MATEMATIKA ANGOL NYELVEN



Hasonló dokumentumok
MATEMATIKA ANGOL NYELVEN

MATEMATIKA ANGOL NYELVEN

MATEMATIKA ANGOL NYELVEN

MATEMATIKA ANGOL NYELVEN

MATEMATIKA ANGOL NYELVEN

MATEMATIKA ANGOL NYELVEN MATHEMATICS

ÉRETTSÉGI VIZSGA május 6.

MATEMATIKA ANGOL NYELVEN MATHEMATICS

MATEMATIKA ANGOL NYELVEN MATHEMATICS

MATEMATIKA ANGOL NYELVEN MATHEMATICS

MATEMATIKA ANGOL NYELVEN

MATEMATIKA ANGOL NYELVEN

MATEMATIKA ANGOL NYELVEN

MATEMATIKA ANGOL NYELVEN MATHEMATICS

MATEMATIKA ANGOL NYELVEN MATHEMATICS

MATEMATIKA ANGOL NYELVEN MATHEMATICS

MATEMATIKA ANGOL NYELVEN

MATEMATIKA ANGOL NYELVEN

MATEMATIKA ANGOL NYELVEN

MATEMATIKA ANGOL NYELVEN

MATEMATIKA ANGOL NYELVEN

MATEMATIKA ANGOL NYELVEN

MATEMATIKA ANGOL NYELVEN

MATEMATIKA ANGOL NYELVEN

EMELT SZINTŰ ÍRÁSBELI VIZSGA

MATEMATIKA ANGOL NYELVEN

MATEMATIKA ANGOL NYELVEN

MATEMATIKA ANGOL NYELVEN

MATEMATIKA ANGOL NYELVEN

MATEMATIKA ANGOL NYELVEN

Construction of a cube given with its centre and a sideline

MATEMATIKA ANGOL NYELVEN MATHEMATICS

MATEMATIKA ANGOL NYELVEN

MATEMATIKA ANGOL NYELVEN

MATEMATIKA ANGOL NYELVEN

ELEKTRONIKAI ALAPISMERETEK ANGOL NYELVEN

STUDENT LOGBOOK. 1 week general practice course for the 6 th year medical students SEMMELWEIS EGYETEM. Name of the student:

MATEMATIKA ANGOL NYELVEN

MATEMATIKA ANGOL NYELVEN

MATEMATIKA ANGOL NYELVEN

Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet. Hypothesis Testing. Petra Petrovics.

MATEMATIKA ANGOL NYELVEN

ELEKTRONIKAI ALAPISMERETEK ANGOL NYELVEN

ELEKTRONIKAI ALAPISMERETEK ANGOL NYELVEN

Minta ANGOL NYELV KÖZÉPSZINT SZÓBELI VIZSGA II. Minta VIZSGÁZTATÓI PÉLDÁNY

ANGOL NYELV KÖZÉPSZINT SZÓBELI VIZSGA I. VIZSGÁZTATÓI PÉLDÁNY

ANGOL NYELV KÖZÉPSZINT SZÓBELI VIZSGA I. VIZSGÁZTATÓI PÉLDÁNY

3. MINTAFELADATSOR KÖZÉPSZINT. Az írásbeli vizsga időtartama: 30 perc. III. Hallott szöveg értése

ANGOL NYELVI SZINTFELMÉRŐ 2012 A CSOPORT. to into after of about on for in at from

Angol Középfokú Nyelvvizsgázók Bibliája: Nyelvtani összefoglalás, 30 kidolgozott szóbeli tétel, esszé és minta levelek + rendhagyó igék jelentéssel

ELEKTRONIKAI ALAPISMERETEK ANGOL NYELVEN

ENROLLMENT FORM / BEIRATKOZÁSI ADATLAP

ELEKTRONIKAI ALAPISMERETEK ANGOL NYELVEN

(Asking for permission) (-hatok/-hetek?; Szabad ni? Lehet ni?) Az engedélykérés kifejezésére a következő segédigéket használhatjuk: vagy vagy vagy

On The Number Of Slim Semimodular Lattices

Lopocsi Istvánné MINTA DOLGOZATOK FELTÉTELES MONDATOK. (1 st, 2 nd, 3 rd CONDITIONAL) + ANSWER KEY PRESENT PERFECT + ANSWER KEY

Tudományos Ismeretterjesztő Társulat

Tudományos Ismeretterjesztő Társulat

EN United in diversity EN A8-0206/419. Amendment

Correlation & Linear Regression in SPSS

Intézményi IKI Gazdasági Nyelvi Vizsga

Using the CW-Net in a user defined IP network

Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet Nonparametric Tests

ANGOL NYELVI SZINTFELMÉRŐ 2008 A CSOPORT

Unit 10: In Context 55. In Context. What's the Exam Task? Mediation Task B 2: Translation of an informal letter from Hungarian to English.

ANGOL NYELVI SZINTFELMÉRŐ 2013 A CSOPORT. on of for from in by with up to at

ANGOL NYELVI SZINTFELMÉRŐ 2014 A CSOPORT

1. MINTAFELADATSOR KÖZÉPSZINT. Az írásbeli vizsga időtartama: 30 perc. III. Hallott szöveg értése

3. MINTAFELADATSOR EMELT SZINT. Az írásbeli vizsga időtartama: 30 perc. III. Hallott szöveg értése

FÖLDRAJZ ANGOL NYELVEN GEOGRAPHY

Tudományos Ismeretterjesztő Társulat

ÉRETTSÉGI VIZSGA május 18.

Cashback 2015 Deposit Promotion teljes szabályzat

Correlation & Linear Regression in SPSS

Nemzetközi Kenguru Matematikatábor

Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet. Correlation & Linear. Petra Petrovics.

ELEKTRONIKAI ALAPISMERETEK ANGOL NYELVEN

Statistical Dependence

FAMILY STRUCTURES THROUGH THE LIFE CYCLE

Emelt szint SZÓBELI VIZSGA VIZSGÁZTATÓI PÉLDÁNY VIZSGÁZTATÓI. (A részfeladat tanulmányozására a vizsgázónak fél perc áll a rendelkezésére.

Széchenyi István Egyetem

Adatbázisok 1. Rekurzió a Datalogban és SQL-99

Előszó.2. Starter exercises. 3. Exercises for kids.. 9. Our comic...17


- eqµah ³. -ry³eblbmebjkargar³

Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet. Nonparametric Tests. Petra Petrovics.

ELEKTRONIKAI ALAPISMERETEK ANGOL NYELVEN FOUNDATIONS IN ELECTRONICS

Phenotype. Genotype. It is like any other experiment! What is a bioinformatics experiment? Remember the Goal. Infectious Disease Paradigm

There is/are/were/was/will be

Statistical Inference

Utasítások. Üzembe helyezés

TestLine - Angol teszt Minta feladatsor

Tavaszi Sporttábor / Spring Sports Camp május (péntek vasárnap) May 2016 (Friday Sunday)

KÖZGAZDASÁGI ALAPISMERETEK (ELMÉLETI GAZDASÁGTAN) ANGOL NYELVEN BASIC PRINCIPLES OF ECONOMY (THEORETICAL ECONOMICS)

Tanmenetjavaslat heti 3 óra

Tudok köszönni tegezve és önözve, és el tudok búcsúzni. I can greet people in formal and informal ways. I can also say goodbye to them.

2. Local communities involved in landscape architecture in Óbuda

Személyes adatváltoztatási formanyomtatvány- Magyarország / Personal Data Change Form - Hungary

FÖLDRAJZ ANGOL NYELVEN

A modern e-learning lehetőségei a tűzoltók oktatásának fejlesztésében. Dicse Jenő üzletfejlesztési igazgató

Átírás:

ÉRETTSÉGI VIZSGA 2010. május 4. MATEMATIKA ANGOL NYELVEN EMELT SZINTŰ ÍRÁSBELI VIZSGA 2010. május 4. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Matematika angol nyelven emelt szint írásbeli vizsga 0814

írásbeli vizsga 0814 2 / 24 2010. május 4.

Important information 1. The exam is 240 minutes long, after that you should stop working. 2. You may solve the problems in any order. 3. In Section II, you are only required to solve four out of the five problems. Please remember to enter the number of the question you have not attempted into the empty square below. Should there arise any ambiguity for the examiner whether the question is to be marked or not, it is question no. 9 that will not going to be assessed. 4. You may work with any calculator as long as it is not capable of storing and displaying textual information and you may also consult any type of four digit mathematical table. The use of any other kind of electronic device or written source is forbidden. 5. Remember to show your reasoning, because a major part of the score is given for this component of your work. 6. Remember to outline the substantial calculations. 7. When you refer to a theorem that has been covered at school and has a common name (e.g. Pythagoras theorem, sine rule, etc.) you are not expected to state it meticulously; it is usually sufficient to put the name of the theorem, however, you are supposed to show why does it apply. Any reference to any other theorem, however, can be accepted only if it is stated exactly with all the conditions (proof is not required) and you explain how it applies in the given situation. 8. Remember to answer each question (i.e. providing the result) also in textual form. 9. You are supposed to work in pen; diagrams, however, may also be drawn in pencil. Anything written in pencil outside the diagrams cannot be evaluated by the examiner. Any solution or some part of a solution that is crossed out will not be marked. 10. There is only one solution will be marked for every question. If you attempt a question more than once then you should clearly indicate the one to be marked. 11. Please, do not write anything in the shaded rectangular areas. írásbeli vizsga 0814 3 / 24 2010. május 4.

1. I. a) Solve the following system of equations on the set of pairs of real numbers. 3 log ( ) = 1 2 xy 2 log ( ) = 3 2 x y b) Find all those positive integer values of k for which log 729 3 k is a positive integer. a) 7 points b) 5 points T.: 12 points írásbeli vizsga 0814 4 / 24 2010. május 4.

írásbeli vizsga 0814 5 / 24 2010. május 4.

2. a) Prove that the quadrilateral whose vertices are the points A(0; 1), B(4; 2), C(3; 6) and D( 5; 4) is a trapezium. b) Kate was drawing a simple complete graph with 253 edges altogether in such a way that the four vertices A, B, C, D of the trapezium were among its vertices. How many new vertices of the graph did she need to draw for that? At most how many edges of this complete graph may be deleted if one still wants it to remain connected? a) 4 points b) 8 points T.: 12 points y x írásbeli vizsga 0814 6 / 24 2010. május 4.

írásbeli vizsga 0814 7 / 24 2010. május 4.

3. An airline company is operating a direct flight between two European cities. The flights are leaving if there are at least 10 passengers and no plane can carry more than 36 passengers. Looking for improving the utilization of its flights the company is considering the following option: in case of 20 or less passengers the price of the ticket is 16 000 Ft per passenger. If, however, there are more than 20 passengers then the price is calculated as follows: the difference betwen the actual number of passengers and 20 is multiplied by 400 and the originally 16 000 Ft fare is decreased by this product. a) Let P(x) be the income of the company if there are x passengers accepted on a flight. Find a fromula for the function P: x a P(x). Find also the domain of the function P. b) How many passengers shall the company carry on a flight in order to maximize its income on the given flight and how much is the maximal income? a) 6 points b) 7 points T.: 13 points írásbeli vizsga 0814 8 / 24 2010. május 4.

írásbeli vizsga 0814 9 / 24 2010. május 4.

4. According to a survey conducted among those possessing internet connection 17% of them does shopping on the internet and 33% of them is downloading softwares regularly. It was also found out that 14% of the internet users make use of both services. Find the probablities of the following events, respectively. a) A randomly selected internet user does not do shopping on the net. b) A randomly selected internet user does shopping on the net or she is regularly downloading softwares. (She may make use of both services. ) c) A randomly selected internet user neither does shopping on the net nor downloads softwares from the net. d) Among three randomly selected internet users there is no one who does shopping on the net. (Selection is by replacement here.) a) 3 points b) 4 points c) 3 points d) 4 points T.: 14 points írásbeli vizsga 0814 10 / 24 2010. május 4.

írásbeli vizsga 0814 11 / 24 2010. május 4.

II. You are supposed to answer any four of the questions no. 5-9. The number of the question not attempted should be entered into the empty square on sheet no. 3. 5. There were more than 400 students attending a certain school at the end of the academic year but their number was certainly less than 430. At the end of the academic year the average of female students was 4.21, that of male students was 4.01, finally, the average of the total student population was 4.12. (Each average is accurate.) How many students did attend this school at the end of the academic year? T.: 16 points írásbeli vizsga 0814 12 / 24 2010. május 4.

írásbeli vizsga 0814 13 / 24 2010. május 4.

You are supposed to answer any four of the questions no. 5-9. The number of the question not attempted should be entered into the empty square on sheet no. 3. 6. There was a ditch dug out of a plane ground. Being 6 m deep it is narrowing downwards; its sidewalls are planar quadrilaterals. The base of the ditch is horizontal flat. Its opening is a square of size 8 8 m, two of its opposite sidewalls are vertical, while the other two are making angles of 75 and 60 with horizontal ground level, respectively, in such a way that the angle of the planes of these slant sidewalls is 45. a) Sktech, in a neat diagram, the ditch s cross section, by a plane that is perpendicular to the slant sidewalls (and hence also to the ground level ). Indicate also the data on your diagram. 3 b) How many m soil had to be dug out while completing this ditch. The result should be given to the nearest m 3. a) 4 points b) 12 points T.: 16 points írásbeli vizsga 0814 14 / 24 2010. május 4.

írásbeli vizsga 0814 15 / 24 2010. május 4.

You are supposed to answer any four of the questions no. 5-9. The number of the question not attempted should be entered into the empty square on sheet no. 3. 7. The class 12.A was offered five tickets for the finals of the waterpolo tournament. Each of the thirty students of the class would go willingly, even if twelve of them will have revision class during the finals. They decide to organize a draw to find the five lucky ones: each of the 30 names is written on a slip of paper, respectively, and five of them are drawn. a) What is the probability that there are exactly two among the five hence selected who have revision class? The answer should be given as a decimal fraction. b) We got to know that there happen to be students among the five selected who actually have a revision class. Given this information what is the probability that there are exactly two among the five selected students who have revision class? After the finals the five lucky spectators made some comments on the match: A: The loser team has scored more than 4 times. B: The winner team has scored 3 more than the other team. C: The total number of goals was greater than 10 but smaller than 28. D: The total number of goals is a prime number. E: The number of goals scored by the loser team is also a prime number. c) Is it possible, based on the above information, to deduce the result of the finals assuming that each student told the truth? a) 4 points b) 7 points c) 5 points T.: 16 points írásbeli vizsga 0814 16 / 24 2010. május 4.

írásbeli vizsga 0814 17 / 24 2010. május 4.

You are supposed to answer any four of the questions no. 5-9. The number of the question not attempted should be entered into the empty square on sheet no. 3. 8. The sequences { a n }, { b n } and { n } c are geometric progressions formed by integer numbers, each. About the respective common ratios and certain terms of the progressions we are given the following information: (1) a 1, b 1 and c 1 are, in this order, the consecutive terms of a geometric progression whose common ratio is equal to 2; (2) the common ratios of the progressions { a n }, { b n } and { c n } are, in this order, the consecutive terms of an arithmetic progression whose common difference is equal to 1; (3) a + b + c 24 ; 2 2 2 = 1 2 3 = (4) c + c + c 84. Find the first three terms of the geometric progressions { a n }, { b n } and { n } repectively. c, T.: 16 points írásbeli vizsga 0814 18 / 24 2010. május 4.

írásbeli vizsga 0814 19 / 24 2010. május 4.

You are supposed to answer any four of the questions no. 5-9. The number of the question not attempted should be entered into the empty square on sheet no. 3. 2 9. The equation of a parabola is y = x 4x 12. Denote its vertex by C, and its intersections with the x-axis by A and B, respectively. a) Calculate the inradius of the triangle ABC. b) Find the ratio between the area of the triangle ABC and that of the closed region bounded by the parabola and the x-axis. a) 8 points b) 8 points T.: 16 points írásbeli vizsga 0814 20 / 24 2010. május 4.

írásbeli vizsga 0814 21 / 24 2010. május 4.

írásbeli vizsga 0814 22 / 24 2010. május 4.

írásbeli vizsga 0814 23 / 24 2010. május 4.

PART I PART II. number of maximal maximal score question score score 1. 12 2. 12 51 3. 13 4. 14 16 16 64 16 16 problem not chosen Score of the written component 115 score date examiner Paper I/(I. rész) Paper II/(II. rész) score attained rounded to the nearest integer (elért pontszám egész számra kerekítve) Integer score entered in the program (programba beírt egész pontszám) teacher/(javító tanár) registrar/(jegyző) date /(dátum) date /(dátum) írásbeli vizsga 0814 24 / 24 2010. május 4.