homorú tükörre, visszaverődés után egy képpontban egyesül. Mivel a fénysugarak a fényforrásból indulnak ki, így a fényforrás valós képe alakul ki.

O 2.5-1 Képek homorú tükrön 1 optikai pad vagy 2 állványsín és 1 sínösszekötő 1 állványrúd 10 cm 1 csúszka az optikai pad részére 1 csúszka rögzítő csavarral 1 csúszka skála, ernyő és mutató számára 1 lencse és blendetartó 1 L-blende 1 ernyő, fehér 1 homorú tükör, foglalatban 2 összekötő vezeték Megvizsgáljuk a homorú tükör képalkotási törvényét. Kísérlet: Felépítés az ábra szerint. A kísérleti lámpát a kerek nyílásával alkalmazzuk. Az L-blendét felhelyezzük a kísérleti lámpára. A homorú tükröt az L-blendétől kb. 15 cm távolságra, csúszkával az optikai padra helyezzük (a befelé görbülő oldal legyen a fényforrás felé). A tárgytávolság 15 cm. Az ernyőt a réssel ellátott csúszkába befogjuk, és a kísérleti lámpától jobbra helyezzük el. Ez nagyjából a lámpa magasságában helyezkedjen el. Annak érdekében, hogy a képet az ernyőn felfoghassuk, a tükröt kissé oldalra kell fordítani. Az ernyőt most addig toljuk, amíg éles kép nem látható. Milyen tulajdonságokkal rendelkezik a kép? Ha a világító tárgyat (L-blendét), vagy a tükröt eltoljuk, a képet újra élesre kell állítani. A képnagyság és a képtávolság a tárgytávolságtól függ. A tárgytávolságot és a hozzátartozó képtávolságot táblázatban foglaljuk össze: Tárgytávolság 15 cm 20 cm 30 cm Képtávolság cm cm cm Képnagyság (azonos/kisebb/nagyobb) Hogyan lehet távoli tárgyak képét (pl. egy fát az ablak előtt) az ernyőre leképezni? Ha a tükröt a tárgyhoz közel hozzuk (távolság legyen kisebb 10 cm-nél), akkor a tárgy virtuális képe látható az ernyőn (borotválkozó vagy kozmetikai tükör). A tárgy eltolása mutatja, hogy a tárgynak a tükörtől mért bizonyos távolsága után már nem lehet képet látni. Ez a távolság a tükör gyújtótávolsága. Becsüljük meg a gyújtótávolságot, majd ellenőrzésképpen számítsuk ki a képalkotási egyenlettel. A képalkotási egyenlet: 1 g 1 + = b 1 t ahol g = tárgytávolság b = képtávolság f = a tükör gyújtótávolsága Következtetés A homorú tükörrel valós, fordított kép állítható elő, ha a tárgy a gyújtótávolságon kívül helyezkedik el. Ha a tárgytávolság kisebb, mint a gyújtótávolság, látszólagos, egyezőállású nagyított kép keletkezik.

O 2.6 Visszaverődés domború tükörről 1 blende 3 és 5 réssel 1 homorú és domború tükör 2 összekötő vezeték Előkészület: Helyezzük a kísérleti lámpát egy papírlap baloldalára, amire előzőleg balról jobbra (optikai tengely) egy egyenest rajzoltunk. A kísérleti lámpát a négyzetes nyílással párhuzamos fényként alkalmazzuk (fedelet levéve és fordítva visszahelyezve). A háromréses blendét a kísérleti lámpára helyezzük. A homorú és domború tükröt kissé kifelé görbített két ujjunkkal tartjuk. A rögzítő-kengyellel és csavarokkal a szalagtükör görbületi ívét rögzíthetjük. Helyezzük a domborútükröt a papírlapra, az egyenesre merőlegesen. Jelöljük meg a tükör helyzetét. A fénysugarak az egyenessel párhuzamosan esnek a tükörre. Kísérlet: A fénysugarak a szalagtükörről visszaverődnek. Megjelöljük a visszavert sugarakat két-két ponttal, majd a tükör eltávolítása után a sugarakat vonalzóval megrajzoljuk. A sugarak széttartóak lesznek. A visszavert sugarakat a metszéspontjukig meghosszabbítjuk. Ez a látszólagos gyújtópont (szóró-pont) a tükör mögé esik. A tükörtől mért távolsága a gyújtótávolság. A tükör görbületi középpontja kétszeres távolságra van a tükörtől. Következtetés Párhuzamos fénysugarak a domború tükörről úgy verődnek vissza, mintha egy tükör mögötti pontból (szóró-pont) indulnának ki.

O 2.7 Képalkotás domború tükrön 1 blende 3 és 5 réssel 1 homorú és domború tükör 2 összekötő vezeték A képalkotáshoz három különböző sugár visszaverődésének ismerete szükséges. Előkészület: A kísérleti lámpát egy papírlap baloldalára helyezzük, amire előzőleg balról jobbra (optikai tengely) egy egyenest rajzoltunk. A kísérleti lámpát a négyzetes nyílással párhuzamos fényként alkalmazzuk (fedelet levéve és fordítva visszahelyezve). Az egyréses blendét a kísérleti lámpára helyezzük. A homorú és domborútükröt kissé kifelé görbített két ujjunkkal tartjuk. A rögzítő-kengyellel és a csavarokkal a szalagtükör görbületi ívét rögzíthetjük. A domború tükröt a papírlap egyenesére merőlegesen helyezzük a papírra. Megjelöljük a tükör helyzetét. Tengelypárhuzamos sugarak segítségével megállapítjuk a szóró-pontot, és a kétszeres távolságra eső görbületi középpontot is megjelöljük. Kísérlet: Sorban egymás után egy sugarat bocsátunk az M görbületi középpont felé (fősugár), egy sugarat az F szóró-pont (gyújtósugár) felé és egy párhuzamos sugarat 2 cm távolságra az optikai tengelytől a tükörre. A visszavert sugarak útját egyenként két ponttal megjelöljük, majd a tükör eltávolítása után vonalzóval megrajzoljuk. Következtetések 1. A fősugár önmagába verődik vissza. 2. A gyújtósugár tengelypárhuzamosan verődik vissza 3. A párhuzamos sugarak úgy verődnek vissza, mintha a szóró-pontból indulnának ki.

O 2.8 Egy pont leképzése a domború tükrön 1 blende 1 és 2 réssel 1 homorú és domború tükör 2 bekötő vezeték Előkészület: Helyezzük a kísérleti lámpát egy papírlap baloldalára, amire előzőleg balról jobbra (optikai tengely) egy egyenest rajzoltunk. A kísérleti lámpát a négyzetes nyílással párhuzamos fényként alkalmazzuk (fedelet levéve és fordítva visszahelyezve). A háromréses blendét a kísérleti lámpára helyezzük. A homorú és domború tükröt kissé kifelé görbített két ujjunkkal tartjuk. A rögzítő-kengyellel és csavarokkal a szalagtükör görbületi ívét rögzíthetjük. Helyezzük a domborútükröt a papírlapra, az egyenesre merőlegesen. Jelöljük meg a tükör helyzetét. A fénysugarak az egyenessel párhuzamosan esnek a tükörre. Kísérlet: A fénysugarak a szalagtükörről visszaverődnek. Megjelöljük a visszavert sugarakat két-két ponttal, majd a tükör eltávolítása után a sugarakat vonalzóval megrajzoljuk. A sugarak széttartóak lesznek. A vissza-vert sugarakat a metszéspontjukig meghosszabbítjuk. Ez a látszólagos gyújtópont (szóró-pont) a tükör mögé esik. A tükörtől mért távolsága a gyújtótávolság. A tükör görbületi középpontja kétszeres távolságra van a tükörtől. Következtetés Párhuzamos fénysugarak a domború tükörről úgy verődnek vissza, mintha egy tükör mögötti pontból (szóró-pont) indulnának ki.

O 2.8.1 Képek domború tükrön 1 optikai pad vagy 2 állványsín és 1 sínösszekötő 1 állványrúd 10 cm 1 csúszka az optikai pad részére 1 csúszka rögzítő-csavarral 1 lencse és blendetartó 1 ernyő, fehér 1 domború tükör, foglalatban 2 összekötő vezeték Egy kifelé görbített (konvex) tükörfelület képalkotási tulajdonságait vizsgáljuk meg. Kísérlet: Felépítés az ábra szerint. Az L-blendét a kísérleti lámpára helyezzük. Ez elé helyezzük a konvextükröt (kifelé görbített felület a fényforrás felé). A tükörben az L-blende látszólagos képe látható. A képnagyságnak a tárgytávolságtól való függését vizsgáljuk. Tárgytávolság 5 cm 10 cm 20 cm Képméret (nagyobb/kisebb) Eredmény Minél közelebb helyezkedik el a tárgy, annál nagyobb a kép. Nagyobb tárgytávolságnál a kép kisebb, de a látótér megnövekedik (lásd közlekedési tükrök).

O 3.1 Fénytörés síkpárhuzamos lemezen 1 blende 1 és 2 réssel 1 trapéz modelltest 2 összekötő vezeték Előkészület: A kísérleti lámpát egy lap papírra helyezzük, és a négyzetes nyílással párhuzamos fénnyel alkalmazzuk (fedelet levéve, illetve fordítva feltéve). Az egyréses blendét a lámpára helyezzük. Ahogy a rajzon látható, a trapéz modelltestet, mint síkpárhuzamos lemezt helyezzük a papírra, megrajzoljuk a párhuzamos falakat és egy helyen (a fénysugár beesésénél) merőlegest húzunk (beesési merőleges). 1. Kísérlet: Fénysugarat vetítünk a beesési merőleges irányába, azaz a lemezre merőlegesen. 2. Kísérlet: A fénysugár meghatározott szögben esik a megjelölt helyen a lemez falára. Meghatározzuk azt a pontot, ahol a fény a test ellenkező oldalán kilép, és a sugár további pontjait is megjelöljük az üvegtest előtt és mögött. A trapéz modelltest eltávolítása után megrajzoljuk a sugarat az üveg előtt, az üvegben és az üvegen történő áthaladása után. Következtetések 1. Ha egy sugár merőlegesen esik különböző testekre, nem történik irányváltozás. 2. Ha a fénysugár nem merőlegesen esik a határfelületre, megváltozik az iránya. 3. A síkpárhuzamos lemezen való áthaladás után a sugár párhuzamos lesz a beeső sugárral, azaz párhuzamos eltolódás következik be.

O 3.2 Az üveg törésmutatója 1 blende 1 és 2 réssel 1 trapéz modelltest 2 összekötő vezeték Előkészület: A kísérleti lámpát egy lap papírra helyezzük és a négyzetes nyílással, párhuzamos fénnyel alkalmazzuk (fedelet levéve, illetve fordítva feltéve). Az egyréses blendét a lámpára helyezzük. Ahogy a rajzon látható, a trapéz modelltestet mint síkpárhuzamos lemezt helyezzük a papírra, megrajzoljuk a párhuzamos falakat és egy helyen (a fénysugár beesésénél) merőlegest húzunk (beesési merőleges). Kísérlet: Meghatározott szögben fénysugarat irányítunk az E pontba és megrajzoljuk az ellenkező oldalon az A kilépő pontot. A belépő fénysugárnak egy további pontját is megjelöljük. A lámpa és a lemez eltávolítása után megrajzoljuk a beeső és a megtört kilépő sugarat és az A ponton túl meghosszabbítjuk a megtört sugarat. A határfelületet jelölő vonalat az E pontnál balra meghosszabbítjuk. Az E pontból 3 cm-t felmérünk és bejelöljük az F pontot. Az F pontban merőlegest húzunk a határfelületre. Ez adja az a szakaszt a beeső sugáron. Az a szakaszt átrajzoljuk a megtört sugárra. Ennek a szakasznak a végpontjából merőlegest húzunk a határfelületre (G talppont). Megmérjük az E-G távolságot. Az E-F szakasz hosszát elosztjuk az E-G szakasz hosszával és így megkapjuk a törésmutatót. Következtetés Az üveg törésmutatója (levegőből üvegbe): 1.5.

O 3.3 Fénytörés levegő-víz átmenetnél 1 blende 1 és 2 réssel 1 trapéz modelltest 2 összekötő vezeték Előkészület: A kísérleti lámpát egy papírlapra helyezzük, és a négyzetes nyílással párhuzamos fénynyel használjuk (fedél levéve, ill. fordítva feltéve). Az egyréses blendét a lámpára helyezzük. A műanyagvályút megtöltjük vízzel, és az ábrának megfelelően a papírra helyezzük. A párhuzamos falakat berajzoljuk és egy helyen, (a fénysugár beesési pontjánál) merőlegest rajzolunk (beesési merőleges). 1. Kísérlet: Merőleges fénysugarat bocsátunk a műanyag vályúra. A sugár változatlan irányban lép ki a vályú másik oldalán. 2. Kísérlet: A sugarat meghatározott szög alatt (pl. 45 -ban) vetítjük a vályúra. Megjelöljük a sugár E belépési és az A kilépési pontját, valamint mindkét helyen egy második pontot is. A műanyagvályú eltávolítása után vonalzóval megrajzoljuk a sugarakat. A vízbe való belépés és a levegőbe való újbóli kilépés következtében a sugár a belépési irányhoz képest párhuzamosan 3. Kísérlet: eltolódott. Kiértékeljük a 2. kísérlet eredményét, úgy, hogy meghatározzuk a víz törésmutatóját. Az A ponton keresztül meghosszabbítjuk a megtört sugarat. A határfelületet jelentő vonalat az E pontnál felső irányban meghosszabbítjuk. Ebből a pontból felmérünk 3 cm-t és bejelöljük az F pontot. Az F pontból egy merőlegest húzunk a beeső sugárhoz. Ebből adódik az a távolság a beeső sugáron. Az a távolságot átmásoljuk a megtört sugárra. Ennek a szakasznak a végpontjából merőlegest húzunk a határfelületre (G talppont). Meghatározzuk az E-G távolságot. az E-F távolságot elosztjuk az E-G távolsággal, ami a törésmutatót adja meg. Következtetés A víz törésmutatója (levegőből vízbe): 1.3.

O 3.4 Beesési- és törésszög 1 blende 1 és 2 réssel 1 félkör alakú modelltest 1 optikai korong 2 összekötő vezeték A beesési és a törésszög közötti összefüggést vizsgáljuk a fénynek levegőből üvegbe történő belépésekor. Előkészület: A kísérleti lámpát a négyzetes nyílással, párhuzamos fénnyel alkalmazzuk (fedelet levéve, illetve fordítva feltéve). Az egyréses blendét a lámpára helyezzük. A félkör alakú üvegtestet az optikai korongra helyezzük, úgy, hogy egyik tengelye egybeessen az optikai korong tengelyével, pontosan szimmetrikusan a rá merőleges tengelyre. A kísérleti lámpát az optikai korong elé állítjuk. Kísérlet: A fénysugárnak a megadott beesési szögben (a beeső sugár és a beesési merőleges által bezárt szög) pontosan a félkör alakú test közepére kell esnie (ennek bizonyos ellenőrzését lehetővé teszi a visszaverődési szög, ugyanis a sugár egy része a határfelületről visszaverődik). Megmérjük a különböző törési szögeket (a sugár és a függőleges tengely között!). Beesési szög α 0 20 30 40 60 80 85 Törésszög β Következtetés A törésszög az üvegben mindig kisebb, mint a levegőre vonatkoztatott beesési szög. Ha a beesési szög 90 -hoz közelít, a törésszög eléri a maximumot (42 ).

O 3.4.1 Szilárd testek törésmutatója 1 blende 1 és 2 réssel 1 optikai korong 1 félkör alakú modelltest 2 összekötő-vezeték A törésmutató megadja, hogy mekkora az irányváltozása a fénysugárnak egyik anyagból egy másik anyagba történő belépésénél. Számítsuk ki a törésmutatót. Előkészület: A kísérleti lámpát az optikai korong elé helyezzük. A kísérleti lámpát a négyzetes nyílással, párhuzamos fénnyel alkalmazzuk (fedél levéve, illetve fordítva feltéve). Az egyréses blendét a kísérleti lámpára helyezzük. Az ábra szerint a félkör alakú üvegtestet az optikai korongra helyezzük úgy, hogy egyik tengelye egybeessen az optikai korong függőleges tengelyével, az optikai korong vízszintes tengelyére pedig szimmetrikusan helyezkedjen el. Kísérlet: Előre meghatározott beesési szögben fénysugarat bocsátunk pontosan a félkör alakú test közepére. Megmérjük a hozzátartozó beesési szöget és az eredményt beírjuk a táblázatba. Beesési szög α 0 20 40 60 80 Törésszög β A megadott képlettel most már kiszámíthatjuk a kísérlethez használt üveg n törésmutatóját. Eredmény A kísérlethez használt üveg törésmutatója:... sinα = n sin β

O 3.4.2 Párhuzamos eltolódás számítása síkpárhuzamos lemeznél 1 blende 1 és 2 réssel 1 trapéz modelltest 2 összekötő-vezeték Előkészület: A kísérleti lámpát egy papírlapra helyezzük és a négyzetes nyílással, párhuzamos fénynyel alkalmazzuk (fedél levéve, illetve fordítva feltéve). Az egyréses blendét a lámpára helyezzük. Ahogy a rajzon látható, a trapéz modelltestet síkpárhuzamos lemezként helyezzük a papírra, megrajzoljuk a párhuzamos falakat és egy helyen (a fénysugár beesésénél) merőlegest húzunk (beesési merőleges). Kísérlet: Fénysugarat bocsátunk a beesési merőleges irányából, tehát merőlegesen a lemezre. Most meghatározott szögből bocsátjuk a sugarat a lemez megjelölt helyére. Meghatározzuk azt a helyet, ahol a fénysugár a lemez ellenkező oldalán kilép, és további pontokkal megjelöljük a sugár üveg mögötti haladásának irányát. A trapéztest eltávolítása után megrajzoljuk a sugár útját az üveg előtt, az üvegben és az üvegen való áthaladás után. A lemez d vastagságának ismeretében meghatározhatjuk a p párhuzamos eltolódást. Ismernünk kell még a törésmutató értékét levegőből üvegbe. cosα p = d * sin α * (1- ) 2 n - sin 2α p =... Következtetés A fénytörés a síkpárhuzamos lemezen úgy jön létre, hogy a fénysugár a lemez előtt és után párhuzamos marad. A párhuzamos eltolódás mértéke függ a lemez vastagságától, a törésmutatótól és a fénysugár beesési szögétől.

O 3.5 Átmenet üvegből levegőbe 1 blende 1 és 2 réssel 1 félkör alakú modelltest 1 optikai korong 2 összekötő-vezeték Előkészület: A kísérleti lámpát a négyzetes nyílással, párhuzamos fénnyel alkalmazzuk (fedél levéve, illetve fordítva feltéve). Az egyréses blendét a lámpára helyezzük. A kísérleti lámpát az optikai pad elé állítjuk. A félkör alakú modelltestet az optikai korongon, a korong függőleges tengelyével párhuzamosan, a vízszintes tengelyhez szimmetrikusan helyezzük el úgy, hogy a félkörös rész a fényforrás felé mutasson. Ha a fény pontosan a középpont felé irányul, az üvegbe való átmenetnél nem törik meg, csak a sík határoló falnál. 1. Kísérlet: Megmérjük a törésszöget levegőben, az üvegben adott beesési szögek esetén: Beesési szög az üvegben α 20 30 35 38 Törésszög a levegőben β 2. Kísérlet: A korongot 38 beesési szögről 44 beesési szögre forgatjuk. Mi történik? Következtetések 1. Üvegből levegőbe való átmenet esetén a törésszög a levegőben mindig nagyobb, mint a beesési szög az üvegben. 2. Létezik az üvegben egy határszög, amit túllépve már nem lép fel törés, hanem a fény a határfelületről visszaverődik (teljes visszaverődés). 3. Üvegből levegőbe való átmenet esetén a teljes visszaverődés (határ-) szöge: 42

O 3.6 A visszaverő- és képfordító prizma 1 blende 1 és 2 réssel 1 modelltest 90 -os prizma 2 összekötő vezeték Mivel a teljes visszaverődés (határ-) szöge üvegnél 42, 45 beesési szögnél ezt a határt átléptük, így a fény teljesen visszaverődik. Előkészület: A kísérleti lámpát négyzetes nyílással párhuzamos, fénnyel alkalmazzuk (fedél levéve, illetve fordítva feltéve). A lámpát egy papírlapra helyezzük. A kétréses blendét a lámpára helyezzük. A prizma modelltestet az ábra szerint helyezzük a papírra. 1. Kísérlet: Visszaverő prizma A fénysugarak merőlegesen esnek a háromszög befogójára, ezért nem törnek meg. Az átfogónál teljes visszaverődés következik be, mert a fénysugarak 45 -os szögben esnek be. Eredmény 90 fokos fordítás. 2. Kísérlet: Képfordító prizma A fénysugarak merőlegesen esnek a háromszög átfogójára, ezért azok nem törnek meg. A háromszög befogóira minden esetben 45 -ban esnek a fénysugarak és teljesen visszaverődnek. Az átfogón a sugarak ismét törés nélkül tudnak kilépni. Eredmény 180 -os fordítás, a felső és alsó sugarak felcserélődnek.

O 3.7 Fénytörés prizmán 1 blende 1 és 2 réssel 1 modelltest 90 -os prizma 1 modelltest, trapéz 1 műanyag vályú, átlátszó 2 összekötő vezeték Előkészület: A kísérleti lámpát négyzetes nyílással, párhuzamos fénnyel alkalmazzuk (fedél levéve, illetve fordítva feltéve). Az egyréses blendét a lámpára helyezzük. A lámpát egy papírlapra helyezzük. Először a prizma modelltestet, majd a trapéz modelltestet állítjuk a papírra. 1. Kísérlet: A fénysugarat 45 -os szögben irányítjuk az egyenlőszárú-derékszögű prizmatestre. Megrajzoljuk a prizma helyét, majd a sugarakat két-két ponttal mind a prizma előtt, mind a prizma mögött megjelöljük. A prizmatest eltávolítása után a fénysugarak helyét vonalzóval megrajzoljuk, és meghatározzuk a beeső és megtört sugár által bezárt szöget (eltérítési szög). Eredmény Az eltérítés szöge:... 2. Kísérlet: Elfordítjuk a prizmát és megfigyeljük az eltérítés szögének megváltozását. Eredmény Egy meghatározott állásnál az eltérítés szöge a legkisebb értéket veszi fel. A sugár útja ebben az esetben a prizmában szimmetrikus. Ennél a szögnél berajzoljuk a fénysugarakat és megmérjük a szöget. Az érték:... 3. Kísérlet: Most a trapéz modelltest 75 -os szögét használjuk fel, és azt úgy fordítjuk, hogy az eltérítés minimális legyen (szimmetrikus sugármenet). Újra megrajzoljuk a sugártörő felületeket, pontokkal megjelöljük a sugarak útját. A modelltest eltávolítása után a fénysugarak útját vonalzóval megrajzoljuk és meghatározzuk az eltérítés szögét. Eredmény Nagyobb "törő" szög esetén az eltérítés nagyobb. 4. Kísérlet: Megkíséreljük a fényeltérítést a vízzel töltött műanyagvályú 90 -os szögével, majd az üvegprizma 90 -os szögével megvalósítani. Eredmény Egy vízből álló prizma a fénysugarat 90 törési szögnél is el tudja téríteni, mert a teljes visszaverődés szöge nagyobb, mint az üvegnél. Azonban ekkor a fehér fény nyilvánvalóan színekre bomlik fel.

O 4.1 Fénytörés gyűjtőlencsén 1 blende 3 és 5 réssel 2 modelltest, sík-domború 1 modelltest, félkör alakú 2 összekötő-vezeték Előkészület: A kísérleti lámpát négyzetes nyílással, párhuzamos fénnyel alkalmazzuk (fedél levéve, illetve fordítva feltéve). A lámpát egy papírlapra helyezzük, amelynek közepére balról jobbra (optikai tengely) előzőleg egy egyenest húzunk. A háromréses blendét felhelyezzük a lámpára. A síkdomború modelltestet gyűjtőlencseként az egyenesre merőlegesen úgy helyezzük a papírlapra, hogy a fénysugarak a sík felületre merőlegesen essenek. Átrajzoljuk a lencse körvonalát a papírlapra és bejelöljük a lencse középpontját L 1 -el. 1. Kísérlet: A három párhuzamos sugár az optikai tengely irányából merőlegesen és szimmetrikusan esik a lencsére. A megtört sugarak egy pontban (gyújtópont) találkoznak. Megrajzoljuk a pontot, és F-el jelöljük. Az L 1 és F pontok közötti távolságot a lencse gyújtótávolságának nevezzük. Eredmény: A lencse gyújtótávolsága:... mm 2. Kísérlet: Most a másik gyűjtőlencsét az ábra szerint, sík felületével az előző lencse sík felületéhez illesztjük. Az így létrejött L 2 lencseközéppont pontosan a két sík-domború lencse választóvonalában van. Ismét meghatározzuk a gyújtótávolságot. Eredmény: A lencse gyújtótávolsága:... mm 3. Kísérlet: Most a félkör alakú modelltestet alkalmazzuk gyűjtőlencseként. Úgy helyezzük a papírlapra, hogy a domború oldalára érkezzenek a fénysugarak, és a sík határoló felület merőleges legyen az optikai tengelyre. Az L 2 pont kb. a modelltest közepére essen. A megtört sugarak most is egy pontban találkoznak. Mérjük meg a gyújtótávolságot. Eredmény: A lencse gyújtótávolsága:... mm. Következtetés: Tengelypárhuzamos fénysugarakat a gyűjtőlencse a gyújtópontban gyűjti össze. A gyújtótávolság annál rövidebb, minél vastagabb a lencse.

O 4.2 Peremsugarak 1 blende 3 és 5 réssel 2 modelltest, sík-domború 2 összekötő-vezeték Előkészület: Egy papírlapra balról jobbra megrajzoljuk az optikai tengelyt, a gyűjtőlencsét szimmetrikusan ráhelyezzük és a lencse körvonalát, átrajzoljuk a papírra. A fénysugarak a lencse sík oldalára essenek. A kísérleti lámpát a négyzetes nyílással, párhuzamos fénnyel alkalmazzuk (fedél levéve, illetve fordítva feltéve). A lámpát a papírlapra helyezzük. Feltesszük a lámpára a háromréses blendét. 1. Kísérlet: A három sugarat szimmetrikusan vetítjük a lencsére és megjelöljük a gyújtópontot. 2. Kísérlet: Most az ötréses blendét használjuk, és a középső három fénysugarat letakarjuk (pl. papírszelettel). Meghatározzuk a peremsugarak gyújtópontját. Következtetések: A gyújtópont csak a tengelyközeli sugarakra érvényes. A peremsugarak gyújtótávolsága rövidebb. A peremsugarak eltakarásával javítani lehet a kép élességét.

O 4.2.1 Gyűjtőlencsék gyújtópontjának meghatározása 1 lencse tartóval, f = +50 mm 1 lencse foglalatban, f = +100 mm 1 lencse- és blendetartó 1 A4-es papírlap A gyűjtőlencse gyújtótávolságát napsütésben könnyen meghatározhatjuk. Most egy eljárást fogunk tanulni, hogy a gyújtótávolság napfény nélkül is meghatározható legyen. Előkészület: Öt párhuzamos egyenest húzunk, egymástól 1 cm távolságra. Kísérlet: A lencsét (f = +50 mm) a párhuzamos egyenesekre helyezzük és kb. 60 cm távolságból ránézünk. A lencsén át látott egyenesek ugyanolyan távolságra látszanak egymástól, mint a lencse melletti egyenesek. Most lassan megemeljük a lencsét. A lencsén át látott egyeneseket nagyobb távolságra látjuk egymástól. A lencsét olyan magasra emeljük, hogy az egyenesek kétszeres távolságra látszódjanak. A lencse és az egyenesek közötti távolság ekkor a gyújtótávolság fele. A levezetésnél figyelembe kell venni, hogy látszólagos képet állítottunk elő, ezért a b képtávolságot negatív értékkel kell figyelembe venni. Az alábbi összefüggés érvényes: B:G=b:g, azaz ebben a példában: 1 1 + = g b 1 f 1 1 1 - = g 2g f 1 1 = 2g f ahol: B = képnagyság, G = tárgynagyság, b = képtávolság, g = tárgytávolság Következtetés: A gyújtótávolság:...

O 4.3 Képalkotás gyűjtőlencsével 1 blende 1 és 2 réssel 1 blende 3 és 5 réssel 1 modelltest, sík-domború 2 összekötő-vezeték A képalkotáshoz szükséges a három kitüntetett sugár ismerete. Előkészület: A kísérleti lámpát a négyzetes nyílással, párhuzamos fénnyel alkalmazzuk (fedél levéve, illetve fordítva feltéve) és egy papírlapra helyezzük, amelynek közepére balról jobbra előzőleg egy egyenest húzunk (optikai tengely). A háromréses blendét felhelyezzük a lámpára. A síkdomború lencsét az optikai tengelyre merőlegesen helyezzük el és körvonalát átrajzoljuk a papírra. Párhuzamos sugarak segítségével meghatározzuk a gyújtótávolságot. A gyújtópontot a lencse mindkét oldalán megrajzoljuk. Kísérlet: Az egyréses blendét felhelyezzük a kísérleti lámpára. A fénysugarakat két-két ponttal megjelöljük, és a lencse eltávolítása után a fénysugár útját vonalzóval megrajzoljuk. 1. Egy párhuzamos sugár (az optikai tengellyel párhuzamosan, attól kb. 1 cm távolságra) esik a lencsére. A sugár a gyújtóponton át törik meg. 2. Egy gyújtósugár a gyújtóponton át esik a lencsére. A sugár tengelypárhuzamos irányban törik. 3. Egy középponti sugarat vagy fősugarat vizsgálunk. A sugár törés nélkül halad át a lencsén. Következtetések 1. A párhuzamos sugár törés után gyújtósugár lesz. 2. A gyújtósugár a törés után párhuzamos sugár lesz. 3. A fősugár nem törik meg.

O 4.4 Egy pont leképzése gyűjtőlencsével 1 blende 1 és 2 réssel 1 modelltest, sík-domború 2 összekötő-vezeték Egy pontalakú fényforrás képét állítjuk elő gyűjtőlencsével. Előkészület: A kísérleti lámpát egy papírlapra helyezzük, amelynek közepére balról jobbra optikai tengelyként előzőleg egy egyenest húzunk. A kísérleti lámpát először a négyzetes nyílással, párhuzamos fénnyel használjuk (fedél levéve, illetve fordítva feltéve). A gyűjtőlencsét merőlegesen az optikai tengelyre úgy helyezzük el, hogy a fénysugarak a sík felületre essenek és meghatározzuk a lencse gyújtótávolságát. Berajzoljuk a gyújtópontokat. Kísérlet: A széttartó sugaraknak megfelelő nyílást alkalmazzuk (fedél levéve, majd fordítva felhelyezve) és a kétréses blendét helyezzük fel. A két fénysugarat kissé az optikai tengely felé fordítva vetítjük a lencsére. Eközben a kísérleti lámpának a lencse gyújtópontján kívül kell lenni. A megtört sugarak egy pontban találkoznak. Ez a pont a fényforrás képe. Megjelöljük a beeső és a megtört sugarakat pontokkal, majd a lencse és a lámpa eltávolítása után vonalzóval megrajzoljuk a sugarak útját. Következtetés A fény, ami egy gyújtóponton kívüli tárgytól jön, megtörése után a képpontban egyesül. Egy valós kép keletkezik.

O 4.4.1 Képek gyűjtőlencsével 1 optikai pad vagy 2 állványsín és 1 sínösszekötő 1 állványrúd 10 cm 1 ernyő, fehér 1 csúszka az optikai padhoz 1 csúszka rögzítő csavarral 1 csúszka skála, ernyő és mutató részére 1 lencse- és blendetartó 1 lencse tartóval, f=+50 mm 1 lencse foglalatban, f=+100 mm 1 L-blende 2 összekötő vezeték A gyűjtőlencse segítségével nagyított és kicsinyített képet lehet előállítani. Megvizsgáljuk, hogy milyen befolyása van a tárgy távolságának a képnagyságra és a képtávolságra. 1. Kísérlet: Felépítés az ábra szerint. A kísérleti lámpát kerek nyílással használjuk. Helyezzük fel a kísérleti lámpára az L-blendét. A lencsét (f = +100 mm) először 15 cm-re helyezzük a tárgy (Lblende) elé (tárgytávolság 15 cm). Az ernyőn kialakul az "L", ami kb. 30 cm távolságra van a lencsétől. A képlencse gyújtótávolsága 10 cm. Az ernyőt eltoljuk úgy, hogy rajta lehetőleg éles kép keletkezzen. Ez után a képlencsét elhúzzuk annyira, hogy a tárgytávolság 20 cm, majd 25 cm legyen. A képtávolságot és tárgytávolságot táblázatban rögzítjük. Feljegyezzük továbbá, hogy a kép nagyobb, vagy kisebb-e, mint maga a tárgy. Tárgytávolság Képtávolság Nagyobb/kisebb 15 cm 20 cm 25 cm Ha a tárgytávolság a gyújtótávolság kétszerese, a kép ugyanakkora, mint a tárgy. 2. Kísérlet: A kísérletet megismételjük a másik lencsével (f = +50 mm) is. Beállítjuk a táblázatban megadott tárgytávolságokat. Újra beírjuk a táblázatba a tárgytávolságot és a képtávolságot. Tárgytávolság Képtávolság Nagyobb/kisebb 8 cm 10 cm 15 cm Következtetés A gyűjtőlencse valós fordított képet állít elő, ha a tárgy a gyújtóponton kívül van. Nagyított kép keletkezik, ha a tárgytávolság kisebb, mint a kétszeres gyújtótávolság, kicsinyített kép keletkezik, ha a tárgytávolság nagyobb, mint a kétszeres gyújtótávolság.

O 4.4.2 Gyűjtőlencsék képalkotási törvényei 1 optikai pad vagy 2 állványsín és 1 sínösszekötő 1 állványrúd 10 cm 1 ernyő, fehér 1 csúszka az optikai padhoz 1 csúszka rögzítő csavarral 1 csúszka skála, ernyő és mutató részére 1 lencse- és blendetartó 1 lencse foglalatban, f = +100 mm 1 L-blende 2 összekötő-vezeték Megvizsgáljuk az összefüggést a tárgytávolság, a képtávolság és a gyújtótávolság között. Kísérlet: Felépítés az ábra szerint. A kísérleti lámpát a kerek nyílásával használjuk. Helyezzük fel a kísérleti lámpára az L-blendét. A lencsét (f = +100 mm) először 15 cm-re helyezzük a tárgy (Lblende) elé (tárgytávolság 15 cm). Az ernyőn kialakul az "L", ami kb. 30 cm távolságra van a lencsétől. A képlencse gyújtótávolsága 10 cm. Az ernyőt eltoljuk úgy, hogy rajta a lehető legélesebb kép keletkezzen. A tárgynagyság és tárgytávolság adottak. Minden tárgytávolsághoz megmérjük a képtávolságot, és a képnagyságot és az értékeket táblázatban rögzítjük. A képalkotás törvényét az alábbi képlettel ellenőrizhetjük: 1 ahol g = tárgytávolság 1 1 + = b = képtávolság g b t f = a tükör gyújtótávolsága A képalkotás méretarányát az alábbi képlet adja: B ahol G = tárgy mérete =... mm b = B = kép mérete =... mm G g tárgytávolság g 15 cm 20 cm 25 cm képtávolság b 1 1 + képméret g b B Következtetés A képalkotási törvény alapján, ha ismerjük a lencse gyújtótávolságát, a tárgytávolság ismeretében a képtávolság kiszámítható. Ugyanígy a kép nagysága is kiszámítható a tárgy méretének ismeretében. B G b g

O 4.5 Fénytörés szórólencsén 1 blende 3 és 5 réssel 1 modelltest, sík-homorú 2 összekötő-vezeték Előkészület: A kísérleti lámpát a négyzetes nyílással, párhuzamos fénnyel alkalmazzuk (fedél levéve, illetve fordítva feltéve). A lámpát egy papírlapra helyezzük, amelynek közepére balról jobbra (optikai tengely) előzőleg egy egyenest húzunk. Helyezzük fel a háromréses blendét a lámpára. A szórólencsét merőlegesen úgy helyezzük a papírlapra, hogy a sugarak a sík felületre essenek. A lencse körvonalát átrajzoljuk a papírra, és a középpontját L betűvel bejelöljük. Kísérlet: A párhuzamos sugarak az optikai tengely irányából merőlegesen és szimmetrikusan esnek a lencsére, és megtörésük után széttartóak lesznek. Megjelöljük a sugarakat két-két ponttal, és a lencse eltávolítása után vonalzóval megrajzoljuk a sugarak útját. Ezután meghosszabbítjuk a megtört sugarakat az optikai tengellyel történő metszéspontjukig, és ezt F-el jelöljük (szórópont). Az L és F közötti távolságot gyújtótávolságnak nevezzük. Megkülönböztetésül a gyűjtőlencsétől, a szórólencse gyújtótávolságát negatív előjellel jelöljük. Következtetés Tengelypárhuzamos fénysugarak a szórólencsén úgy törnek meg, mintha azok a szórópontból indulnának ki.

O 4.5.1 Szórólencsék gyújtópontjának meghatározása 1 lencse tartóval, f = -100 mm 1 A4 papírlap Meghatározzuk a szórólencse gyújtótávolságát. Előkészület: Öt párhuzamos egyenest húzunk az A4-es papírlapra, egymástól 1 cm távolságra. Kísérlet: A lencsét a vonalak fölé helyezzük, és kb. 60 cm-ről nézünk rá. Az egyeneseket a lencsén át ugyanolyan távolságra látjuk, mint a lencse mellett. A lencsét megemelve az egyenesek közti távolság a lencsén át kisebbnek tűnik. Most a szórólencsét tovább emeljük, amíg a vonalak távolsága egymástól felére nem csökken. A lencse-egyenesek közötti távolság ekkor a gyújtótávolság fele. Ennek a megállapításnak a lencseegyenletből való levezetéséhez figyelembe kell vennünk, hogy mind a képtávolságot, mind a gyújtótávolságot negatív értékkel kell behelyettesíteni. Érvényes: B:G=b:g azaz b=2 ebben a példában: ahol B = képnagyság, G = tárgynagyság, b = képtávolság, g = tárgytávolság Eredmény: A gyújtótávolság:... 1 1 + = g b 1 f 1 1 1 - = g 2g f 1 1 = 2g f

O 4.6 Szórólencsék képalkotása 1 blende 1 és 2 réssel 1 blende 3 és 5 réssel 1 modelltest, sík-homorú 2 összekötő-vezeték A képalkotáshoz szükséges három kitüntetett sugár ismerete. Előkészület: A kísérleti lámpát a négyzetes nyílással, párhuzamos fénnyel használjuk (fedél levéve, illetve fordítva feltéve) és egy papírlapra helyezzük, amelynek közepére balról jobbra egy optikai tengelyt húzunk. A háromréses blendét felhelyezzük a lámpára. A szórólencsét az optikai tengelyre merőlegesen helyezzük el, és körvonalát átrajzoljuk a papírra. Párhuzamos sugarak segítségével meghatározzuk a szórópontokat, és a lencse mindkét oldalán berajzoljuk. Kísérlet: Az egyréses blendét felhelyezzük a kísérleti lámpára. A fénysugarak útját két-két pontjukkal megjelöljük, és a lencse eltávolítása után a sugarak útját vonalzóval megrajzoljuk. 1. A párhuzamos sugár (az optikai tengellyel párhuzamosan, (attól kb. 1 cm-re) esik a lencsére. A sugár úgy törik meg, mintha a szórópontból jönne. 2. Egy gyújtósugarat a jobboldali szórópontot célba véve, vetítünk a lencsére. A sugár megtörése után tengely-párhuzamos lesz. 3. Megvizsgáljuk a középponti sugarat, vagyis a fősugarat. A sugár törés nélkül halad át a lencsén. Következtetések 1. A párhuzamos sugár törés után úgy látszik, mintha a szórópontból jönne. 2. A gyújtósugár törés után párhuzamos sugár lesz. 3. A fősugár nem törik meg.

O 4.7 Egy pont leképzése szórólencsével 1 blende 1 és 2 réssel 1 modelltest, sík-homorú 2 összekötő-vezeték A szórólencsével egy pontalakú fényforrás képét állítjuk elő. Előkészület: A kísérleti lámpát egy lap papírra helyezzük, amire előzőleg balról jobbra optikai tengelyként egy egyenest húzunk. A kísérleti lámpát először a négyzetes nyílásával, széttartó fényként alkalmazzuk (fedél levéve és fordítva felhelyezve). A kétréses blendét felhelyezzük a lámpára. A szórólencsét az optikai tengelyre merőlegesen úgy helyezzük el, hogy a fénysugarak a sík felületre essenek. Kísérlet: A két fénysugarat az optikai tengelyhez kissé ferdén vetítjük a lencsére. A megtört sugarak széttartóak. Pontokkal megjelöljük a beeső és a megtört sugarak útját, majd a lencse és a fényforrás eltávolítása után a sugarak útját vonalzóval megrajzoljuk. Következtetés Azok a fénysugarak, amelyek egy tárgyról a szórólencsére vetődnek, megtörés után nem találkoznak egy pontban. A megtört sugarak meghosszabbítása adja a látszólagos képet.