A Mathematical Model for the Generation of Output Information in a Gravitoinertial Mechanoreceptor when Moving in a Sagittal Plane

Hasonló dokumentumok
Construction of a cube given with its centre and a sideline

Correlation & Linear Regression in SPSS

Correlation & Linear Regression in SPSS

On The Number Of Slim Semimodular Lattices

Phenotype. Genotype. It is like any other experiment! What is a bioinformatics experiment? Remember the Goal. Infectious Disease Paradigm

Performance Modeling of Intelligent Car Parking Systems

Using the CW-Net in a user defined IP network

Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet. Correlation & Linear. Petra Petrovics.

EN United in diversity EN A8-0206/419. Amendment

First experiences with Gd fuel assemblies in. Tamás Parkó, Botond Beliczai AER Symposium

Statistical Inference

Cashback 2015 Deposit Promotion teljes szabályzat

Computer Architecture

Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet Factor Analysis

Statistical Dependence

A rosszindulatú daganatos halálozás változása 1975 és 2001 között Magyarországon

Computational Neuroscience

STUDENT LOGBOOK. 1 week general practice course for the 6 th year medical students SEMMELWEIS EGYETEM. Name of the student:

Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet Nonparametric Tests

Ensemble Kalman Filters Part 1: The basics

PIACI HIRDETMÉNY / MARKET NOTICE

Számítógéppel irányított rendszerek elmélete. Gyakorlat - Mintavételezés, DT-LTI rendszermodellek

7 th Iron Smelting Symposium 2010, Holland

Választási modellek 3

Cluster Analysis. Potyó László

Supporting Information

Supplementary Table 1. Cystometric parameters in sham-operated wild type and Trpv4 -/- rats during saline infusion and

Gottsegen National Institute of Cardiology. Prof. A. JÁNOSI

Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet. Correlation & Regression

HALLGATÓI KÉRDŐÍV ÉS TESZT ÉRTÉKELÉSE

FÖLDRAJZ ANGOL NYELVEN

Mezőgazdasági gépesítési tanulmányok Agricultural Engineering Research MŰANYAG CSOMAGOLÓ- ÉS TAKARÓ FÓLIÁK REOLÓGIAI VIZSGÁLATA

Mapping Sequencing Reads to a Reference Genome

Word and Polygon List for Obtuse Triangular Billiards II

KELER KSZF Zrt. bankgarancia-befogadási kondíciói. Hatályos: július 8.

A évi fizikai Nobel-díj

BKI13ATEX0030/1 EK-Típus Vizsgálati Tanúsítvány/ EC-Type Examination Certificate 1. kiegészítés / Amendment 1 MSZ EN :2014

KN-CP50. MANUAL (p. 2) Digital compass. ANLEITUNG (s. 4) Digitaler Kompass. GEBRUIKSAANWIJZING (p. 10) Digitaal kompas

EPILEPSY TREATMENT: VAGUS NERVE STIMULATION. Sakoun Phommavongsa November 12, 2013

Lexington Public Schools 146 Maple Street Lexington, Massachusetts 02420

SAJTÓKÖZLEMÉNY Budapest július 13.

FÖLDRAJZ ANGOL NYELVEN GEOGRAPHY

Genome 373: Hidden Markov Models I. Doug Fowler

ELEKTRONIKAI ALAPISMERETEK ANGOL NYELVEN

Lopocsi Istvánné MINTA DOLGOZATOK FELTÉTELES MONDATOK. (1 st, 2 nd, 3 rd CONDITIONAL) + ANSWER KEY PRESENT PERFECT + ANSWER KEY

Széchenyi István Egyetem

Összefoglalás. Summary. Bevezetés

Bevezetés a kvantum-informatikába és kommunikációba 2015/2016 tavasz

PETER PAZMANY CATHOLIC UNIVERSITY Consortium members SEMMELWEIS UNIVERSITY, DIALOG CAMPUS PUBLISHER

Elektrofiziológiai vizsgálómódszerek alkalmazása a sejtek elektromos tevékenységének kutatásában. A kezdetek 1.

Kezdőlap > Termékek > Szabályozó rendszerek > EASYLAB és TCU-LON-II szabályozó rendszer LABCONTROL > Érzékelő rendszerek > Típus DS-TRD-01

ELEKTRONIKAI ALAPISMERETEK ANGOL NYELVEN FOUNDATIONS IN ELECTRONICS

16F628A megszakítás kezelése

Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet. Hypothesis Testing. Petra Petrovics.

DECLARATION OF PERFORMANCE No. GST REV 1.03 According to Construction Products Regulation EU No. 305/2011

Utasítások. Üzembe helyezés

A modern e-learning lehetőségei a tűzoltók oktatásának fejlesztésében. Dicse Jenő üzletfejlesztési igazgató

Teszt topológia E1/1 E1/0 SW1 E1/0 E1/0 SW3 SW2. Kuris Ferenc - [HUN] Cisco Blog -

Expression analysis of PIN genes in root tips and nodules of Lotus japonicus

3. MINTAFELADATSOR KÖZÉPSZINT. Az írásbeli vizsga időtartama: 30 perc. III. Hallott szöveg értése

FÖLDRAJZ ANGOL NYELVEN GEOGRAPHY

Nemzetközi Kenguru Matematikatábor

Synchronization of cluster-firing cells in the medial septum

FORGÁCS ANNA 1 LISÁNYI ENDRÉNÉ BEKE JUDIT 2

A forrás pontos megnevezésének elmulasztása valamennyi hivatkozásban szerzői jogsértés (plágium).

Rezgésdiagnosztika. Diagnosztika

The Measurement of The Three Components of The Cutting Force During The Turning Process

KELET-ÁZSIAI DUPLANÁDAS HANGSZEREK ÉS A HICHIRIKI HASZNÁLATA A 20. SZÁZADI ÉS A KORTÁRS ZENÉBEN

Vasúti kocsik vázszerkezetének a felhasználhatósága kisebb nyílások áthidalására helyi érdek8 közúti utakon

Erdészettudományi Közlemények

Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet. Nonparametric Tests. Petra Petrovics.

Tavaszi Sporttábor / Spring Sports Camp május (péntek vasárnap) May 2016 (Friday Sunday)

SZOFTVEREK A SORBANÁLLÁSI ELMÉLET OKTATÁSÁBAN

Supplementary materials to: Whole-mount single molecule FISH method for zebrafish embryo

Hibridspecifikus tápanyag-és vízhasznosítás kukoricánál csernozjom talajon

ANGOL NYELV KÖZÉPSZINT SZÓBELI VIZSGA I. VIZSGÁZTATÓI PÉLDÁNY

PLATTÍROZOTT ALUMÍNIUM LEMEZEK KÖTÉSI VISZONYAINAK TECHNOLÓGIAI VIZSGÁLATA TECHNOLOGICAL INVESTIGATION OF PLATED ALUMINIUM SHEETS BONDING PROPERTIES

USER MANUAL Guest user

Trinucleotide Repeat Diseases: CRISPR Cas9 PacBio no PCR Sequencing MFMER slide-1

Animal welfare, etológia és tartástechnológia

A magyarországi Gauss-Krüger-vetületû katonai topográfiai térképek dátumparaméterei

FELADATKIÍRÁSOK (ÁRAMLÁSTAN TANSZÉK)

TARTÁLY LÉGRITKÍTÁSÁNAK TERMODINAMIKAI MODELLEZÉSE

Regional Expert Meeting Livestock based Geographical Indication chains as an entry point to maintain agro-biodiversity

T Á J É K O Z T A T Ó. A 1108INT számú nyomtatvány a webcímen a Letöltések Nyomtatványkitöltő programok fülön érhető el.

NYOMÁSOS ÖNTÉS KÖZBEN ÉBREDŐ NYOMÁSVISZONYOK MÉRÉTECHNOLÓGIAI TERVEZÉSE DEVELOPMENT OF CAVITY PRESSURE MEASUREMENT FOR HIGH PRESURE DIE CASTING

Az fmri alapjai BOLD fiziológia. Dr. Kincses Tamás Szegedi Tudományegyetem Neurológiai Klinika

Supplementary Figure 1

ELEKTRONIKAI ALAPISMERETEK ANGOL NYELVEN

HU ISSN

Sequential synchronous activity in neural network

Proxer 7 Manager szoftver felhasználói leírás

A jövedelem alakulásának vizsgálata az észak-alföldi régióban az évi adatok alapján

A TÓGAZDASÁGI HALTERMELÉS SZERKEZETÉNEK ELEMZÉSE. SZATHMÁRI LÁSZLÓ d r.- TENK ANTAL dr. ÖSSZEFOGLALÁS

A golyók felállítása a Pool-biliárd 8-as játékának felel meg. A golyók átmérıje 57.2 mm. 15 számozott és egy fehér golyó. Az elsı 7 egyszínő, 9-15-ig

GEOGRAPHICAL ECONOMICS B

ELEKTRONIKAI ALAPISMERETEK ANGOL NYELVEN

Tudományos Ismeretterjesztő Társulat

A controlling és az értékelemzés összekapcsolása, különös tekintettel a felsőoktatási és a gyakorlati alkalmazhatóságra

AZ ŐSZI BÚZA MINŐSÉGÉNEK JELLEMZÉSE AZ SDS SZEDIMENTÁCIÓS INDEX SEGÍTSÉGÉVEL. Szilágyi Szilárd Győri Zoltán Debreceni Agrártudományi Egyetem, Debrecen

Átírás:

ISSN 0027-330, Moscow University Mechanics Bulletin, 2008, Vol. 63, No. 6, pp. 39 45. c Allerton Press, Inc., 2008. Original Russian Text c V.A. Sadovnichii, V.V. Aleksandrov, T.B. Aleksandrova, R. Vega, Castillo Quiróz, M. Reyes Romero, E. Soto, N.E. Shulenina, 2008, published in Vestnik Moskovskogo Universiteta, Matematika. Mekhanika, 2008, Vol. 63, No. 6, pp. 55 60. A Mathematical Model for the Generation of Output Information in a Gravitoinertial Mechanoreceptor when Moving in a Sagittal Plane V. A. Sadovnichii a,v.v.aleksandrov a, T. B. Aleksandrova a,r.vega b, Castillo Quiróz b, M. Reyes Romero b,e.soto b, and N. E. Shulenina a a Moscow State University, Faculty of Mechanics and Mathematics, Leninskie Gory, Moscow, 9899 Russia b Autonomous University of Puebla, Institute of Physiology, Puebla, Pue. 7200, Mexico Received March 26, 2008; in final form, August 29, 2008 Abstract A mathematical model for the generation of primary and secondary output information in a gravitoinertial mechanoreceptor is discussed. The numerical results obtained from this model are compared with the results of the physiological experiments performed in the Laboratory of Neurophysiology, Institute of Physiology, Autonomous University of Puebla, Mexico. DOI: 0.303/S002733008060022 This paper continues the studies discussed in [], the notion of a gravitoinertial mechanoreceptor is introduced. In accordance with the definition of a secondary mechanoreceptor adopted in physiology, this notion is made more accurate by the introduction of primary and secondary output information. A mathematical model for the generation of these output information processes is proposed. The numerical results obtained from this model are compared with the results of the physiological experiments performed on a rotary table in the Laboratory of Neurophysiology, Institute of Physiology, Autonomous University of Puebla, Mexico. Let us consider the situation when a person under test falls in a sagittal plane. At the initial stage of about 00 ms, it is possible for this person to stabilize the vertical pose. In [2] it is shown that the fastest response of hair cells to a mechanical stimulus causing the fall is observed in the cells situated along the sensitivity axis of the saccular macula (at the initial instant of time, this axis is orthogonal to the local vertical, see Fig. ). Like the utricle, the saccule is a multidimensional accelerometer and allows one to gain information on the apparent acceleration of an otolith membrane in many directions of sensitivity. We are interested in the study of only the direction mentioned above. In the further discussion, therefore, we do not consider a mathematical model of the otolith membrane dynamics in a plane Fig.. Scheme of the saccular macula with the sensitivity directions of hair cells. parallel to the macula plane and do not discuss the response of many hair cells and afferent primary neurons to this mechanical stimulus; here we study only the dynamics along the above sensitivity axis. The following hair cells are situated along this axis (Fig. ): the hair cells whose positive direction coincides with the direction of forward motion (they are situated ahead of the striola) and the hair cells whose positive direction coincides with the backward motion (they are situated behind the striola). In our study, hence, we take into account the responses of two hair cells with opposite positive directions of sensitivity. According to [3], the combination of a hair cell and an afferent primary neuron is called a vestibular mechanoreceptor. This mechanoreceptor is a base element of all sensory systems of the vestibular apparatus. The gravitoinertial mechanoreceptor under consideration used to stabilize the vertical pose in a sagittal plane is described by the following three mathematical models. The first one describes the otolith membrane dynamics along the above sensitivity axis, as the second and third ones describe the responses of 39

40 SADOVNICHII et al. the vestibular mechanoreceptors with opposite positive directions to the displacements of the otolith membrane (Fig. 2). For simplicity, only one vestibular mechanoreceptor is illustrated in this figure; the second mechanoreceptor has a similar structure. The mathematical model of the vestibular mechanoreceptor consists of the following four blocks: the first block corresponds to the mechanism of mechanoelectrical transduction and is combined with the second one relating to the dynamics of the total ionic current and to the dynamics of the hair cell membrane potential under the integral adaptation feedback; the third block corresponds to the mechanism of synaptic transmission; and the fourth block describes the activity of the afferent primary neuron. Fig. 2. Scheme of a gravitoinertial mechanoreceptor. Let us discuss our tenth-order model of the gravitoinertial mechanoreceptor: 2 m + ẍ s + k 0 ẋ s + k s x s = m ( gs (ϕ) W s (ϕ) ), () m + = V 0 (ρ 0 + βρ e ), m = V 0 (ρ 0 ρ e ); τ ad ṡ + s = k(i Tr I Tr0 ), (2) I Tr = g Tr (x, s)(v E Tr ), g Tr =ḡ Tr p(x, s), x = ±x s, p(x, s) = ( +exp x + s x ); 0 s C m dv = I Tr I total I L, (3) I total = g t m 3 (h + h 2 )(V E t ), I L = g L V ; τ m (V ) dm = m st(v ) m; (4) τ h (V ) dh τ h2 (V ) dh 2 = q h st (V ) h ; (5) = q 2 h st (V ) h 2 ; (6) C m2 dv 2 = I syn (V ) I Na I K I L2, (7)

A MATHEMATICAL MODEL FOR GENERATION OF OUTPUT INFORMATION 4 I Na = g Na ( m (V 2 ) ) 3( C(V2 ) n ) (V 2 V Na ), I K = g K n 4 h 3 (V 2 V K ), I L2 = g L2 (V 2 V L ); τ n (V 2 ) dn = n (V 2 ) n; (8) Here τ h3 (V 2 ) dh 3 = h 3 (V 2 ) h 3. (9) 0.37 77.58 6.55 m st (V )=0.37 + ( ); τ m (V )=6.55 + ( ); (V +25.36) V +52.23 +exp +exp 5.06 5.68 0.73 h st (V )=0.73 + ( ); τ h (V )=0.82V +55.86; τ h2 (V )=.26V + 282.38; V +9.82 +exp 2.96 m (V 2 )= ( ); h (V 2 )= ( ); n (V 2 )= ( ); (V2 +33.8) V2 +60.5 (V2 +35 +exp +exp +exp 5.2 9.9 5 0.96408 0.7329 68 h 3 (V 2 )= ( ) +0.7329; τ n (V 2 )= ( ) ( ); V2 +33.87968) 25 + V2 30 + V2 +exp exp +exp 0.24986 5 20 250 τ h3 (V 2 )= ( ) ( ) + 500; C(V 2 )=n (V 2 )+h (V 2 ). 5 + V2 25 + V2 exp +exp 5 0 In the above relations, the following notation is introduced: g s (t) is the acceleration of gravity; W s (t) is the linear head acceleration; I total is the total ionic current; I Na is the sodium current; I K is the potassium current; I L and I L2 are the leakage currents; m and n are the parameters of current activation; h, h 2,andh 3 are the parameters of current inactivation; g total, ḡ Tr, g K, g Na, g L,andg L2 are the maximum conductances; h and h 2 are the parameters corresponding to the potassium channels with fast and slow inactivation time constants; τ ad, τ m, τ h, τ h2, τ n,andτ h3 are the time constants; s is the adaptation variable; k is the adaptation coefficient; I Tr is the transduction current; I Tr0 is the steady-state transduction current; p(x, s) is the probability of channel opening; C m and C m2 are the membrane capacities of the corresponding hair cells; E total, E Tr, E Na,andE K are the inversion potentials; and I syn is the synaptic current. Equation () describes the otolith membrane displacement x s along the above sensitivity axis of the saccule (V 0 is the volume of the otolith membrane, as ρ 0 and ρ e are the densities of the otolith membrane and the endolymph, respectively). Equation (2) describes the adaptation process in a hair bundle under the assumption that its dynamics can be ignored (x =+x s or x = x s, x is the displacement of the hair bundle tip of the cell with the positive forward or backward direction). The output result of the first block is the transduction current I Tr. Equations (3) (6) describe the dynamics of the total ionic current I total and the dynamics of the membrane potential V in the hair cell. The variations of this potential constitute the primary output information on a mechanical stimulus (note that here we consider the second-type hair cells). In order to transmit this primary information to the central nerve system, it is represented in the form of changing the frequency of relaxation self-oscillations, Fig. 3. The dependence of the synaptic current on the membrane potential of an amphibian hair cell. i.e., in the form of pulses forming at the boundary of unmyelinated and myelinated segments in the dendrite of a bipolar neuron. Equations (7) (9) represent the modified Hodgkin Huxley model discussed in [4] and

42 SADOVNICHII et al. describe the relaxation self-oscillations of the membrane potential V 2 caused by the activity of an afferent primary neuron. The periodicity expressed by the distance between pulses is the secondary output information on the mechanical stimulus obtained from the gravitoinertial mechanoreceptor. Fig. 4. The comparative analysis of the steady-state values for the total ionic current I total and the membrane potential in the cases of axolotl hair cells (black circles) and rat hair cells (white circles). A hair cell is connected to a bipolar neuron by the synaptic transmission mechanism. In this paper this mechanism is modeled by the curve in Fig. 3; this curve illustrates the dependence of the synaptic current on the hair cell membrane potential [5] (note that the synaptic current influences the primary neuron activity). This result was obtained for the case of amphibian hair cells. That is why the distinctions between the steady-state values of the membrane potential and the total ionic current of a hair cell for the axolotl (Ambystoma tigrinum) are analyzed in [6]; the resulting data are compared in [3] with similar data obtained for rats. Some results of this comparison are represented in Fig. 4 with consideration of the confidence intervals obtained during experimental data processing. The curvilinear quadrangles of steady-state values differ little from each other; this fact gives grounds to use the above-mentioned curve in Fig. 3 (see also [5]) in the mathematical model () (9); for this model, all numerical data (see the table) were obtained experimentally in the Laboratory of Neurophysiology, Institute of Physiology, Autonomous University of Puebla, Mexico. The corresponding experiments were performed in the case of hair cells and bipolar neurons of rats at room temperature (22 25 C) with the use of patch-clamp technique in the whole-cell configuration. Numerical values of the parameters used in the model Parameters Numerical Dimension Confidence values intervals m +.43 mg m 0.628 mg k 0.635 mg/ms k s.3086 mg/ms ḡ Tr.4 ns τ ad 00 ms s 0.2 μm k 0.03 I Tr0 4.4 pa x 0 0.3 μm E Tr 0 C m.26 pf 6.34 6.8 g L 232 ns.84 2.8 g total 77.84 ns 56.92 98.76 E total 79 mv 72 86 q /2 q 2 /2 C m2 μf/cm 2 V Na 52 mv V K 84 mv V L 63 mv g Na 2.3 ms/cm 2 2 8 g K 2.4 ms/cm 2 2.6 g L2 0.03 ms/cm 2 0.02 0.6

A MATHEMATICAL MODEL FOR GENERATION OF OUTPUT INFORMATION 43 3 The above dynamic experiments were performed on a rotary table to compare experimental results with the available numerical results obtained during our computer analysis of output information in the gravitoinertial mechanoreceptor under study. Axolotls were used in these experiments. A specimen was placed into a recording chamber and was constantly perfused by Ringer s solution. In order to register the electrical activity of afferent neurons in the saccule, a suction electrode filled with this solution was used; this allows one to register the activity of several afferent neurons simultaneously. This approach has the following advantage: the specimen under study can be mechanically stimulated. The electrical activity registered by the electrode was fed into an AC amplifier (P-5 Grass). The amplifier output was connected to an oscillograph (WPI model 2) converting the afferent nerve discharges into TTL pulses. These pulses were transmitted to a computer to measure their number per unit time. In order to perform the mechanical stimulation, the specimen wasplaced together with the microelectrodes and the amplifier on a rotary table whose motion was controlled by a servomotor. This allows one to incline the table through a required angle. The afferent activity was registered under rest conditions and when the table was inclined in the rostral and caudal directions through different angles. The results obtained for the rostral direction are illustrated in Figs. 5a and 5b when the inclination angle is 30. The frequency variations in the membrane potential pulsation are indicated along the y-axis for the primary neurons in hair cells with opposite sensitivity directions. The corresponding experimental data are given in a minute range. The mathematical model represented by () (9) is developed for a range of seconds, which is enough to describe the stabilization process for the vertical pose in the case of uncontrolled fall. That is why this model does not contain some elements of dynamics used for a range of minutes (e.g., the slow adaptation illustrated in Fig. 5a). Fig. 5. Experimental results obtained with the use of a rotary table. The pulse frequency variation for the primary neurons in the case of hair cells with the oppositely directed sensitivity vectors when the rotary table is inclined through an angle of 30 : (a) the excitation response and (b) the braking response. 4 Our computer modeling of the mathematical model () (9) is illustrated in Figs. 6a and 6b. Here we consider the mechanical stimulus used in the above experiment on the saccule of the axolotl. The following two types of hair cells are taken: (i) a hair cell with the forward positive direction (i.e., toward the rotation) and (ii) a hair cell with the backward positive direction. In this experiment it is impossible to exactly identify the sensitivity axis, as only the point estimates of numerical parameters are known in the mathematical model of the otolith membrane dynamics. That is why we assume that an otolith membrane displacement of about μm corresponds to the forward inclination through an angle of 30. The response of two vestibular mechanoreceptors are modeled under this assumption.

44 SADOVNICHII et al. Comparing the pulse frequencies obtained experimentally and numerically, we come to the following conclusions: (i) these frequencies coincide (about 20 Hz) if the mechanical stimulus is absent (the apparent acceleration projection onto the horizontal direction is equal to zero); (ii) when the mechanical stimulus is present (the forward inclination through an angle of 30 ), in the case of excitation response we observe that the numerically obtained frequency increases up to 40 Hz, as the experimentally obtained frequency increases on average up to 45 Hz on the interval of length 30 s from.5 to 2 minutes; the averaging procedure should be performed because of the effect of slow adaptation; (iii) in the case of braking response, for the same stimulus we observe that the numerically obtained frequency decreases down to 5 Hz, as the experimentally obtained frequency decreases down to 7 Hz on average. It should be noted that Figs. 6a and 6b illustrate the primary output information from the gravitoinertial mechanoreceptor, which is difficult to obtain in dynamic experiments with physiological specimens. Fig. 6. The primary and secondary output information from the gravitoinertial mechanoreceptor of the vestibular apparatus as a result of the mechanical stimulus represented in Fig. 5: (a) the computer modeling of the excitation response and (b) the computer modeling of the braking response. Our preliminary analysis of the above mathematical model and our comparative analysis of numerical and experimental results show that our model allows one to obtain the primary and secondary output information from the gravitoinertial mechanoreceptor of the vestibular apparatus in response to the mechanical stimulus corresponding to the fall in a sagittal plane. ACKNOWLEDGMENTS This work was performed in the framework of contract no. 02.52..26 and was supported by the Russian Foundation for Basic Research (project no. 07 0 0026). REFERENCES. V. V. Aleksandrov, T. B. Aleksandrova, and S. S. Migunov, A Mathematical Model of Gravitational Inertial Mechanical Receptor, Vestn. Mosk. Univ. Ser. : Mat. Mekh., No. 2, 59 63 (2006) [Moscow Univ. Mech. Bull. 6 (2), 23 37 (2006)]. 2. V. A. Sadovnichii, V. V. Aleksandrov, E. Soto, et al., A Mathematical Model of the Response of the Semicircular Canal and Otolith to Vestibular System Rotation under Gravity, Fund. Prikl. Mat. (7), 207 220 (2005) [J. of Math. Sci. 46 (3), 5938 5947 (2007)]. 3. V. V. Alexandrov, T. B. Alexandrova, R. Vega, et al., A Mathematical Model of Information Process in Vestibular Mechanoreceptor, in Proc. 4th WSEAS Int. Conf. on Math. Biology and Ecology, January 25 27, 2008 (Acapulco, Mexico, 2008), pp. 86 9.

A MATHEMATICAL MODEL FOR GENERATION OF OUTPUT INFORMATION 45 4. V. V. Aleksandrov, E. Yu. Mikhaleva, E. Soto, and R. Garsia-Tamayo, Modification of the Mathematical Hodgkin Huxley Model for Primary Neurons of the Vestibular Apparatus, Vestn. Mosk. Univ. Ser. : Mat. Mekh., No. 5, 65 68 (2006) [Moscow Univ. Mech. Bull. 6 (5), 2 24 (2006)]. 5. E. C. Keen and A. J. Hudspeth, Transfer Characteristic of the Hair Cell s Afferent Synapse, Proc. Natl. Acad. Sci. USA 03 (4), 5537 5542 (2006). 6. V. V. Alexandrov, A. Almanza, N. V. Kulikovskaya, et al., A Mathematical Model of the Total Current Dynamics in Hair Cells, in Mathematical Modeling of Complex Information Processing Systems (Mosk. Gos. Univ., Moscow, 200), pp. 26 4. Translated by O. Arushanyan