Annex 2 Estimation of the high-efficiency cogeneration and efficient district heating/cooling potential Budapest, December 2015
Századvég Gazdaságkutató Zrt.
Table of Contents List of Tables... 1 List of Figures... 1 1. Introduction and antecedents... 6 2. Summary results... 8 2.1 Initial data... 8 2.2 Reviewed scenarios and results... 9 2.3 Additional potential... 19 2.4 Estimation of cooling potential... 19 Annexes Duration charts for district heating systems that can be characterised by over 8 TJ/year of heat fed to the network according to Scenario Theoretical 2... 21
List of Tables Table 1 Heat mix generated in the individual scenarios (GJ/year)... 15 Table 2 Heat mix generated in the individual scenarios (%)... 15 Table 3 Cogenerated electricity in the individual scenarios... 16 Table 4 Meeting the efficient district heating criterion in the individual scenarios... 18 List of Figures Figure 1 Amount of district heat sold nationally... 8 Figure 2 Existing renewable-based heat generation capacities... 9 Figure 3 New renewable-based heat generation capacities... 12 Figure 4 New renewable-based cogeneration electrical capacities... 12 Figure 5 Estimated capital cost of new renewable-based heat generation capacities... 13 Figure 6 District heat mix emerging in the individual scenarios... 14 Figure 7 District heat mix emerging in the individual scenarios (in percentage)... 15 Figure 8 Cogenerated electricity in the individual scenarios... 16 Figure 9 Primary energy used for district heat generation in the individual scenarios (GJ/a)... 17 Figure 10 Primary energy used for district heat generation in the individual scenarios (%) 18 Figure 11 District heating system, Komló... 22 Figure 12 District heating system, Pécs... 23 Figure 13 Avas-City Centre System, Miskolc... 24 Figure 14 Diósgyőr System, Miskolc... 24 Figure 15 Bulgárföld, Miskolc... 25 Figure 16 Kilián South, Miskolc... 26 Figure 17 HCM System, Miskolc... 27 Figure 18 Liszt Ferenc utca System, Mohács... 28 Figure 19 Municipal System, Székesfehérvár... 29 Figure 20 KÖFÉM System, Székesfehérvár... 30 Figure 21 District heating system, Szentlőrinc... 31 Figure 22 North Buda District Heating System, Budapest... 32 Figure 23 the North Pest District Heating System, Budapest... 33 Figure 24 Újpalota District Heating System, Budapest... 34 Figure 25 District heating system of the Füredi út Central Heating Plant, Budapest... 34 Figure 26 Kispest-Kőbánya District Heating System, Budapest... 35 Figure 27 Csepel-Pesterzsébet Heating District, Budapest... 36 Figure 28 South Buda (Kelenföld) District Heating System, Budapest... 36 Figure 29 Rákoskeresztúr Heating District, Budapest... 37 Figure 30 Rózsakert Heating District, Budapest... 38 Figure 31 District heating system, Szentendre... 38 1
Figure 32 District heating system, Kaposvár... 39 Figure 33 District heating system, Győr... 40 Figure 34 District heat supply system, Budaörs... 41 Figure 35 Mérges utca Boiler Building System, Gyöngyös... 42 Figure 36 Olimpia utca Boiler Building System, Gyöngyös... 43 Figure 37 Dr Géfin System, Celldömölk... 44 Figure 38 District heating system, Nyergesújfalu... 45 Figure 39 District heating system, Érd... 46 Figure 40 District heating system, Tata... 47 Figure 41 District heating system, Ajka... 48 Figure 42 District heating system, Almásfüzitő... 49 Figure 43 District heating system, Baj... 50 Figure 44 Municipal district heating system, Baja... 51 Figure 45 District heating system, Balatonfüred... 52 Figure 46 József Attila System, Berettyóújfalu... 53 Figure 47 Bessenyei System, Berettyóújfalu... 53 Figure 48 District heating system of the Bokodi Housing Estate... 54 Figure 49 Municipal district heating system, Oroszlány... 55 Figure 50 Fay district heating system of Bonyhád... 56 Figure 51 District heating supply system, Cegléd... 57 Figure 52 District heating system, Csongrád... 58 Figure 53 District heating system, Csorna... 58 Figure 54 District heating system, Debrecen... 59 Figure 55 District heating system, Dombóvár... 60 Figure 56 District heating system, Dorog and Esztergom... 61 Figure 57 Nyárfa köz System, Dunakeszi... 62 Figure 58 Tallér út System, Dunakeszi... 63 Figure 59 District heating system, Dunaújváros... 64 Figure 60 District heating system, Eger... 65 Figure 61 System I, Gödöllő... 65 Figure 62 System II, Gödöllő... 66 Figure 63 System of Hajdúszoboszló... 67 Figure 64 Hospital System, Hódmezővásárhely... 68 Figure 65 Hódtó System, Hódmezővásárhely... 69 Figure 66 Mátyás út System, Hódmezővásárhely... 70 Figure 67 Oldalkosár út System, Hódmezővásárhely... 71 Figure 68 District heating system, Kapuvár... 72 Figure 69 District heating system, Kazincbarcika... 73 Figure 70 District heating system, Kecskemét... 74 2
Figure 71 Vásár tér System, Keszthely... 75 Figure 72 Fodor út System, Keszthely... 76 Figure 73 Petőfi System, Kiskunfélegyháza... 77 Figure 74 District heating system, Kiskunhalas... 78 Figure 75 System of Kisvárda... 79 Figure 76 Csokonai System, Komárom... 80 Figure 77 Frigyes Barracks System, Komárom... 81 Figure 78 District heating system of Csillag Housing Estate, Komárom... 82 Figure 79 Municipal district heating system, Körmend... 83 Figure 80 Táncsics System, Kőszeg... 84 Figure 81 Kiss J. Housing Estate, Kőszeg... 85 Figure 82 District heating system, Lábatlan... 86 Figure 83 Deák F. út System, Makó... 87 Figure 84 Hunyadi út System, Makó... 88 Figure 85 District heating system, Mátészalka... 89 Figure 86 District heating system, Mezőhegyes... 90 Figure 87 Muncipal district heating system, Mosonmagyaróvár... 91 Figure 88 District heating system, Mór... 92 Figure 89 District heating system of the Kossuth u. Housing Estate, Nagykőrös... 93 Figure 90 District heating system, Nyírbátor... 94 Figure 91 Municipal System, Nyíregyháza... 95 Figure 92 Tompa M. út System, Nyíregyháza... 96 Figure 93 District heating system, Ózd... 97 Figure 94 District heating system, Paks... 98 Figure 95 District heating system, Pétfürdő... 99 Figure 96 District heating system, Pornóapáti... 100 Figure 97 District heating system, Putnok... 101 Figure 98 District heating system, Püspökladány... 102 Figure 99 District Heating System I, Salgótarján... 103 Figure 100 Beszterce System, Salgótarján... 104 Figure 101 József A. System, Sárbogárd... 105 Figure 102 Dózsa út System, Sátoraljaújhely... 106 Figure 103 Esze T. System, Sátoraljaújhely... 107 Figure 104 Városház tér System, Siófok... 108 Figure 105 District heating system, Sopron... 109 Figure 106 District heating system, Százhalombatta... 110 Figure 107 Felsőváros II System, Szeged... 111 Figure 108 North District System I/a, Szeged... 112 Figure 109 North District System I/b, Szeged... 113 3
Figure 110 Power Plant System, Szeged... 114 Figure 111 Tisza Lajos krt. 36-40. System, Szeged... 115 Figure 112 Odessza I System, Szeged... 116 Figure 113 Odessza II System, Szeged... 117 Figure 114 Rókus System, Szeged... 118 Figure 115 Tarján II System, Szeged... 119 Figure 116 Tarján III to VIII and Felsőváros 1 Systems, Szeged... 120 Figure 117 Tarján IV System, Szeged... 121 Figure 118 Tarján V System, Szeged... 122 Figure 119 Tarján VI System, Szeged... 123 Figure 120 Török út System, Szeged... 124 Figure 121 District heating system of the South, Szekszárd... 125 Figure 122 Kadarka u. District Heating System, Szekszárd... 126 Figure 123 Suburban System, Szentes... 127 Figure 124 Debrecen út Housing Estate System, Szentes... 128 Figure 125 Kurca bank System, Szentes... 129 Figure 126 Kossuth South Side System, Szentes... 130 Figure 127 Mártírok út System, Szentgotthárd... 131 Figure 128 District heating system, Szigetszentmiklós... 132 Figure 129 Hospital System, Szigetvár... 133 Figure 130 József A. Housing Estate System, Szolnok... 134 Figure 131 Móra F. Central Heating Plant System, Szolnok... 135 Figure 132 Széchenyi A. Housing Estate System, Szolnok... 136 Figure 133 TVM System, Szolnok... 137 Figure 134 Szent Flórián System, Szombathely... 138 Figure 135 Vízöntő System, Szombathely... 139 Figure 136 City Centre System, Szombathely... 140 Figure 137 Music School System, Szombathely... 141 Figure 138 Boiler Building System of the Barracks, Szombathely... 142 Figure 139 Mikes út System, Szombathely... 143 Figure 140 Central Heating Plant I System, Tapolca... 144 Figure 141 Central Heating Plant II, Tapolca... 145 Figure 142 District heating system, Tatabánya... 146 Figure 143 District heating system, Tiszaújváros... 147 Figure 144 District heating system, Tiszavasvár... 148 Figure 145 Béke út System, Vasvár... 148 Figure 146 Járdányi út System, Vasvár... 149 Figure 147 Deákvár System, Vác... 150 Figure 148 Vásár tér System, Vác... 151 4
Figure 149 District heating system, Várpalota... 152 Figure 150 District heating system, Inota... 153 Figure 151 Cserhát Housing Estate System, Veszprém... 154 Figure 152 Haszkovó System, Veszprém... 155 Figure 153 Ördögárok út System, Veszprém... 156 Figure 154 System I, Záhony... 157 Figure 155 District heating system, Zirc... 158 5
1. Introduction and antecedents Article 14(1) of the Energy Efficiency Directive (EED) requires the following: Promotion of efficiency in heating and cooling (1) By 31 December 2015, Member States shall carry out [...] a comprehensive assessment of the potential for the application of high-efficiency cogeneration and efficient district heating and cooling,... The potential for high-efficiency cogeneration is, firstly, the amount of heat that can be produced by high-efficiency cogeneration and, secondly, the quantity of electricity that is cogenerated with this amount of heat. It is possible to determine these only by hydraulically independent district heating system (district heating area) on the basis of the heat demand of currently operational district heating systems converted to average meteorological conditions. The value of the theoretical feasibility potential of efficient district heating can be obtained from duration charts. As an example, the nature (P h,cs =100 MW, P h,hmv =7.7 MW, Q h,k =30 MW) of the baseline (converted to heating season with an average climate) duration chart of a district heating system is illustrated by the following figure: 100 P h,cs 90 MW 80 70 60 50 40 30 Q h,k 20 10 P h,hmv 0 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 h/év where P h,cs is the thermal output fed to the network by heat generator(s) (heat input required by the system) at -13 C, P h,hmv is the heat output required by the system to be fed to an average network outside the heating season, and Q h,k. is a preferred (e.g. cogenerating or renewable) capacity, which is to be primarily utilised. For the determination of the heat output duration chart of district heating systems relating to an average heating period, the distribution function of daily average outside temperatures in the heating season as well as the linear regression relationship between the actual daily heat demand of the system and the daily outside temperature must be known. The latter must be calculated for an entire heating season. The duration chart of outside temperatures shows the number of hours on 183 days (184 days in a leap year), a specific or lower outside temperature occurs during an average heating season. Duration charts depend on graphical location. In Hungary, the table available for the capital can be used with good approximation. (The duration chart is available in tabular form. In the period before the proliferation of personal computers, scientific papers dealt with the determination of approximate closed formulas, but the development of information technology has made them obsolete.) Heat demand outside the heating season was taken into account in this study, with a single average value calculated on the basis of the actual use data made available for the last two years. 6
The existing cogeneration and renewable capacities may be fit into these duration charts made for the individual systems, thereby giving rise to the energy potential that is theoretically usable at present. As can be seen from the table below, 50 % coverage (e.g. implemented from renewable energy) in the above system requires, taking into account an actual availability of 23 %, the installation of nearly 30 % of renewable capacity. Q h,k /P h,cs (%) Proportion of max. cogenerated/renewable heat generation (%) 23 50 30 61 35 69.2 40 76.2 45 82.4 50 87.6 It can be determined from the actual installed capacity data for each district heating system that in the event of the maximum and actual utilisation of existing cogeneration/renewable/waste heat-based generation capacities, to what extent the set of conditions of efficient district heating is met. Furthermore, the required utilisation rate of existing capacities and/or the magnitude and required utilisation rate of new cogeneration/renewable/waste heat-based capacities to be established can be determined, where the criterion of efficient district heating can be met upon the fulfilment of the above conditions. With the appropriate summing up of the data determined for the individual district heating systems, the territorial/regional and national potential is obtained. Consequently, in the 2014 2020 programming period, it will be necessary to change and green the heat generation portfolio (the system integration of mainly mass, thermal, waste and waste heat) and to increase the efficiency of the distribution system, which requires the implementation of a significant number of large-scale projects. This requires the assessment and impact analysis of expected projects and the drawdown of KEHOP funds (capital cost estimates, expected indicators and schedule). On the basis of the specifications, the duration charts associated with the energetically optimal development of the district heating systems of the country that may be characterised with a heat demand over 8 TJ/year were surveyed and presented with the theoretical load distributions between heat source types. The results obtained serve as a basis for the fulfilment of the reporting obligation specified in Article 14 of the EED in the case of Annex VIII to the Directive, point 1(d), (e), (f), (h), (i) and (j). 7
2. Summary results The following summarises the results of our calculations from the available, individually reviewed basic energy data for 194 district heating systems of 93 municipalities in total. For lack of available data, the study did not include district heating systems that may operate in the individual municipalities and meet industrial demand only or in at least 90 % (basically with steam heat carrier). 2.1 Initial data The total heat input required by the existing district heating systems taken into account, determined by calculation 1 (at a daily average design outdoor air temperature of -13 o C), is 3 365 MW, its total heat demand fed to the network, converted to average meteorological conditions, is 31.9 PJ/year, while the amount of heat sold is 28.0 PJ/year (see Figure 1). More than three-quarters (76.4 %) of district heat is used for residential purposes. Értékesített távhőmennyiség 759 582 5 843 218 15 870 700 Lakossági fűtés GJ/év Lakossági hmv GJ/év Nem lakossági fűtés GJ/év Nem lakossági hmv GJ/év 5 525 392 Értékesített távhőmennyiség Lakossági fűtés GJ/év Lakossági hmv GJ/év Nem lakossági fűtés GJ/év Nem lakossági hmv GJ/év Amount of district heat sold Residential heating, GJ/year Residential domestic hot water, GJ/year Non-residential heating, GJ/year Non-residential domestic hot water, GJ/year Figure 1 Amount of district heat sold nationally 1 In our country, the heating design outdoor temperature depends on the graphic location and varies between -11 C and -15 C. As national average, the value of the capital, -13 C, can be used as a good approximation. (See, e.g. Baumann, Mihály: Building Energy Engineering, Figure 3.1.1.1, source: Hungarian Standard MSZ-04-140/3) 8
The existing renewable-based installed heat generation capacities that may be taken into account for the purposes of efficient district heating rating are illustrated in Figure 2. Based on the figure, it can be established that at present, a total renewable-based heat generation capacity of 454.5 MW 2 is installed in the district heating systems in question, 246.5 MW of which is cogeneration and 208 MW is direct heat generation capacity. About 111.5 MW of renewable-based installed cogeneration 3 electrical capacity is associated with them. Meglévő megújuló alapú hőtermelő kapacitások 5 0,5 89,5 196,0 massza kapcsolt MW massza közvetlen MW termikus közvetlen MW tszh kapcsolt MW depóniagáz kapcsolt MW 118,5 Meglévő megújuló alapú hőtermelő kapacitások massza kapcsolt MW massza közvetlen MW termikus közvetlen MW tszh kapcsolt MW depóniagáz kapcsolt MW Existing renewable-based heat generation capacities mass cogeneration, MW mass direct, MW thermal direct, MW municipal solid waste cogeneration, MW landfill gas cogeneration, MW Figure 2 Existing renewable-based heat generation capacities The existing natural gas-based installed cogeneration thermal capacity, which may be taken into account for the efficient district heating rating, is almost 1 300 MW in total (combined cycle power plants, gas turbine power plant, steam power plant and gas engines), and the existing nuclear-based installed cogeneration thermal capacity is 20 MW. In total, about 1 150 MW of non-renewable-based installed cogeneration electrical capacity is associated with them. 2.2 Reviewed scenarios and results In our calculations, the thermal and primary energy mixes and the amount of cogenerated electricity of four energy scenarios were determined for each district heating system. In the case of the latter 2 Considering the mass capacity in Tatabánya existing and the thermal capacity in Győr non-existing. 3 Therefore, no condensing capacity is included in this. 9
amount, only the electricity fully cogenerated with the useful amount of heat was taken into account. In further calculations, a constant district heating demand in the future was taken as a basis in this paper, i.e. with a somewhat optimistic approach, it was assumed that the sector would be able to offset the heat demand-reducing effect of the upgrading of primary and secondary systems through market expansion; greening the generated heat mix provides a hope to this. The four scenarios reviewed are as follows: (1) The heat generation mix attainable with existing equipment with the actual/real utilisation of cogeneration and renewable-based equipment (labelled Existing actual/r. in the figures) For systems where actual data were available for the typical average value of the heat generation mix and natural gas-based electricity cogeneration in the current legal and economic environment, these values were included. In other systems, the utilisation rate of the natural gas-based cogeneration capacity quantified by the Hungarian Cogeneration Association at 2 000 h/year in the current condition was reckoned with, and 80 % of the demand that may be met at maximum with existing renewable capacities was taken into account. (2) The best heat generation mix attainable with existing equipment from the point of view of the efficient district heating criterion (labelled Existing max. in the figures) In load distribution, renewable capacities are taken into account for base load, and natural gas-based cogeneration capacities are loaded after renewable capacities have been loaded to maximum. (3) The heat generation mix attainable in the event that new renewable-based generation capacities enter 4 (labelled as Theoretical 1 in the figures) The existing cogeneration capacity carries the base load at maximum utilisation rate in the Theoretical 1 mix, if any. Conceivable new types: -mass, -thermal and municipal solid waste (the MSW ). Of the new renewable-based district heat generators, cogeneration was reckoned with only in Debrecen and in the case of the new Waste-to-energy Plant in Budapest. However, only the value calculated for exclusive heat generation 5 was taken into account. For district heat supply systems where the proposed development is already known (e.g. Budapest North Buda), only the planned capacity was reckoned with, even if the heat generation mix required for the efficient district heating rating also would expect/allow a higher capacity. Otherwise, the capacity of the new technology was selected in such a way that the old cogeneration and the new renewable heat generation units jointly ensure the efficient district heating rating under any circumstances. In the case of systems that already meet the efficient district heating 4 No establishment of any new natural gas-based cogeneration capacity in the foreseeable future was reckoned with. 5 According to estimates, the total capital cost of the whole Waste-to-heat Plant 2 (HUHA2) would be HUF 50 to 65 billion depending on the location of installation and the technical solution. 10
rating even now, no new development was envisaged, and the calculation is based on existing capacities (thus, e.g. no further development was reckoned with for Komló, because on the basis of the current mix, the efficient district heating criterion is met). No development projects were reckoned with for 44 small systems, which do not reach an annual heat demand of 8 TJ, i.e. a thermal power demand of 0.7 to 0.8 MW (less than 200 homes), the total heat demand from a network does not even reach 155 TJ/year, which is half per cent of the total heat demand. (4) Heat generation mix attainable in the event of the entry of new renewable-based generation capacities (labelled as Theoretical 2 in the figures) The scenario reckons with the capacities taken into account for the Theoretical 1 mix, but in this case, renewable capacities carry the base load. For currently efficient systems (in which no new heat generation equipment was reckoned with), it is identical with Scenario 2. In Scenarios Theoretical 1 (3) and Theoretical 2 (4), the renewable-based thermal and electrical capacities foreseen to be installed are shown in Figure 3 and Figure 4. According to the figures, the installation of 482 MW of renewable-based thermal capacity and 41.4 MW related cogeneration electrical capacity were foreseen in the reviewed district heating systems. We note that the possible future appearance of any new aid scheme similar to the previous mandatory power purchase scheme was not taken into account for the estimation of the foreseen cogeneration electrical capacities. Új megújuló alapú hőtermelő kapacitások 57,0 10 289,0 Biomassza közvetlen MW Biomassza kapcsolt MW Geotermikus közvetlen MW Tszh kapcsolt MW 35,0 Meglévő megújuló alapú hőtermelő kapacitások Biomassza közvetlen MW Biomassza kapcsolt MW Geotermikus közvetlen MW Tszh kapcsolt MW Existing renewable-based heat generation capacities Biomass direct, MW Biomass cogeneration, MW Geothermal direct, MW MSW cogeneration, MW 11
Figure 3 New renewable-based heat generation capacities Új megújuló alapú villamos kapacitások 25,65 15,75 Biomassza MW Geotermikus MW Tszh MW 0 Új megújuló alapú villamos kapacitások Biomassza MW Geotermikus MW Tszh MW New renewable-based electrical capacities Biomass, MW Geothermal, MW MSW, MW Figure 4 New renewable-based cogeneration electrical capacities The estimated total capital cost requirement for establishing these would be exactly HUF 86 billion 5 (see Figure 5). 12
Új megújuló alapú hőtermelő kapacitások becsült beruházási költsége 6 840 30 300 48 855 Biomassza MFt Geotermikus MFt Tszh MFt Új megújuló alapú hőtermelő kapacitások becsült beruházási költsége Biomassza M Ft Geotermikus M Ft Tszh M Ft Estimated capital cost of new renewable-based heat generation capacities Biomass, HUF million Geothermal, HUF million MSW, HUF million Figure 5 Estimated capital cost of new renewable-based heat generation capacities The district heat mix generated in the individual scenarios and their percentage distribution are illustrated in Figure 6 and Figure 7, respectively. 13
35 000 000 30 000 000 202 916 202 916 202 916 202 916 3 988 343 3 988 345 9 096 648 25 000 000 15 848 603 Termelt távhő (GJ/év) 20 000 000 15 000 000 10 000 000 11 435 040 2 522 729 3 376 866 3 465 946 17 426 184 596 056 2 904 184 16 311 110 10 481 276 Egyéb (szén, atom) kapcsolt GJ/év Földgáz közvetlen GJ/év Földgáz kapcsolt GJ/év Tszh (+depógáz) kapcsolt GJ/év Geotermikus közvetlen GJ/év Biomassza kapcsolt GJ/év Biomassza közvetlen GJ/év 5 000 000 0 6 906 242 2 768 878 4 011 520 1 246 345 1 316 509 Elméleti2 Elméleti1 Meglévő max. Forgatókönyv 856 362 1 093 934 2 764 225 2 631 406 960 330 783 586 Meglévő tény/r. Figure 6 District heat mix emerging in the individual scenarios 100% 0,64% 0,64% 0,64% 0,64% 90% 12,50% 12,50% 28,52% 80% 70% 35,85% 49,69% Termelt távhő (%) 60% 50% 40% 30% 20% 10% 7,91% 10,59% 10,87% 21,65% 54,63% 1,87% 9,10% 8,68% 12,58% 51,14% 3,91% 4,13% 32,86% 2,68% 3,43% 8,67% 8,25% Egyéb (szén, atom) kapcsolt % Földgáz közvetlen % Földgáz kapcsolt % Tszh (+depógáz) kapcsolt % Geotermikus közvetlen % Biomassza kapcsolt % Biomassza közvetlen % 0% Elméleti2 Elméleti1 Meglévő max. Forgatókönyv 3,01% 2,46% Meglévő tény/r. Termelt távhő (%) District heat generated (%) Egyéb (szén, atom) kapcsolt % Other (coal, nuclear) cogeneration, % Földgáz közvetlen % Natural gas, direct, % Foldgáz kapcsolt % Natural gas, cogeneration, % Tszh (+depógáz) kapcsolt % MSW (+ landfill gas) cogenerated, % Geometrikus közvetlen % Geothermal, direct, % 14
Biomassza kapcsolt % Biomass, cogeneration, % Biomassza közvetlen % Biomass, direct, % Figure 7 District heat mix emerging in the individual scenarios (in percentage) The specific values are summarised in Table 1 and Table 2. Heat mix generated Theoretical 2 Theoretical 1 Existing max. Existing actual/r. Biomass, direct GJ/year 6 906 242 4 011 520 960 330 783 586 Biomass, cogeneration GJ/year 3 465 946 2 768 878 2 764 225 2 631 406 Geothermal, direct GJ/year 3 376 866 2 904 184 1 316 509 1 093 934 MSW (+ landfill gas), cogeneration GJ/year 2 522 729 596 056 1 246 345 856 362 Natural gas, cogeneration GJ/year 11 435 040 17 426 184 16 311 110 10 481 276 Natural gas, direct GJ/year 3 988 343 3 988 345 9 096 648 15 848 603 Other (coal, nuclear), cogeneration GJ/year 202 916 202 916 202 916 202 916 Total GJ/year 31 898 082 31 898 084 31 898 083 31 898 083 Table 1 Heat mix generated in the individual scenarios (GJ/year) Heat mix generated Theoretical 2 Theoretical 1 Existing max. Existing actual/r. Biomass, direct % 21.65 % 12.58 % 3.01 % 2.46 % Biomass, cogeneration % 10.87 % 8.68 % 8.67 % 8.25 % Geothermal, direct % 10.59 % 9.10 % 4.13 % 3.43 % MSW (+ landfill gas), cogeneration % 7.91 % 1.87 % 3.91 % 2.68 % Natural gas, cogeneration % 35.85 % 54.63 % 51.14 % 32.86 % Natural gas, direct % 12.50 % 12.50 % 28.52 % 49.69 % Other (coal, nuclear), cogeneration % 0.64 % 0.64 % 0.64 % 0.64 % Total % 100.00 % 100.00 % 100.00 % 100.00 % Table 2 Heat mix generated in the individual scenarios (%) The amount of cogenerated electricity associated with the outlined development projects is illustrated in Figure 8 and Table 3. 15
5 000 000 20 209 4 500 000 20 209 4 000 000 Kapcsoltan termelt villany (MWh/év) 3 500 000 3 000 000 2 500 000 2 000 000 1 500 000 1 000 000 20 209 2 838 985 4 345 102 4 060 251 20 209 2 585 669 nukleáris MWh/év földgáz MWh/év tszh (+depóniagáz) MWh/év massza MWh/év 500 000 0 231 560 37 346 72 012 48 850 382 411 303 035 294 696 285 718 Elméleti2 Elméleti1 Meglévő max. Forgatókönyv Meglévő tény/r. Kapcsolt termelt villany (MWh/év) nukleáris MWh/év földgáz MWh/év tszh (+depóniagáz) MWh/év massza MWh/év Cogenerated electricity (MWh/year) nuclear, MWh/year natural gas, MWh/year MSW (+ landfill gas), MWh/year mass, MWh/year Cogenerated electricity Figure 8 Cogenerated electricity in the individual scenarios Theoretical 2 Theoretical 1 Existing max. Existing actual/r. mass MWh/year 382 411 303 035 294 696 285 718 MSW (+ landfill gas) MWh/year 231 560 37 346 72 012 48 850 natural gas MWh/year 2 838 985 4 345 102 4 060 251 2 585 669 nuclear MWh/year 20 209 20 209 20 209 20 209 Total MWh/year 3 473 165 4 705 692 4 447 167 2 940 446 Table 3 Cogenerated electricity in the individual scenarios The previously stated boundary condition is repeated with respect to the amount of cogenerated electricity, whereby it only contains the amount that is 100 % cogenerated with useful heat and does not contain any, even partial, condensation production. In the four outlined scenarios, the distribution of primary energy use for district heat generation and its percentages are shown in Figure 9 and Figure 10, respectively. In the case of cogeneration, the primary energy used for district heat generation was derived in such a way that the primary energy used for cogenerated electricity, calculated with reference efficiency, was deducted from the total primary energy used. Accordingly, the primary energy demand of 16
district heat is lower in the scenarios that assume more cogeneration (this is exactly the energy benefit of cogeneration). 30 000 000 25 000 000 20 000 000 GJ 15 000 000 Nukleáris Tszh Depónia gáz Geotermikus Biomassza Földgáz 10 000 000 5 000 000 0 (1) Reális (2) Meglévő max (3) Elméleti1 (4) Elméleti2 Nukleáris Tszh Depónia gáz Geotermikus Biomassza Földgáz Nuclear MSW Landfill gas Geothermal Biomass Natural gas Figure 9 Primary energy used for district heat generation in the individual scenarios (GJ/a) 17
100% 90% 80% 1,99% 3,24% 1,54% 3,87% 5,26% 11,95% 8,99% 11,43% 17,03% 8,67% 12,37% 70% 60% 39,13% Nukleáris Tszh 50% Depónia gáz Geotermikus 40% 84,82% 79,69% Biomassza Földgáz 69,09% 30% 20% 39,49% 10% 0% (1) Reális (2) Meglévő max (3) Elméleti1 (4) Elméleti2 Nukleáris Tszh Depónia gáz Geotermikus Biomassza Földgáz Nuclear MSW Landfill gas Geothermal Biomass Natural gas Figure 10 Primary energy used for district heat generation in the individual scenarios (%) In the four outlined scenarios, the number of district heating systems meeting the efficient district heating criterion and the amount of district heat sold in district heating systems meeting the efficient district heating criterion are shown Table 4 Meeting the efficient district heating criterion Theoretical 2 Theoretical 1 Existing max. Existing actual/r. Efficient district heating system qty 134 134 44 28 Amount of district heat generated in efficient district GJ/year 30 917 660 30 917 660 20 563 467 9 166 177 heating systems Proportion of district heat generated in efficient district heating systems % 96.93% 96.93% 64.47% 28.74% Table 4 Meeting the efficient district heating criterion in the individual scenarios According to Scenarios Theoretical 1 and Theoretical 2, 134 systems attain the efficient district heating rating, which amounts to 97 % of the amount fed to the network. As already been mentioned, no development was assumed in 44 small systems representing a heat demand of only 155 TJ/year in total fed to the network. One of them, the Nagyatád system, forms part of the 18
134 efficient district heating systems due to its existing thermal heat generation, thus the number of small systems not to be improved is actually 43. The heat demand of the remaining 15 inefficient systems is 834 TJ/year, which is 2.6 % of the total demand. In their case, due to the high (but not sufficiently high) proportion of either the existing cogeneration (gas engine) or renewable capacity, the establishment of only smaller or 0 new capacities was assumed. 2.3 Additional potential In the scenarios outlined above, the new capacities were included in the systems by bearing in mind only the condition that they should possibly meet (with modest reserves) the criterion of efficient district heating. With regard to practical examples of certain existing district heating systems and values determined by estimation, used in technical and energy engineering practice, if the establishment of new capacities at a rate allowing them to approach 50 % of the thermal power demand in the given system were envisaged, it would be conceivable to establish an additional about 110 MW of new renewable heat generation capacity. The amount of heat that can be generated by them is about 1.6 PJ/year. Assuming that mostly mass and to a smaller extent thermal-based capacities are involved, the investment required for this can be estimated at HUF 15 or 16 billion. 2.4 Estimation of cooling potential A few words will be said below also about the potential of district cooling in this paper (which means only heat-driven cooling (trigeneration)). The economic potential of district cooling is currently zero, because only the energy costs of heatdriven cooling clearly exceed the energy cost of cooling energy generated with traditional electricdriven compressor liquid coolers, not to mention capital load differences due to significantly higher capital costs. The theoretical potential for the district cooling of residences can be estimated on the basis of the amount of heat used for heating (15.87 PJ/year), which is sold to the general public. According to the experience from the few completed district cooling projects, compared to heating demand, both the cooling power demand and the cooling energy demand can be approximated at 50 %, thus the theoretical cooling energy potential can be estimated at 25 % of the heating demand, i.e. exactly 4 PJ/year, in the case of the general public. In the case of non-residential users, setting the capacity demand at 80 % and the cooling energy demand at 65 % of the heating demand (5 843 PJ/year), the theoretical cooling energy potential can be estimated at 52 % of the heating demand, i.e. exactly 3 PJ/year. The technical potential of district cooling is lower than this, because for economic and security of supply reasons, it is not warranted to establish heat-driven liquid coolers to meet load demand. The heat-driven liquid cooler capacity installed at half of the cooling capacity demand may provide for meeting 80 % of the cooling energy demand. Therefore, the technical potential can be put at 80 % of the theoretical potential. There is currently no example for the local trigeneration (a cogenerating and heat-driven liquid cooler at the same site ) in domestic district heating systems. Heat-driven ( sorption ) liquid coolers 19
are installed at one consumer of each of the Tiszaújváros, Szentendre and Csepel (Budapest) district heating systems and a few users of the Debrecen district heating systems, but these pieces of equipment do not operate or hardly operate due to a driving energy price that has multiplied compared to the period of installation. Instead, cooling energy is generated with electric-driven machines. 20
Annexes Duration charts for district heating systems that can be characterised by over 8 TJ/year of heat fed to the network according to Scenario Theoretical 2 The diagrams also show a particular theoretical load distribution between heat generators in accordance with the load allocations in Scenario Theoretical 2, taking into account an existing or planned/proposed renewable (mass, thermal energy or municipal solid waste) energy source for base load (shown in green). In the diagrams, the next element in the order of loading is the existing natural gas-based cogeneration capacity (shown in blue), and finally thermal capacities of natural gas fired load boilers are shown in yellow on top. The new renewable capacities were determined in such a way that together with the existing (high-efficiency) cogeneration equipment, the primary energy mixes required for the efficient district heating rating can be met with a modest reserve for the given district heating system. The figures show, under the name of the system as title, the quantities of heat (GJ/year) generated by the above three heat generation groups (renewable, connected, ) in a year with an average climate and their share in the heat generation mix. The quantities from renewable (mass, thermal) heat generation and cogeneration, taken into account in district heat supply, are theoretical maximum values, which may be affected in reality by scheduled and unexpected failures of the specific equipment generating them. If, in municipalities that have several district heating systems in island operation, the strategic connection of the systems is carried out, both the load allocations and the duration charts of thermal power demand themselves may also change. In the capital, nine large district heating systems supply heat to nine district heating areas. Of these, the strategic connection of the North Pest and Újpalota systems has been implemented. The experience of joint operation is continuously evolving; therefore, the two systems were presented in separate heat demand duration charts in this paper. The Kispest-Kőbánya, Csepel-Pesterzsébet and South-Buda Heating Districts are supplied with heat in island operation; therefore, the duration charts are also shown separately. The connection of three systems in the South Budapest area is a task planned for the coming years. The one- or two-line brief remarks to the figures belong to the figure above the text. 21
3 Komló : 260 772 GJ, 96,7% : 8 256 GJ, 3,1% : 531 GJ,,2% 25,0 2 15,0 1 5,0 With existing wood chips-fired boiler. Figure 11 District heating system, Komló 22
18 Pécs faapríték kapcsolt: 1 221 912 GJ, 80,8% szalma kapcsolt: 285 861 GJ, 18,9% : 4 522 GJ,,3% 16 14 12 10 8 6 4 2 faapríték kapcsolt szalma kapcsolt wood chips, cogeneration straw, cogeneration Figure 12 District heating system, Pécs Cogeneration based on wood chips and cereal straw. 14 Miskolc Avas-Belváros : 982 688 GJ, 84,9% : 173 745 GJ, 15,0% : 1 271 GJ,,1% 12 10 8 6 4 2 23
Miskolc Avas-Belváros Miskolc Avas-City Centre Figure 13 Avas-City Centre System, Miskolc Loading up to a theoretical thermal capacity of 60 MW. 16,0 Miskolc Diósgyőr : 45 319 GJ, 35,4% : 61 831 GJ, 48,3% : 20 996 GJ, 16,4% 14,0 1 1 8,0 6,0 4,0 With the establishment of a 2 MW mass boiler. Figure 14 Diósgyőr System, Miskolc 24
6,0 Miskolc Bulgárföld : 34 682 GJ, 76,2% : 0 GJ,,0% : 10 820 GJ, 23,8% 5,0 4,0 3,0 Miskolc Bulgárföld Miskolc Bulgárföld Figure 15 Bulgárföld, Miskolc 25
6,0 Miskolc Kilián Dél : 39 658 GJ, 91,4% : 3 702 GJ, 8,5% : 7 GJ,,0% 5,0 4,0 3,0 Miskolc Kilián Dél Miskolc Kilián South Figure 16 Kilián South, Miskolc Existing wood chips-fired boiler. 26
1,6 Miskolc HCM rendszer gáz: 9 008 GJ, 66,6% : 0 GJ, % : 4 520 GJ, 33,4% 1,4 1,2 0,8 0,6 0,4 0,2 Miskolc HCM rendszer gáz Miskolc HCM system gas Figure 17 HCM System, Miskolc With existing landfill gas engine. 27
1 Mohács Liszt Ferenc utcai rendszer : 53 111 GJ, 58,3% : 17 589 GJ, 19,3% : 20 449 GJ, 22,4% 1 8,0 6,0 4,0 Mohács Liszt Ferenc utcai rendszer Liszt Ferenc utca System, Mohács With the installation of a new mass boiler. Figure 18 Liszt Ferenc utca System, Mohács 28
9 Székesfehérvár városi rendszer : 394 113 GJ, 54,6% : 281 001 GJ, 38,9% : 46 816 GJ, 6,5% 8 7 6 5 4 3 2 1 Székesfehérvár városi rendszer Municipal System, Székesfehérvár Figure 19 Municipal System, Székesfehérvár New 20 MW mass boiler, existing gas engine capacity of 25 MW th. 29
3,5 Székesfehérvár KÖFÉM : 19 054 GJ, 64,2% : 4 923 GJ, 16,6% : 5 723 GJ, 19,3% 3,0 2,5 1,5 0,5 Székesfehérvár KÖFÉM KÖFÉM, Székesfehérvár With a 1 MW new mass boiler. Figure 20 KÖFÉM System, Székesfehérvár 30
2,5 Szentlőrinc : 20 225 GJ, 10% : 0 GJ,,0% : GJ,,0% 1,5 0,5 With existing thermal heat source. Figure 21 District heating system, Szentlőrinc 31
20 Budapest Észak-Buda : 544 901 GJ, 30,4% : 1 040 020 GJ, 58,0% : 208 072 GJ, 11,6% 18 16 14 12 10 8 6 4 2 Budapest Észak-Buda North Buda, Budapest Figure 22 North Buda District Heating System, Budapest A new 20 MW wood chips-fired boiler and an existing gas turbine heat cogeneration capacity of 74 MW th. 32
35 Budapest Észak-Pest tszh kapcsolt: 800 440 GJ, 26,9% : 1 686 571 GJ, 56,7% : 487 923 GJ, 16,4% 30 25 20 15 10 5 Budapest Észak-Pest tszh kapcsolt North Pest, Budapest MSW, cogeneration Figure 23 the North Pest District Heating System, Budapest 28 MW th municipal solid waste-based capacity (Waste-to-heat Plant) and 115 MW th combined cycle power plant + gas engines. 8 Budapest Újpalota tszh kapcsolt: 436 897 GJ, 62,6% : 224 470 GJ, 32,2% : 36 266 GJ, 5,2% 7 6 5 4 3 2 1 33
Budapest Újpalota tszh kapcsolt Újpalota, Budapest MSW, cogeneration Figure 24 Újpalota District Heating System, Budapest Heat generation capacities taken into account: existing 22 MW th cogenerated municipal solid waste and 21 MW th of existing gas engine cogeneration thermal capacity. 9 Budapest Füredi út : 250 687 GJ, 32,6% : 280 577 GJ, 36,5% : 236 676 GJ, 30,8% 8 7 6 5 4 3 2 1 Budapest Füredi út Füredi út, Budapest Figure 25 District heating system of the Füredi út Central Heating Plant, Budapest Heat generation capacity taken into account: 10 MW of new thermal (perhaps mass) heat source and 18 MW of gas engine cogeneration heat capacity. 34
25 Budapest Kispest-Kőbánya : 878 859 GJ, 44,7% : 1 069 022 GJ, 54,4% : 17 438 GJ,,9% 20 15 10 5 Budapest Kispest-Kőbánya Kispest-Kőbánya, Budapest Figure 26 Kispest-Kőbánya District Heating System, Budapest Heat generation capacities taken into account: a new 40 MW mass (wood chips) boiler and 114 MW combined cycle power plant + gas engines (cogeneration). 10 9 Budapest Csepel-Pesterzsébet tszh kapcsolt: 463 879 GJ, 50,9% : 447 222 GJ, 49,1% : GJ, % 8 7 6 5 4 3 2 1 _ 35
Budapest Csepel-Pesterzsébet tszh kapcsolt Csepel-Pesterzsébet, Budapest MSW, cogeneration Figure 27 Csepel-Pesterzsébet Heating District, Budapest Heat generation capacities taken into account: 22 MW municipal solid waste (Waste-to-heat Plant II (HUHA II), to be newly constructed) and a 128 MW combined cycle power plant. 30 Budapest Dél-Buda (Kelenföld) tszh kapcsolt: 812 505 GJ, 32,8% : 1 662 366 GJ, 67,1% : 828 GJ, % 25 20 15 10 5 Budapest Dél-Buda (Kelenföld) tszh kapcsolt South Buda (Kelenföld), Budapest MSW, cogeneration Figure 28 South Buda (Kelenföld) District Heating System, Budapest Heat generation capacities taken into account: 35 MW municipal solid waste (Waste-to-heat Plant II (HUHA II), to be newly constructed) and a 220 MW combined cycle power plant. 36
4 Budapest Rákoskeresztúr : 110 215 GJ, 31,6% : 142 388 GJ, 40,8% : 95 981 GJ, 27,5% 35,0 3 25,0 2 15,0 1 5,0 Figure 29 Rákoskeresztúr Heating District, Budapest Heat generation capacities taken into account: 4 MW of new thermal thermal capacity and 9 MW of gas engine cogeneration capacity 6,0 Budapest Rózsakert megújuló: 0 GJ, % : 33 056 GJ, 59,7% : 22 333 GJ, 40,3% 5,0 4,0 3,0 37
Budapest Rózsakert megújuló Rózsakert, Budapest renewable Figure 30 Rózsakert Heating District, Budapest 1 Szentendre : 47 189 GJ, 57,0% : 0 GJ,,0% : 35 638 GJ, 43,0% 9,0 8,0 7,0 6,0 5,0 4,0 3,0 Figure 31 District heating system, Szentendre With the establishment of a 2.5 MW new mass boiler. 38
35,0 Kaposvár : 188 927 GJ, 64,8% : 81 574 GJ, 28,0% : 21 138 GJ, 7,2% 3 25,0 2 15,0 1 5,0 Figure 32 District heating system, Kaposvár With the installation of a new 10 MW wood chips-fired boiler. 39
Figure 33 District heating system, Győr Heat generation capacities taken into account: 30 MW of average thermal capacity (which can be considered existing) and 18 MW of gas engine cogeneration capacity. 40
1 Budaörs : 61 036 GJ, 63,4% : 0 GJ,,0% : 35 197 GJ, 36,6% 1 8,0 6,0 4,0 Figure 34 District heat supply system, Budaörs In the event of the installation of a 3 MW mass boiler. 41
7,0 Gyöngyös Mérges utca : 36 652 GJ, 61,5% : 15 392 GJ, 25,8% : 7 584 GJ, 12,7% 6,0 5,0 4,0 3,0 Gyöngyös Mérges utca Mérges utca, Gyöngyös Figure 35 Mérges utca Boiler Building System, Gyöngyös In the event of the establishment of 2 MW of thermal capacity. 42
7,0 Gyöngyös Olimpia u. : 26 238 GJ, 53,4% : 13 558 GJ, 27,6% : 9 356 GJ, 19,0% 6,0 5,0 4,0 3,0 Gyöngyös Olimpia u. Olimpia u., Gyöngyös Figure 36 Olimpia utca Boiler Building System, Gyöngyös Assuming the establishment of 1.5 MW of thermal capacity. 43
2,5 Celldömölk Dr. Géfin : 16 894 GJ, 88,0% : 0 GJ,,0% : 2 301 GJ, 1% 1,5 0,5 Celldömölk Dr. Géfin Dr Géfin, Celldömölk With a planned thermal capacity of 1 MW. Figure 37 Dr Géfin System, Celldömölk 44
5,0 Nyergesújfalu : 27 838 GJ, 67,6% : 0 GJ,,0% : 13 330 GJ, 32,4% 4,5 4,0 3,5 3,0 2,5 1,5 0,5 Figure 38 District heating system, Nyergesújfalu With a thermal capacity of 1.5 MW to be newly established. 45
7,0 Érd : 37 398 GJ, 67,4% : 12 860 GJ, 23,2% : 5 242 GJ, 9,4% 6,0 5,0 4,0 3,0 Figure 39 District heating system, Érd With 2 MW of mass capacity to be newly established and utilising the existing gas engine thermal capacity. 46
1 Tata : 78 897 GJ, 92,8% : 0 GJ,,0% : 6 120 GJ, 7,2% 9,0 8,0 7,0 6,0 5,0 4,0 3,0 Figure 40 District heating system, Tata Capacity of the existing wood chips-fired boiler: 5 MW. 47
5 Ajka : 412 370 GJ, 10% : 0 GJ, % : GJ, % 45,0 4 35,0 3 25,0 2 15,0 90 %, 10 % szén, 100 % kapcsolt 1 5,0 90%, 10% szén, 100% kapcsolt 90 %, 10 % coal, 100 % cogeneration Figure 41 District heating system, Ajka 48
6,0 Almásfüzítő : 44 135 GJ, 9% : 3 823 GJ, 8,0% : 6 GJ, % 5,0 4,0 3,0 Existing 2.8 MW wood chips-fired boiler. Figure 42 District heating system, Almásfüzitő 49
1,2 Baj : 7 452 GJ, 73,2% : 0 GJ, % : 2 735 GJ, 26,8% 0,8 0,6 0,4 0,2 With the entry of a new 400 kw th mass boiler. Figure 43 District heating system, Baj 50
1 Baja : 47 023 GJ, 48,7% : 24 471 GJ, 25,3% : 25 145 GJ, 26,0% 1 8,0 6,0 4,0 Figure 44 Municipal district heating system, Baja With 2.5 MW mass-based heat generation equipment to be newly established. 51
2,5 Balatonfüred : GJ, % : 19 549 GJ, 93,0% : 1 463 GJ, 7,0% 1,5 0,5 Figure 45 District heating system, Balatonfüred 1,6 Berettyóújfalu József Attila rendszer : 8 883 GJ, 72,4% : 0 GJ, % : 3 384 GJ, 27,6% 1,4 1,2 0,8 0,6 0,4 0,2 52
Berettyóújfalu József Attila rendszer József Attila System, Berettyóújfalu Figure 46 József Attila System, Berettyóújfalu With the establishment of 500 kw new mass-based capacity. 2,5 Berettyóújfalu Bessenyei rendszer : 13 848 GJ, 64,5% : 0 GJ, % : 7 620 GJ, 35,5% 1,5 0,5 Berettyóújfalu Bessenyei rendszer Bessenyei System, Berettyóújfalu Figure 47 Bessenyei System, Berettyóújfalu With a 900 kw mass boiler. 53
1,6 Bokodi ltp. : GJ,,0% : 0 GJ,,0% : 13 154 GJ, 10% 1,4 1,2 0,8 0,6 0,4 0,2 Bokodi ltp. Bokodi Housing Estate Figure 48 District heating system of the Bokodi Housing Estate It may change depending on the long-term fate of the Oroszlány Power Plant. 54
35,0 Oroszlány : 207 784 GJ, 6% : 0 GJ,,0% : 138 277 GJ, 4% 3 25,0 2 15,0 1 5,0 Figure 49 Municipal district heating system, Oroszlány With the putting into service of a 10 MW wood chips-fired boiler. 55
5,0 Bonyhád Fáy ltp : GJ, % : 33 058 GJ, 79,3% : 8 618 GJ, 20,7% 4,5 4,0 3,5 3,0 2,5 1,5 0,5 Bonyhád Fáy ltp Fay Housing Estate, Bonyhád Figure 50 Fay district heating system of Bonyhád 56
1 Cegléd : GJ, % : 59 319 GJ, 74,1% : 20 784 GJ, 25,9% 9,0 8,0 7,0 6,0 5,0 4,0 3,0 Figure 51 District heating supply system, Cegléd 3,5 Csongrád : 17 217 GJ, 68,2% : 0 GJ, % : 8 035 GJ, 31,8% 3,0 2,5 1,5 0,5 57
Figure 52 District heating system, Csongrád With the establishment of 1 MW of new thermal capacity. 7,0 Csorna : 35 354 GJ, 64,6% : 19 381 GJ, 35,4% : 7 GJ, % 6,0 5,0 4,0 3,0 Figure 53 District heating system, Csorna Foreseeing the establishment of 2 MW of new mass-based heat generation capacity. 58
25 Debrecen kapcsolt: 701 721 GJ, 38,1% : 1 108 204 GJ, 60,2% : 31 839 GJ, 1,7% 20 15 10 5 Figure 54 District heating system, Debrecen Heat generation capacities taken into account: 35 MW of new mass (or MSW) capacity and a 110 MW combined cycle power plant (DKCE). 59
1 Dombóvár : 54 909 GJ, 60,2% : 19 619 GJ, 21,5% : 16 621 GJ, 18,2% 1 8,0 6,0 4,0 Figure 55 District heating system, Dombóvár With a thermal capacity of 3 MW to be newly established. 60
3 Dorog-Esztergom : GJ, % : 181 069 GJ, 75,7% : 58 028 GJ, 24,3% 25,0 2 15,0 1 5,0 Figure 56 District heating system, Dorog and Esztergom 61
1,6 Dunakeszi Nyárfa köz : 9 581 GJ, 67,2% : 0 GJ, % : 4 686 GJ, 32,8% 1,4 1,2 0,8 0,6 0,4 0,2 Dunakeszi Nyárfa köz Nyárfa köz, Dunakeszi Figure 57 Nyárfa köz System, Dunakeszi In the event of the entry of 500 kw of mass-based heat generation capacity. 62
1 Dunakeszi Tallér út : 60 058 GJ, 57,1% : 27 358 GJ, 26,0% : 17 759 GJ, 16,9% 1 8,0 6,0 4,0 Dunakeszi Tallér út Tallér út, Dunakeszi Figure 58 Tallér út System, Dunakeszi In the event of the establishment of 3 MW of mass-based heat generation capacity. 63
10 Dunaújváros : 395 730 GJ, 49,0% : 385 370 GJ, 47,8% : 25 939 GJ, 3,2% 9 8 7 6 5 4 3 2 1 Figure 59 District heating system, Dunaújváros In the event of the establishment of 20 MW of new mass capacity. (At present, DunaFerr, which also has a cogeneration capacity based on waste heat and process by-product gases, does not take part in heat generation.) 25,0 Eger : 104 909 GJ, 54,9% : 56 153 GJ, 29,4% : 30 119 GJ, 15,8% 2 15,0 1 5,0 64
Figure 60 District heating system, Eger In the event of the establishment of 5 MW of thermal capacity. 4,0 Gödöllő I. rendszer : 22 973 GJ, 65,6% : 0 GJ, % : 12 055 GJ, 34,4% 3,5 3,0 2,5 1,5 0,5 Gödöllő I. rendszer System I, Gödöllő Figure 61 System I, Gödöllő In the event of the establishment of 1.5 MW of thermal capacity. 65
9,0 Gödöllő II. rendszer : 47 883 GJ, 63,9% : 19 166 GJ, 25,6% : 7 855 GJ, 10,5% 8,0 7,0 6,0 5,0 4,0 3,0 Gödöllő I. rendszer System II, Gödöllő Figure 62 System II, Gödöllő In the event of the establishment of 2.5 MW of thermal capacity. 66
6,0 Hajdúszoboszló : 30 432 GJ, 59,8% : 17 582 GJ, 34,6% : 2 837 GJ, 5,6% 5,0 4,0 3,0 Figure 63 System of Hajdúszoboszló In the event of the establishment of 1.5 MW of thermal capacity. 67
2,5 Hódmezővásárhely Kórházi rendszer : 18 456 GJ, 98,5% : 0 GJ, % : 275 GJ, 1,5% 1,5 0,5 Hódmezővásárhely Kórházi rendszer Hospital System, Hódmezővásárhely Existing thermal heat generation. Figure 64 Hospital System, Hódmezővásárhely 68
9,0 Hódmezővásárhely Hódtói rendszer : 71 568 GJ, 98,5% : 0 GJ, % : 1 066 GJ, 1,5% 8,0 7,0 6,0 5,0 4,0 3,0 Hódmezővásárhely Hódtói rendszer Hódtó System, Hódmezővásárhely Figure 65 Hódtó System, Hódmezővásárhely Existing thermal supply. 69
3,0 Hódmezővásárhely, Mátyás úti rendszer : 26 423 GJ, 98,5% : 0 GJ, % : 394 GJ, 1,5% 2,5 1,5 0,5 Hódmezővásárhely, Mátyás úti rendszer Mátyás út System, Hódmezővásárhely Existing thermal heat generation. Figure 66 Mátyás út System, Hódmezővásárhely 70
6,0 Hódmezővásárhely Oldalkosár úti fűtőmű : 45 410 GJ, 98,5% : 0 GJ, % : 676 GJ, 1,5% 5,0 4,0 3,0 Hódmezővásárhely Oldalkosár úti fűtőmű Oldalkosár út Heat Plant, Hódmezővásárhely Existing thermal heat generation. Figure 67 Oldalkosár út System, Hódmezővásárhely 71
Kapuvár : 5 704 GJ, 66,3% : 0 GJ, % : 2 896 GJ, 33,7% 0,9 0,8 0,7 0,6 0,5 0,4 0,3 0,2 0,1 Figure 68 District heating system, Kapuvár In the event of the installation of a 300 kw of mass-based capacity. 72
5 Kazincbarcika : 188 555 GJ, 45,2% : 144 361 GJ, 34,6% : 83 902 GJ, 20,1% 45,0 4 35,0 3 25,0 2 15,0 1 5,0 Figure 69 District heating system, Kazincbarcika In the event of the implementation of a 10 MW mass-based heat generation capacity. 73
6 Kecskemét : 214 015 GJ, 45,7% : 102 630 GJ, 21,9% : 151 625 GJ, 32,4% 5 4 3 2 1 Figure 70 District heating system, Kecskemét In the event of the implementation of a 10 MW mass-based heat generation capacity. 74
3,0 Keszthely Vásár téri : 16 332 GJ, 68,4% : 6 232 GJ, 26,1% : 1 325 GJ, 5,5% 2,5 1,5 0,5 Keszthely Vásár téri Vásár tér, Keszthely With 1 MW of new thermal capacity. Figure 71 Vásár tér System, Keszthely 75
4,0 Keszthely Fodor út : 23 548 GJ, 76,1% : 5 565 GJ, 18,0% : 1 843 GJ, 6,0% 3,5 3,0 2,5 1,5 0,5 Keszthely Fodor úti Fodor út, Keszthely Figure 72 Fodor út System, Keszthely With 1.5 MW of new thermal heat generation capacity. 76
6,0 Kiskunfélegyháza Petőfi ltp. : GJ, % : 29 610 GJ, 57,3% : 22 090 GJ, 42,7% 5,0 4,0 3,0 Kiskunfélegyháza Petőfi ltp. Petőfi Housing Estate, Kiskunfélegyháza Figure 73 Petőfi System, Kiskunfélegyháza 77
6,0 Kiskunhalas : GJ, % : 21 229 GJ, 44,9% : 26 071 GJ, 55,1% 5,0 4,0 3,0 Figure 74 District heating system, Kiskunhalas 78
9,0 Kisvárda : 37 520 GJ, 54,4% : 20 976 GJ, 30,4% : 10 429 GJ, 15,1% 8,0 7,0 6,0 5,0 4,0 3,0 Figure 75 System of Kisvárda In the event of the establishment of a 2 MW mass-based capacity. 79
3,5 Komárom Csokonai : 23 409 GJ, 73,2% : 8 591 GJ, 26,8% : GJ, % 3,0 2,5 1,5 0,5 Komárom Csokonai Csokonai, Komárom Figure 76 Csokonai System, Komárom In the event of the establishment of a 1.2 MW mass-based heat generation unit. 80
5,0 Komárom Frigyes laktanya : GJ, % : 22 223 GJ, 52,5% : 20 077 GJ, 47,5% 4,5 4,0 3,5 3,0 2,5 1,5 0,5 Komárom Frigyes laktanya Frigyes Barracks, Komárom Figure 77 Frigyes Barracks System, Komárom 81
1,2 Komárom Csillag ltp : 5 785 GJ, 62,9% : 0 GJ, % : 3 415 GJ, 37,1% 0,8 0,6 0,4 0,2 Komárom Csillag ltp Csillag Housing Estate, Komárom Figure 78 District heating system of Csillag Housing Estate, Komárom With the establishment of 300 kw of new thermal capacity. 82
9,0 Körmend városi : 63 794 GJ, 97,3% : 1 477 GJ, 2,3% : 269 GJ, 0,4% 8,0 7,0 6,0 5,0 4,0 3,0 Körmend városi Municipal, Körmend Existing mass-fired boiler. Figure 79 Municipal district heating system, Körmend 83
1,4 Kőszeg Táncsics u. : GJ, % : 6 080 GJ, 5% : 5 620 GJ, 48,0% 1,2 0,8 0,6 0,4 0,2 Kőszeg Táncsics u. Táncsics u., Kőszeg Figure 80 Táncsics System, Kőszeg 84
Kőszeg, Kiss J. lakótelep : 11 300 GJ, 68,5% : 0 GJ, % : 5 200 GJ, 31,5% 1,8 1,6 1,4 1,2 0,8 0,6 0,4 0,2 Kőszeg Kiss J. lakótelep Kiss J. Housing Estate, Kőszeg Figure 81 Kiss J. Housing Estate, Kőszeg Foreseeing 600 kw of mass-based heat generation capacity. 85
1,8 Lábatlan : 11 199 GJ, 70,4% : 0 GJ, % : 4 701 GJ, 29,6% 1,6 1,4 1,2 0,8 0,6 0,4 0,2 Figure 82 District heating system, Lábatlan Foreseeing 600 kw of mass-based heat generation capacity. 86
2,5 Makó Deák F. úti rendszer : 14 950 GJ, 70,2% : 0 GJ, % : 6 350 GJ, 29,8% 1,5 0,5 Makó Deák F. úti rendszer Deák F. út System, Makó Figure 83 Deák F. út System, Makó In the event of the establishment of 800 kw new mass-based heat generation capacity. 87
3,0 Makó Hunyadi úti rendszer : 18 795 GJ, 74,3% : 0 GJ, % : 6 505 GJ, 25,7% 2,5 1,5 0,5 Makó Hunyadi úti rendszer Hunyadi út System, Makó With 1 MW of new mass-based capacity. Figure 84 Hunyadi út System, Makó 88
1 Mátészalka : 76 501 GJ, 85,3% : 0 GJ, % : 13 210 GJ, 14,7% 9,0 8,0 7,0 6,0 5,0 4,0 3,0 With existing wood chips-fired boiler. Figure 85 District heating system, Mátészalka 89
3,0 Mezőhegyes : 19 957 GJ, 75,9% : 0 GJ, % : 6 343 GJ, 24,1% 2,5 1,5 0,5 Figure 86 District heating system, Mezőhegyes In the event of the establishment of a new 1.1 MW wood chips-fired heat source. 90
2 Mosonmagyaróvár : 126 542 GJ, 77,3% : 0 GJ, % : 37 099 GJ, 22,7% 18,0 16,0 14,0 1 1 8,0 6,0 4,0 Figure 87 Muncipal district heating system, Mosonmagyaróvár In the event of the connection of 7 MW of new thermal capacity. 91
1 Mór : 53 807 GJ, 67,5% : 21 394 GJ, 26,8% : 4 558 GJ, 5,7% 9,0 8,0 7,0 6,0 5,0 4,0 3,0 Figure 88 District heating system, Mór In the event of the establishment of 3 MW of thermal-based heat generation capacity. 92
1,2 Nagykőrös Kossuth u. ltp. : 8 433 GJ, 82,6% : 887 GJ, 8,7% : 888 GJ, 8,7% 0,8 0,6 0,4 0,2 Nagykőrös Kossuth u. ltp. Kossuth u. Housing Estate, Nagykőrös Figure 89 District heating system of the Kossuth u. Housing Estate, Nagykőrös 93
1,2 Nyírbátor : 4 722 GJ, 50,3% : 0 GJ, % : 4 657 GJ, 49,7% 0,8 0,6 0,4 0,2 Figure 90 District heating system, Nyírbátor In the event of the establishment of 300 kw of new mass-based heat generation capacity. 94
8 Nyíregyháza : 459 646 GJ, 60,1% : 289 257 GJ, 37,8% : 16 485 GJ, 2,2% 7 6 5 4 3 2 1 Figure 91 Municipal System, Nyíregyháza In the event of the construction of 22 MW of new mass (perhaps municipal solid waste)-based heat generation capacity. 95
1,4 Nyíregyháza Tompa M.u. : GJ, % : 12 081 GJ, 98,1% : 240 GJ, 1,9% 1,2 0,8 0,6 0,4 0,2 Nyíregyháza Tompa M. u. Tompa M. u., Nyíregyháza Figure 92 Tompa M. út System, Nyíregyháza 96
4 Ózd : 188 211 GJ, 56,3% : 102 548 GJ, 30,7% : 43 342 GJ, 13,0% 35,0 3 25,0 2 15,0 1 5,0 Figure 93 District heating system, Ózd New mass capacity: 9 MW. 97
18,0 Paks atom: 161 674 GJ, 10% : 0 GJ, % : GJ, % 16,0 14,0 1 1 8,0 6,0 Kapcsolt 4,0 atom Kapcsolt nuclear Cogenerated Figure 94 District heating system, Paks 98
5,0 Pétfürdő : 29 900 GJ, 67,0% : 0 GJ, % : 14 713 GJ, 33,0% 4,5 4,0 3,5 3,0 2,5 1,5 0,5 Figure 95 District heating system, Pétfürdő In the event of the establishment of 1.5 MW of new mass-based heat generation unit. 99
1,2 Pornóapáti : 9 500 GJ, 10% : 0 GJ, % : GJ, % 0,8 0,6 0,4 0,2 Existing wood chips combustion. Figure 96 District heating system, Pornóapáti 100
2,5 Putnok : 14 549 GJ, 74,2% : 0 GJ, % : 5 058 GJ, 25,8% 1,5 0,5 With 800 kw new mass-based capacity. Figure 97 District heating system, Putnok 101
4,5 Püspökladány : GJ, % : 28 552 GJ, 78,7% : 7 748 GJ, 21,3% 4,0 3,5 3,0 2,5 1,5 0,5 Figure 98 District heating system, Püspökladány 102
35,0 Salgótarján távhő1 : 157 371 GJ, 53,7% : 25 021 GJ, 8,5% : 110 528 GJ, 37,7% 3 25,0 2 15,0 1 5,0 Salgótarján távhő1 District heat 1, Salgótarján With 8 MW of new mass-based capacity. Figure 99 District Heating System I, Salgótarján 103
SalgótarjánBeszterce : 13 640 GJ, 75,7% : 0 GJ,,0% : 4 390 GJ, 24,3% 1,8 1,6 1,4 1,2 0,8 0,6 0,4 0,2 Salgótarján Beszterce Beszterce, Salgótarján With 700 kw new mass-based capacity. Figure 100 Beszterce System, Salgótarján 104
3,0 Sárbogárd József A. : GJ, % : 18 931 GJ, 96,6% : 676 GJ, 3,4% 2,5 1,5 0,5 Sárbogárd József A. József A., Sárbogárd Figure 101 József A. System, Sárbogárd 105
6,0 Sátoraljaújhely : GJ, % : 0 GJ, % : 47 679 GJ, 10% 5,0 4,0 3,0 Figure 102 Dózsa út System, Sátoraljaújhely 106
Sátoraljaújhely Esze T. út : GJ,,0% : 0 GJ,,0% : 8 600 GJ, 10% 0,9 0,8 0,7 0,6 0,5 0,4 0,3 0,2 0,1 Sátoraljaújhely Esze T. út Esze T. út, Sátoraljaújhely Figure 103 Esze T. System, Sátoraljaújhely 107
4,0 Siófok Városház tér : GJ,,0% : 20 583 GJ, 64,8% : 11 181 GJ, 35,2% 3,5 3,0 2,5 1,5 0,5 Siófok Városháza tér Városháza tér, Siófok Figure 104 Városház tér System, Siófok 108
35,0 Sopron : 160 955 GJ, 55,1% : 126 015 GJ, 43,1% : 5 078 GJ, 1,7% 3 25,0 2 15,0 1 5,0 Figure 105 District heating system, Sopron Assuming the establishment of 8 MW of new mass capacity. 109
25,0 Százhalombatta : 89 898 GJ, 4% : 0 GJ, % : 135 102 GJ, 6% 2 15,0 1 5,0 Figure 106 District heating system, Százhalombatta Assuming the connection of 4 MW of new thermal capacity. 110
14,0 Szeged Felsőváros II. : 68 555 GJ, 55,8% : 30 649 GJ, 25,0% : 23 569 GJ, 19,2% 1 1 8,0 6,0 4,0 Szeged Felsőváros II. Felsőváros II, Szeged Figure 107 Felsőváros II System, Szeged With a newly established 3.5 MW thermal heat source. 111
7,0 Szeged Északi I/A : 38 193 GJ, 62,1% : 0 GJ, % : 23 288 GJ, 37,9% 6,0 5,0 4,0 3,0 Szeged Északi I/A North I/A, Szeged Figure 108 North District System I/a, Szeged With a newly established 2 MW mass-based heat source. 112
25,0 Szeged Északi I/B : 116 804 GJ, 57,3% : 42 499 GJ, 20,8% : 44 591 GJ, 21,9% 2 15,0 1 5,0 Szeged Északi I/B North I/B, Szeged Figure 109 North District System I/b, Szeged With a newly established 6 MW mass-based heat source. 113
6,0 Szeged Erőművi rendszer : 29 396 GJ, 55,7% : 10 227 GJ, 19,4% : 13 130 GJ, 24,9% 5,0 4,0 3,0 Szeged Erőművi rendszer Power Plant System, Szeged Figure 110 Power Plant System, Szeged With 1.5 MW of thermal heat generation capacity to be newly established. 114
1,2 Szeged Tisza L. krt. 36-40. rendszer : 7 353 GJ, 71,1% : 0 GJ, % : 2 989 GJ, 28,9% 0,8 0,6 0,4 0,2 Szeged Tisza L. krt. 36-40. rendszer Tisza Lajos krt. 36-40. System, Szeged With 400 kw new mass-based capacity. Figure 111 Tisza Lajos krt. 36-40. System, Szeged 115
4,5 Szeged Odessza I. rendszer : 27 096 GJ, 74,6% : 0 GJ, % : 9 243 GJ, 25,4% 4,0 3,5 3,0 2,5 1,5 0,5 Szeged Odessza I. rendszer Odessza I System, Szeged With 1.5 MW of new thermal-based capacity. Figure 112 Odessza I System, Szeged 116
5,0 Szeged Odessza II. rendszer : 20 337 GJ, 48,5% : 0 GJ, % : 21 599 GJ, 51,5% 4,5 4,0 3,5 3,0 2,5 1,5 0,5 Szeged Odessza II. rendszer Odessza II System, Szeged Existing thermal-based district heating system. Figure 113 Odessza II System, Szeged 117
16,0 Szeged Rókus : 69 520 GJ, 52,8% : 30 754 GJ, 23,4% : 31 322 GJ, 23,8% 14,0 1 1 8,0 6,0 4,0 Szeged Rókus Rókus. Szeged Figure 114 Rókus System, Szeged In the event of the establishment of 3.5 MW of new mass-based heat generation unit. 118
3,5 Szeged Tarján II : 21 606 GJ, 75,2% : 0 GJ, % : 7 142 GJ, 24,8% 3,0 2,5 1,5 0,5 Szeged Tarján II Tarján II, Szeged Figure 115 Tarján II System, Szeged With the establishment of 1.2 MW mass-based heat generation capacity. 119
2 Szeged Tarján III, VIII : 97 400 GJ, 57,1% : 55 512 GJ, 32,6% : 17 584 GJ, 10,3% 18,0 16,0 14,0 1 1 8,0 6,0 4,0 Szeged Tarján III, VIII Tarján III and VIII, Szeged Figure 116 Tarján III to VIII and Felsőváros 1 Systems, Szeged With the establishment of 5 MW new mass-based heat generation capacity. 120
2,5 Szeged Tarján IV : 16 683 GJ, 86,2% : 2 603 GJ, 13,4% : 70 GJ, 0,4% 1,5 0,5 Szeged Tarján IV Tarján IV, Szeged Figure 117 Tarján IV System, Szeged With the establishment of 1 MW of new thermal heat generation capacity. 121
3,5 Szeged Tarján V : 18 646 GJ, 68,0% : 7 089 GJ, 25,9% : 1 684 GJ, 6,1% 3,0 2,5 1,5 0,5 Szeged Tarján V Tarján V, Szeged Figure 118 Tarján V System, Szeged With the establishment of 1 MW of new thermal heat generation capacity. 122
4,5 Szeged Tarján VI : 19 974 GJ, 51,7% : 10 143 GJ, 26,3% : 8 498 GJ, 2% 4,0 3,5 3,0 2,5 1,5 0,5 Szeged Tarján VI Tarján VI, Szeged Figure 119 Tarján VI System, Szeged With the establishment of 1 MW of new thermal heat generation capacity. 123
Szeged Török u. : 5 654 GJ, 65,5% : 0 GJ, % : 2 980 GJ, 34,5% 0,9 0,8 0,7 0,6 0,5 0,4 0,3 0,2 0,1 Szeged Török u. Török u., Szeged Figure 120 Török út System, Szeged With the installation of 300 kw of new mass boiler capacity. 124
3 Szekszárd Déli Fűtőmű : 165 250 GJ, 6% : 65 758 GJ, 24,3% : 39 939 GJ, 14,7% 25,0 2 15,0 1 5,0 Szekszárd Déli Fűtőmű South Central Heating Plant, Szekszárd Figure 121 District heating system of the South, Szekszárd With the installation of 8 MW of new mass-based boiler capacity. 125
1,8 Szekszárd Kadarka u. : 11 798 GJ, 7% : 0 GJ, % : 4 812 GJ, 29,0% 1,6 1,4 1,2 0,8 0,6 0,4 0,2 Szekszárd Kadarka u. Kadarka u., Szekszárd Figure 122 Kadarka u. District Heating System, Szekszárd With the installation of 600 kw of new mass boiler capacity. 126
3,0 Szentes Kertvárosi rendszer : 21 919 GJ, 99,6% : 0 GJ, % : 82 GJ, 0,4% 2,5 1,5 0,5 Szentes Kertvárosi rendszer Suburban System, Szentes Figure 123 Suburban System, Szentes Existing thermal-based district heat generation. 127
4,5 Szentes Debreceni úti ltp. : 34 461 GJ, 99,6% : 0 GJ, % : 129 GJ, 0,4% 4,0 3,5 3,0 2,5 1,5 0,5 Szentes Debreceni úti ltp. Debrecen út Housing Estate, Szentes Figure 124 Debrecen út Housing Estate System, Szentes Existing thermal-based district heat generation. 128
3,0 Szentes Kurca parti rendszer : 20 214 GJ, 99,6% : 0 GJ, % : 76 GJ, 0,4% 2,5 1,5 0,5 Szentes Kurca parti rendszer Kurca bank System, Szentes Figure 125 Kurca bank System, Szentes Existing thermal-based district heat generation. 129
3,5 Szentes Kossuth-Déli oldali : 25 572 GJ, 99,6% : 0 GJ, % : 96 GJ, 0,4% 3,0 2,5 1,5 0,5 Szentes Kossuth-Déli oldali Kossuth South Side, Szentes Figure 126 Kossuth South Side System, Szentes Existing thermal-based district heat generation. 130
3,5 Szentgotthárd Mártírok : 17 813 GJ, 73,0% : 0 GJ, % : 6 604 GJ, 27,0% 3,0 2,5 1,5 0,5 Szentgotthárd Mártírok Mártírok, Szentgotthárd Figure 127 Mártírok út System, Szentgotthárd In the event of the establishment of 1.1 MW of new mass-based capacity. 131
5,0 Szigetszentmiklós : 29 946 GJ, 67,8% : 12 458 GJ, 28,2% : 1 777 GJ, 4,0% 4,5 4,0 3,5 3,0 2,5 1,5 0,5 Figure 128 District heating system, Szigetszentmiklós In the event of the establishment of 1.5 MW of new mass-based capacity. 132
4,5 Szigetvár Kórházi rendszer : GJ, % : 0 GJ, % : 37 655 GJ, 10% 4,0 3,5 3,0 2,5 1,5 0,5 Szigetvár Kórházi rendszer Hospital System, Szigetvár Figure 129 Hospital System, Szigetvár 133
7,0 Szolnok József A. Fűtőmű : 40 386 GJ, 67,1% : 16 217 GJ, 27,0% : 3 553 GJ, 5,9% 6,0 5,0 4,0 3,0 Szolnok József A. Fűtőmű József A. Heating Plant, Szolnok Figure 130 József A. Housing Estate System, Szolnok In the event of the establishment of 2 MW of new mass-based capacity. 134
7,0 Szolnok Móra F. Fűtőmű : 40 836 GJ, 64,8% : 17 382 GJ, 27,6% : 4 758 GJ, 7,6% 6,0 5,0 4,0 3,0 Szolnok Móra F. Fűtőmű Móra F. Central Heating Plant, Szolnok Figure 131 Móra F. Central Heating Plant System, Szolnok In the event of the establishment of 2 MW of new mass-based capacity. 135
2 Szolnok Széchenyi Fűtőmű : 78 281 GJ, 44,2% : 70 024 GJ, 39,5% : 28 862 GJ, 16,3% 18,0 16,0 14,0 1 1 8,0 6,0 4,0 Szolnok Széchenyi Fűtőmű Széchenyi Central Heating Plant, Szolnok With existing mass boiler. Figure 132 Széchenyi A. Housing Estate System, Szolnok 136
0,9 Szolnok TVM ltp : 5 904 GJ, 72,2% : 0 GJ, % : 2 272 GJ, 27,8% 0,8 0,7 0,6 0,5 0,4 0,3 0,2 0,1 Szolnok TVM ltp TVM Housing Estate, Szolnok Figure 133 TVM System, Szolnok With a 300 kw mass-based heat generation unit to be newly established. 137
7,0 Szombathely Szent Flórián rendszer : 35 699 GJ, 64,5% : 7 538 GJ, 13,6% : 12 119 GJ, 21,9% 6,0 5,0 4,0 3,0 Szombathely Szent Flórián rendszer Szent Flórián System, Szombathely Figure 134 Szent Flórián System, Szombathely With a 2 MW mass-based heat generation unit to be newly established. 138
4 Szombathely Vízöntő rendszer : 121 279 GJ, 35,8% : 131 584 GJ, 38,9% : 85 641 GJ, 25,3% 35,0 3 25,0 2 15,0 1 5,0 Szombathely Vízöntő rendszer Vízöntő System, Szombathely Bio Figure 135 Vízöntő System, Szombathely With a 6 MW mass-based heat generation unit to be newly established. 139
3,0 Szombathely Belváros : 15 653 GJ, 71,2% : 0 GJ, % : 6 318 GJ, 28,8% 2,5 1,5 0,5 Szombathely Belváros City Centre, Szombathely Figure 136 City Centre System, Szombathely With a 900 kw mass-based heat generation unit to be newly established. 140
3,5 Szombathely Zeneiskolai rendszer : 20 656 GJ, 73,4% : 0 GJ, % : 7 497 GJ, 26,6% 3,0 2,5 1,5 0,5 Szombathely Zeneiskola rendszer Music School System, Szombathely Figure 137 Music School System, Szombathely With a 1.2 MW mass-based heat generation unit to be newly established. 141
1,2 Szombathely Laktanya : 6 796 GJ, 76,0% : 0 GJ, % : 2 145 GJ, 24,0% 0,8 0,6 0,4 0,2 Szombathely Laktanya Barracks, Szombathely Figure 138 Boiler Building System of the Barracks, Szombathely With a 400 kw mass-based heat generation unit to be newly established. 142
14,0 Szombathely Mikes úti rendszer : 92 046 GJ, 88,8% : 0 GJ, % : 11 626 GJ, 11,2% 1 1 8,0 6,0 4,0 Szombathely Mikes úti rendszer Mikes út System, Szombathely With existing wood chips-fired boiler. Figure 139 Mikes út System, Szombathely 143
6,0 Tapolca I. Fűtőmű : 30 936 GJ, 63,5% : 14 815 GJ, 30,4% : 2 932 GJ, 6,0% 5,0 4,0 3,0 Tapolca I. Fűtőmű Central Heating Plant I, Tapolca Figure 140 Central Heating Plant I System, Tapolca With a 2 MW mass-based heat generation unit to be newly established. 144
Tapolca II. Fűtőmű : 14 014 GJ, 74,7% : 0 GJ, % : 4 747 GJ, 25,3% 1,8 1,6 1,4 1,2 0,8 0,6 0,4 0,2 Tapolca II. Fűtőmű Central Heating Plant II, Tapolca Figure 141 Central Heating Plant II, Tapolca With a 900 kw mass-based heat generation unit to be newly established. 145
14 Tatabánya : 1 153 894 GJ, 95,7% : 39 027 GJ, 3,2% : 12 345 GJ, % 12 10 8 6 4 60 MW kapcsolt 20 MW kazán 2 60 MW kapcsolt 60 MW cogeneration 20 MW kazán 20 MW boiler Figure 142 District heating system, Tatabánya 20 MW wood chips-fired boiler and 60 MW th of traditional (heating turbine) wood chips-based heat generation capacity. 146
35,0 Tiszaújváros : 151 320 GJ, 51,9% : 95 348 GJ, 32,7% : 44 912 GJ, 15,4% 3 25,0 2 15,0 1 5,0 Figure 143 District heating system, Tiszaújváros With a 6 MW mass-based heat generation unit to be newly established. 3,0 Tiszavasvári : 18 252 GJ, 74,8% : 0 GJ, % : 6 148 GJ, 25,2% 2,5 1,5 0,5 147
Figure 144 District heating system, Tiszavasvár With a 1 MW mass-based heat generation unit to be newly established. 1,6 Vasvár Béke u. : 12 554 GJ, 10% : 0 GJ, % : GJ, % 1,4 1,2 0,8 0,6 0,4 0,2 Existing thermal-based heat generation. Figure 145 Béke út System, Vasvár 148
1,2 Vasvár Járdányi u. : 8 996 GJ, 10% : 0 GJ, % : GJ, % 0,8 0,6 0,4 0,2 Vasvár Járdányi u. Járdányi u., Vasvár Existing thermal-based heat generation. Figure 146 Járdányi út System, Vasvár 149
1,2 Vác Vásár téri rendszer : 7 147 GJ, 75,9% : 0 GJ, % : 2 266 GJ, 24,1% 0,8 0,6 0,4 0,2 Vác Vásár téri rendszer Vásár tér System, Vác Figure 147 Deákvár System, Vác With a 400 kw mass-based heat generation unit to be newly established. 150
1 Vác Vásár téri rendszer : 58 594 GJ, 55,5% : 18 839 GJ, 17,8% : 28 231 GJ, 26,7% 1 8,0 6,0 4,0 Vác Vásár téri rendszer Vásár tér System, Vác Figure 148 Vásár tér System, Vác With a 2.5 MW mass-based heat generation unit to be newly established. 151
18,0 Várpalota : 102 128 GJ, 61,1% : 34 678 GJ, 20,7% : 30 427 GJ, 18,2% 16,0 14,0 1 1 8,0 6,0 4,0 Figure 149 District heating system, Várpalota With a 5 MW mass-based heat generation unit to be newly established. 152
3,5 Inota : 20 109 GJ, 64,3% : 9 997 GJ, 3% : 1 146 GJ, 3,7% 3,0 2,5 1,5 0,5 Figure 150 District heating system, Inota With a 1 MW mass-based heat generation unit to be newly established. 153
4,5 Veszprém Cserhát : 24 329 GJ, 74,9% : 0 GJ, % : 8 166 GJ, 25,1% 4,0 3,5 3,0 2,5 1,5 0,5 Figure 151 Cserhát Housing Estate System, Veszprém With a 1.5 MW mass-based heat generation unit to be newly established. 154
35,0 Veszprém Haszkovó : 158 573 GJ, 55,8% : 110 298 GJ, 38,8% : 15 506 GJ, 5,5% 3 25,0 2 15,0 1 5,0 Figure 152 Haszkovó System, Veszprém With a 8 MW mass-based heat generation unit to be newly established. 155
Veszprém Ördögárok u. Ördögárok u., Veszprém Figure 153 Ördögárok út System, Veszprém With a 700 kw mass-based heat generation unit to be newly established. 156