MATEMATIKA ANGOL NYELVEN MATHEMATICS



Hasonló dokumentumok
MATEMATIKA ANGOL NYELVEN

MATEMATIKA ANGOL NYELVEN

MATEMATIKA ANGOL NYELVEN

MATEMATIKA ANGOL NYELVEN MATHEMATICS

MATEMATIKA ANGOL NYELVEN

MATEMATIKA ANGOL NYELVEN

ÉRETTSÉGI VIZSGA május 6.

MATEMATIKA ANGOL NYELVEN

MATEMATIKA ANGOL NYELVEN MATHEMATICS

MATEMATIKA ANGOL NYELVEN

MATEMATIKA ANGOL NYELVEN MATHEMATICS

MATEMATIKA ANGOL NYELVEN MATHEMATICS

MATEMATIKA ANGOL NYELVEN

MATEMATIKA ANGOL NYELVEN

MATEMATIKA ANGOL NYELVEN MATHEMATICS

MATEMATIKA ANGOL NYELVEN

MATEMATIKA ANGOL NYELVEN MATHEMATICS

MATEMATIKA ANGOL NYELVEN

MATEMATIKA ANGOL NYELVEN

MATEMATIKA ANGOL NYELVEN

MATEMATIKA ANGOL NYELVEN

MATEMATIKA ANGOL NYELVEN

MATEMATIKA ANGOL NYELVEN

MATEMATIKA ANGOL NYELVEN

MATEMATIKA ANGOL NYELVEN MATHEMATICS

MATEMATIKA ANGOL NYELVEN

MATEMATIKA ANGOL NYELVEN

EMELT SZINTŰ ÍRÁSBELI VIZSGA

MATEMATIKA ANGOL NYELVEN

MATEMATIKA ANGOL NYELVEN

MATEMATIKA ANGOL NYELVEN

MATEMATIKA ANGOL NYELVEN

MATEMATIKA ANGOL NYELVEN

ELEKTRONIKAI ALAPISMERETEK ANGOL NYELVEN

MATEMATIKA ANGOL NYELVEN

MATEMATIKA ANGOL NYELVEN

Construction of a cube given with its centre and a sideline

MATEMATIKA ANGOL NYELVEN

STUDENT LOGBOOK. 1 week general practice course for the 6 th year medical students SEMMELWEIS EGYETEM. Name of the student:

MATEMATIKA ANGOL NYELVEN

ELEKTRONIKAI ALAPISMERETEK ANGOL NYELVEN

3. MINTAFELADATSOR KÖZÉPSZINT. Az írásbeli vizsga időtartama: 30 perc. III. Hallott szöveg értése

ANGOL NYELV KÖZÉPSZINT SZÓBELI VIZSGA I. VIZSGÁZTATÓI PÉLDÁNY

FÖLDRAJZ ANGOL NYELVEN GEOGRAPHY

MATEMATIKA ANGOL NYELVEN

Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet. Hypothesis Testing. Petra Petrovics.

ELEKTRONIKAI ALAPISMERETEK ANGOL NYELVEN

ELEKTRONIKAI ALAPISMERETEK ANGOL NYELVEN

International Open TABLE TENNIS. Competition to the Memory of János Molnár RESULTS

Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet Factor Analysis

ELEKTRONIKAI ALAPISMERETEK ANGOL NYELVEN

Minta ANGOL NYELV KÖZÉPSZINT SZÓBELI VIZSGA II. Minta VIZSGÁZTATÓI PÉLDÁNY

ANGOL NYELV KÖZÉPSZINT SZÓBELI VIZSGA I. VIZSGÁZTATÓI PÉLDÁNY

Tavaszi Sporttábor / Spring Sports Camp május (péntek vasárnap) May 2016 (Friday Sunday)

ENROLLMENT FORM / BEIRATKOZÁSI ADATLAP

Angol Középfokú Nyelvvizsgázók Bibliája: Nyelvtani összefoglalás, 30 kidolgozott szóbeli tétel, esszé és minta levelek + rendhagyó igék jelentéssel

EN United in diversity EN A8-0206/419. Amendment

Emelt szint SZÓBELI VIZSGA VIZSGÁZTATÓI PÉLDÁNY VIZSGÁZTATÓI. (A részfeladat tanulmányozására a vizsgázónak fél perc áll a rendelkezésére.

FÖLDRAJZ ANGOL NYELVEN GEOGRAPHY

Correlation & Linear Regression in SPSS

Intézményi IKI Gazdasági Nyelvi Vizsga

On The Number Of Slim Semimodular Lattices

FÖLDRAJZ ANGOL NYELVEN

1. MINTAFELADATSOR KÖZÉPSZINT. Az írásbeli vizsga időtartama: 30 perc. III. Hallott szöveg értése

Mapping Sequencing Reads to a Reference Genome


(Asking for permission) (-hatok/-hetek?; Szabad ni? Lehet ni?) Az engedélykérés kifejezésére a következő segédigéket használhatjuk: vagy vagy vagy

ANGOL NYELVI SZINTFELMÉRŐ 2013 A CSOPORT. on of for from in by with up to at

ELEKTRONIKAI ALAPISMERETEK ANGOL NYELVEN

General information for the participants of the GTG Budapest, 2017 meeting

Lopocsi Istvánné MINTA DOLGOZATOK FELTÉTELES MONDATOK. (1 st, 2 nd, 3 rd CONDITIONAL) + ANSWER KEY PRESENT PERFECT + ANSWER KEY

ANGOL NYELVI SZINTFELMÉRŐ 2012 A CSOPORT. to into after of about on for in at from

Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet Nonparametric Tests

Statistical Dependence

ÉRETTSÉGI VIZSGA május 18.

Using the CW-Net in a user defined IP network

2. Local communities involved in landscape architecture in Óbuda

Nemzetközi Kenguru Matematikatábor

Szeretettel hívjuk, várjuk sporttársainkat az Eger Ünnepe és az Egri Senior Úszó-Klub fennállásának 25-ikévében rendezett versenyünkre

Lesson 1 On the train

Tudományos Ismeretterjesztő Társulat

Contact us Toll free (800) fax (800)

FAMILY STRUCTURES THROUGH THE LIFE CYCLE

Genome 373: Hidden Markov Models I. Doug Fowler

There is/are/were/was/will be

Travel Getting Around

PIACI HIRDETMÉNY / MARKET NOTICE

Széchenyi István Egyetem

Utasítások. Üzembe helyezés

ANGOL NYELVI SZINTFELMÉRŐ 2014 A CSOPORT

Unit 10: In Context 55. In Context. What's the Exam Task? Mediation Task B 2: Translation of an informal letter from Hungarian to English.

Correlation & Linear Regression in SPSS

Utolsó frissítés / Last update: február Szerkesztő / Editor: Csatlós Árpádné

Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet. Correlation & Linear. Petra Petrovics.

KÖZGAZDASÁGI- MARKETING ALAPISMERETEK ANGOL NYELVEN

Directors and Officers Liability Insurance Questionnaire Adatlap vezetõ tisztségviselõk és felügyelõbizottsági tagok felelõsségbiztosításához

OLYMPICS! SUMMER CAMP

Tudományos Ismeretterjesztő Társulat

3. MINTAFELADATSOR EMELT SZINT. Az írásbeli vizsga időtartama: 30 perc. III. Hallott szöveg értése

AZ ACM NEMZETKÖZI PROGRAMOZÓI VERSENYE

Átírás:

ÉRETTSÉGI VIZSGA 2006. május 9. MATEMATIKA ANGOL NYELVEN MATHEMATICS 2006. május 9. 8:00 EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA ADVANCED LEVEL WRITTEN EXAM Az írásbeli vizsga időtartama: 240 perc The exam is 240 minutes long Pótlapok száma/number of extra sheets Tisztázati/Final essays Piszkozati/Drafts OKTATÁSI MINISZTÉRIUM MINISTRY OF EDUCATION Matematika angol nyelven emelt szint írásbeli vizsga 0612

írásbeli vizsga 0612 2 / 24 2006. május 9.

Important Information The exam is 240 minutes long. After that you should stop working. You may attempt the questions in arbitrary order. You are supposed to answer four out of the five questions in part II. The number of the question not attempted should be entered into the empty square below. Should there arise any ambiguity for the examiner as for which question should not be marked, it is question no. 9 that will not going to be assessed. You may work with any calculator as long as it is not capable of storing and displaying textual information and you may also consult any type of four digit mathematical table. The use of any other kind of electronic device or written source is forbidden. Remember to show your reasoning; a major part of the marks is given for this component of your work. Remember to show your working, including substantial calculations. When you refer to a theorem that has been done at school and has a common name (e.g. Pithagoras theorem, sine rule, etc.) you are not expected to state it meticulously; it is usually sufficient to put the name of the theorem. However, you should briefly explain how the theorem applies in your solution. Any other reference to any other kind of mathematical theorem will receive full credit only if it is stated correctly (no proof is needed) and its relevance and applicability is clearly explained. Remember to answer each question (i.e. the result) also in textual form. You are supposed to work in pen; diagrams, however, may also be drawn in pencil. Anything written in pencil outside the diagrams cannot be evaluated by the examiner. Any solution or some part of a solution that is crossed out will not be marked. There is only one solution will be marked for every question. Please, do not to write anything in the shaded rectangular areas. írásbeli vizsga 0612 3 / 24 2006. május 9.

I. 1. The endpoints of the base of an isosceles triangle are A(3, 5) and B(7, 1). The third vertex of the triangle is lying on the y-axis. a) Find the coordinates of the third vertex of the triangle. b) Write down the equation of the circumcircle of the triangle. a) 4 points b) 8 points T.: 12 points írásbeli vizsga 0612 4 / 24 2006. május 9.

írásbeli vizsga 0612 5 / 24 2006. május 9.

2. Given are two cubes, one of them is blue and the other one is red. The surface area of the red cube is 25% less than that of the blue one. How much less, in percentage, the volume of the red cube than that of the blue one? 12 points írásbeli vizsga 0612 6 / 24 2006. május 9.

írásbeli vizsga 0612 7 / 24 2006. május 9.

2 3. The real roots of the equation x x + p = 0 are one less, than the real roots of the 2 equation x + px 1 = 0, respectively. a) Find the value of the real parameter p. b) Calculate the real roots of both equations if p = 5. a) 9 points b) 4 points T.: 13 points írásbeli vizsga 0612 8 / 24 2006. május 9.

írásbeli vizsga 0612 9 / 24 2006. május 9.

4. The members of a group of 30 scientists are investigating the applications of computers in research, education and communication. Every member of the group has already published something in at least one of these areas. There are 12 of them who have written on the role of computers in research, 18 of them have published articles on their use in education, finally 17 scientists have published studies on how computers are used in communication. There are 7 scientists in the group who have published surveys about exactly two of the above issues. a) One member is selected randomly from the group, to participate in a television talk-show. Find the probability that this scientist has already published some papers in each of the above research areas. b) How many specialists are there in the group, i. e. scientists who have published in one field only? a) 10 points b) 4 points T.: 14 points írásbeli vizsga 0612 10 / 24 2006. május 9.

írásbeli vizsga 0612 11 / 24 2006. május 9.

II. You are supposed to answer any four out of the questions no. 5-9. The number of the question not attempted should be entered into the empty square on sheet no. 3. 5. The roof of the tower of a medieval church from the roman period is a right pyramid with a square base. The length of each side of the base is equal to the edges of the pyramid. On renovation there was a cubical room of maximal volume fashioned inside the roof structure; its base was on a level with the base of the pyramid and the corners of its ceiling were incident to the edges of the pyramid. a) Find tha area of the base of the room in the roof if it is given that the edges of the pyramid are 8 m long. b) What percentage of the airspace of the roof is filled by this room? a) 9 points b) 7 points T.: 16 points írásbeli vizsga 0612 12 / 24 2006. május 9.

írásbeli vizsga 0612 13 / 24 2006. május 9.

You are supposed to answer any four out of the questions no. 5-9. The number of the question not attempted should be entered into the empty square on sheet no. 3. 2 6. Given are the functions f: R R, f ( x) = x + 10x 22 and g: R R, ( x) = x + 6 g. a) Solve the equation f (x) = g(x). b) Write down the equations of the tangents to the curve of equation y = f (x), at the common points of the two curves whose equations are y = f (x) and y = g(x), respectively. c) Sketch the graphs of the funtions f and g. The curves whose equations are y = f (x) and y = g(x), respectively and the line x = 6 enclose two regions. Calulate the area of the one that is lying closer to the y-axis. a) 3 points b) 7 points c) 6 points T.: 16 points írásbeli vizsga 0612 14 / 24 2006. május 9.

írásbeli vizsga 0612 15 / 24 2006. május 9.

You are supposed to answer any four out of the questions no. 5-9. The number of the question not attempted should be entered into the empty square on sheet no. 3. 7. Because of railway restorations the train from Szeged to Budapest was forced to travel between Cegléd and Budapest by one third of its scheduled average velocitity. On the weekend, however, it could still attain its original average velocity along a 19 km long line right after Cegléd, but beyond that it could travel again by one third of its average velocity only. The delay of the train hence was 30 minutes more on Monday than that on the weekend. a) What is the average velocity of this train when it is on schedule? When scheduling its budget the MÁV (National Railway Company) is frequently carrying out surveys among its passangers on the distribution of discounts and that of the tickets purchased. On a particular Budapest- Szeged trip there were 400 passangers traveling altogether from Budapest to Szeged (i. e. between the two termini). There were only second class coaches on the train and the full price of a 2 nd class ticket for the whole trip was approx. 2 000 forints. (To make things simpler we shall refer to this rounded price onwards.) The controllers noted, for every passanger the price of its ticket and the eventual discount. The data is indicated in the table below. (A ticket used to be called of x % discount if the actual price is the total price reduced by x %.) Type of the ticket Full price 20% discount 33% discount 50% discount 67,5% discount 75% discount 90%- discount 95% discount No. of passangers 84 18 44 110 11 35 31 29 38 Actual Price (Ft) Free b) Complete the table and determine the discount corresponding to the average price. a) 10 points b) 6 points T.: 16 points írásbeli vizsga 0612 16 / 24 2006. május 9.

írásbeli vizsga 0612 17 / 24 2006. május 9.

You are supposed to answer any four out of the questions no. 5-9. The number of the question not attempted should be entered into the empty square on sheet no. 3. 8. a) When written in decimal form, the one digit number a, the two digit number a b and the three digit number b b a are the first three terms, in this order of an arithmetic progression (Identical letters stand for equal numbers and different letters for different numbers.) Find the common difference of this arithmetic progression and calculate the sum of its first one hundred terms. b) Prove that the sums of the first n terms, the second n terms and the third n terms, respectively, of a geometric progression are the three consecutive terms of a geometric progression. a) 7 points b) 9 points T.: 16 points írásbeli vizsga 0612 18 / 24 2006. május 9.

írásbeli vizsga 0612 19 / 24 2006. május 9.

You are supposed to answer any four out of the questions no. 5-9. The number of the question not attempted should be entered into the empty square on sheet no. 3. 9. The board of trustees of the foundation of a certain high school is organizing a lottery. The income should be devoted partly to the prizes and partly to charity purposes. There are four numbers drawn randomly in this lottery from the first 40 positive integers every week. Andrew has a particular method of filling his ticket: having selected the first two numbers he marks the sum of these numbers as the third one and the sum of the first three numbers as the fourth one. a) What is the maximum value of the smallest number on a ticket that is filled according to the preceding method? b) If Andrew choses the highest possible value of his smallest number then, according to his method, which numbers will be marked on his ticet? c) On a particular week Andrew decides to play every single ticket obeying his rule exactly once. What is the probability that he will eventually hit the jackpot? a) 4 points b) 4 points c) 8 points T.: 16 points írásbeli vizsga 0612 20 / 24 2006. május 9.

írásbeli vizsga 0612 21 / 24 2006. május 9.

(You may also prepare sketches or solutions on this sheet.) írásbeli vizsga 0612 22 / 24 2006. május 9.

(You may also prepare sketches or solutions on this sheet.) írásbeli vizsga 0612 23 / 24 2006. május 9.

PART I. PART II. Number of question score total maximal score 1. 12 2. 12 3. 13 4. 14 16 16 16 16 problem not chosen TOTAL 115 date examiner PART I. a feladat sorszáma/ Number of question 1. 2. 3. 4. elért pontszám/ score programba beírt pontszám/ score written in the programme PART II. dátum/date javító tanár/examiner Jegyző/Registrar írásbeli vizsga 0612 24 / 24 2006. május 9.